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Preface 

Invitation 

Secret 1 Algorithms are at the heart of complexity theory. 

That is the dark -secret of complexity theory. It is recognized by complex­
ity theorists, but would be literally incredible to most others. In this book, 
we hope to make this secret credible. In fact, the real secret is even more 
dramatic. 

Secret 2 Simple algorithms are at the heart of complexity theory. 

A corollary of Secret 2 is that every practitioner of computer science or stu­
dent of computer science already possesses the ability required to understand, 
enjoy, and employ complexity theory. 

We realize that these secrets fly in the face of conventional wisdom. Most 
people view complexity theory as an arcane realm populated by pointy-hatted 
(if not indeed pointy-headed) sorcerers stirring cauldrons of recursion theory 
with wands of combinatorics, while chanting incantations involving complex­
ity classes whose very names contain hundreds of characters and sear the 
tongues of mere mortals. This stereotype has sprung up in part due to the 
small amount of esoteric research that fits this bill, but the stereotype is more 
strongly attributable to the failure of complexity theorists to communicate in 
expository forums the central role that algorithms play in complexity theory. 

Throughout this book-from the tree-pruning and interval-pruning algo­
rithms that shape the first chapter to the query simulation procedures that 
dominate the last chapter-we will see that proofs in complexity theory usu­
ally employ algorithms as their central tools. In fact, to more clearly highlight 
the role of algorithmic techniques in complexity theory, this book is organized 
by technique rather than by topic. That is, in contrast to the organization of 
other books on complexity theory, each chapter of this book focuses on one 
technique-what it is, and what results and applications it has yielded. 

The most thrilling times in complexity theory are when a new technique 
is introduced and sweeps like fire over the field. In addition to highlighting 
the centrality of algorithms in the proof arsenal of complexity theory, we feel 
that our technique-based approach more vividly conveys to the reader the 
flavor and excitement of such conflagrations. We invite the reader to come 
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with us as we present nine techniques, usually simple and algorithmic, that 
burned away some of the field's ignorance and helped form the landscape of 
modern complexity theory. 

Usage 

We intend this book as a companion for students and professionals who seek 
an accessible, algorithmically oriented, research-centered, up-to-date guide to 
some of the most interesting techniques of complexity theory. The authors 
and their colleague Joel Seiferas have test-driven the book's approach in two 
different courses at the University of Rochester. We have used this technique­
based approach in Rochester's one-semester basic complexity theory course, 
which is taken by all first-year computer science graduate students and also 
by those undergraduates specializing or specially interested in theoretical 
computer science, and in our second course on complexity theory, which is 
taken by all second-year graduate students as their theory "breadth" course. 

We found in both these course settings that the technique-based approach 
allowed us to impart to students a significant amount of the feel and expe­
rience of complexity theory research and led to more student interest and 
involvement than occurred in earlier course incarnations using other texts. 
We expect that this will not only benefit the complexity theory students in 
the courses, but will also help all the course's students become prepared to 
do work that is theoretically aware, informed, and well-grounded. 

At times, we stop the flow of a proof or discussion with a "Pause to 
Ponder." These are places at which we encourage the reader to pause for a 
moment and find his or her own solution to the issue raised. Even an un­
successful attempt to craft a solution will usually make the proof/discussion 
that follows clearer and more valuable, as the reader will better understand 
the challenges posed by the hurdle that the proof/ discussion overcomes. 

With some exceptions due to result dependencies, the non-appendix chap­
ters are generally ordered to put the easier chapters near the start of the book 
and the more demanding chapters near the end of the book. 

Acknowledgments 

We are extraordinaril:y indebted to the following people, who proofread one or 
more chapters, for their invaluable help, suggestions, corrections, and insights: 
Eric Allender, Russell Bent, Alina Beygelzimer, Matthew Boutell, Samuel 
Chen, Yin-He Cheng, Louis Deaett, Gregory Goldstein, Fred Green, Ulrich 
Hertrampf, Chris Homan, Gabriel Istrate, Jason Ku, David Lagakos, Andrew 
Learn, Tao Li, loan Macarie, Proshanto Mukherji, Kenneth Regan, William 
Scherer III, Alan Selman, D. Sivakumar, Howard Straubing, Robert Swier, 



Preface ix 

Mayur Thakur, Jonathan Tomer, Jacobo Toran, Leen Torenvliet, Dieter van 
Melkebeek, Heribert Vollmer, Julie Zhong, and Marius Zimand. We also 
thank the many other people who have helped us with advice, comments, 
corrections, literature pointers, most-recent-version information, and sug­
gestions: Andris Ambainis, Vikraman Arvind, Richard Beigel, Nate Blay­
lock, Daniel Bovet, Jin-Yi Cai, Diane Cass, Stephen Fenner, Lance Fortnow, 
William Gasarch, Viliam Geffert, Oded Goldreich, Juris Hartmanis, Edith 
Hemaspaandra, Paul Ilardi, Sven Kosub, Richard Lipton, Alexis Maciel, Wolf­
gang Merkle, Christos Papadimitriou, Thanos Papathanasiou, Eduardo Pin­
heiro, Robert Rettinger, Jorg Rothe, Alex Samorodnitsky, Marcus Schaefer, 
Michael Schear, Uwe Schoning, Joel Seiferas, Samik Sengupta, Carl Smith, 
Scott Stoness, Madhu Sudan, Chunqiang Tang, Jun Tarui, Thomas Thier auf, 
Luca Trevisan, Chris Umans, Osamu Watanabe, Chee Yap, and Stathis Za­
chos. Any remaining errors are the responsibility of the authors. 

We thank our thesis advisors, Juris Hartmanis and Kojiro Kobayashi; 
their insightful, dedicated, joyous approach to research has been a continuing 
inspiration to us. 

We appreciate the grants-NSF-CCR-8957604, NSF-INT-9116781/ 
JSPS-ENGR-207, NSF-CCR-9322513, NSF-INT-9513368/DAAD-315-PRO­
fo-ab, NSF-CCR-9701911, NSF-CCR-9725021, NSF-INT-9726724, NSF-INT-
9815095/DAAD-315-PPP-gii-ab NSF-DUE-9980943, DARPA-F30602-98-2-
0133, NIA-R01-AG18231-that have supported our research programs during 
the planning and writing of this book. 

For generous advice, help, and support, we thank the Springer-Verlag se­
ries editors and staff, namely, Wilfried Brauer, Grzegorz Rozenberg, Arto Sa­
lomaa, Alfred Hofmann, Frank Holzwarth, Ingeborg Mayer, Sherryl Sundell, 
and Hans Wossner. Our own department's technical and secretarial staff­
especially Jill Forster, Elaine Heberle, and Jim Roche-was invaluable in 
keeping our computers up and our manuscript copied and circulating, and 
we much appreciate their help. 

We are grateful to those colleagues-Peter van Emde Boas, Harald 
Hempel, Jorg Rothe, Alan Selman, Seinosuke Toda, Leen Torenvliet, Heribert 
Vollmer, Klaus Wagner, Osamu Watanabe, and Gerd Wechsung-who have 
generously hosted our research visits during the planning and writing of this 
book, and to the many colleagues, as cited in the Bibliographic Notes sections, 
who have collaborated with us on the research described in some sections of 
this book. 

Above all, we thank Edith, Ellen, Emi, and Erica for their advice, love, 
and support. 

Lane A. Hemaspaandm 

Mitsunori Ogiham 

Rochester, NY 
October 2001 





Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 
Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 
Usage ..................................................... viii 

1. The Self-Reducibility Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 2 
1.2 The 'I'uring Case........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
1.3 The Case of Merely Putting Sparse Sets in NP - P: The 

Hartmanis-lmmerman-Sewelson Encoding . . . . . . . . . . . . . . . . 22 
1.4 OPEN ISSUE: Does the Disjunctive Case Hold? . . . . . . . . . . . 26 
1.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2. The One-Way Function Technique . . . . . . . . . . . . . . . . . . . . . . . . 31 
2.1 GEM: Characterizing the Existence of One-Way Functions . . 32 
2.2 Unambiguous One-Way Functions Exist If and Only If 

Bounded-Ambiguity One-Way Functions Exist. . . . . . . . . . . . . 35 
2.3 Strong, Total, Commutative, Associative One-Way 

Functions Exist If and Only If One-Way Functions Exist . . . . 36 
2.4 OPEN ISSUE: Low-Ambiguity, Commutative, Associative 

One-Way Functions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

3. The Tournament Divide and Conquer Technique . . . . . . . . . 45 
3.1 GEM: The Semi-feasible Sets Have Small Circuits.......... 45 
3.2 Optimal Advice for the Semi-feasible Sets . . . . . . . . . . . . . . . . . 48 
3.3 Unique Solutions Collapse the Polynomial Hierarchy . . . . . . . 56 
3.4 OPEN ISSUE: Are the Semi-feasible Sets in P /linear? . . . . . . 63 
3.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4. The Isolation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
4.1 GEM: Isolating a Unique Solution . . . . . . . . . . . . . . . . . . . . . . . 68 
4.2 Toda's Theorem: PH ~ pPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
4.3 NL/poly = UL/poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 



xii Contents 

4.4 OPEN ISSUE: Do Ambiguous and Unambiguous 
Nondeterminism Coincide?.............................. 87 

4.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

5. The Witness Reduction Technique........................ 91 
5.1 Framing the Question: Is #P Closed Under 

Proper Subtraction?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
5.2 GEM: A Complexity Theory for Feasible Closure Properties 

of #P ................................................ 93 
5.3 Intermediate Potential Closure Properties. . . . . . . . . . . . . . . . . 99 
5.4 A Complexity Theory for Feasible Closure Properties 

of OptP .............................................. 103 
5.5 OPEN ISSUE: Characterizing Closure Under 

Proper Decrement ..................................... 105 
5.6 Bibliographic Notes .................................... 106 

6. The Polynomial Interpolation Technique .................. 109 
6.1 GEM: Interactive Protocols for the Permanent ............. 110 
6.2 Enumerators for the Permanent .......................... 119 
6.3 IP = PSPACE ........................................ 122 
6.4 MIP = NEXP ......................................... 133 
6.5 OPEN ISSUE: The Power of the Provers .................. 163 
6.6 Bibliographic Notes .................................... 163 

7. The Nonsolvable Group Technique ........................ 167 
7.1 GEM: Width-5 Branching Programs Capture 

Nonuniform-NC1 ..........•........................... 168 
7.2 Width-5 Bottleneck Machines Capture PSPACE ........... 176 
7.3 Width-2 Bottleneck Computation ........................ 181 
7.4 OPEN ISSUE: How Complex Is Majority-Based 

Probabilistic Symmetric Bottleneck Computation? ......... 192 
7.5 Bibliographic Notes .................................... 192 

8. The Random Restriction Technique ...................... 197 
8.1 GEM: The Random Restriction Technique and a 

Polynomial-Size Lower Bound for Parity .................. 197 
8.2 An Exponential-Size Lower Bound for Parity .............. 207 
8.3 PH and PSPACE Differ with Probability One ............. 218 
8.4 Oracles That Make the Polynomial Hierarchy Infinite ....... 222 
8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite with 

Probability One? ...................................... 231 
8.6 Bibliographic Notes .................................... 231 



Contents xiii 

9. The Polynomial Technique ................................ 235 
9.1 GEM: The Polynomial Technique ........................ 236 
9.2 Closure Properties of PP ............................... 241 
9.3 The Probabilistic Logspace Hierarchy Collapses ............ 252 
9.4 OPEN ISSUE: Is PP Closed Under Polynomial-Time Turing 

Reductions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 
9.5 Bibliographic Notes .................................... 260 

A. A Rogues' Gallery of Complexity Classes ................. 263 
A.1 P: Determinism ........................................ 264 
A.2 NP: Nondeterminism ................................... 266 
A.3 Oracles and Relativized Worlds .......................... 268 
A.4 The Polynomial Hierarchy and Polynomial Space: 

The Power of Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 
A.5 E, NE, EXP, and NEXP ................................ 27 4 
A.6 P /Poly: Small Circuits ................................. 276 
A.7 L, NL, etc.: Logspace Classes ............................ 277 
A.8 NC, AC, LOGCFL: Circuit Classes ...................... 279 
A.9 UP, FewP, and US: Ambiguity-Bounded Computation and 

Unique Computation ................................... 281 
A.10 #P: Counting Solutions .. : . ............................ 286 
A.ll ZPP, RP, coRP, and BPP: Error-Bounded Probabilism ..... 288 
A.12 PP, C=P, and SPP: Counting Classes .................... 290 
A.13 FP, NPSV, and NPMV: Deterministic and Nondeterministic 

Functions ............................................. 291 
A.14 P-Sel: Semi-feasible Computation ........................ 294 
A.15 E9P, ModkP: Modulo-Based Computation ................. 297 
A.16 SpanP, OptP: Output-Cardinality and Optimization 

Function Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 
A.17 IP and MIP: Interactive Proof Classes .................... 299 
A.18 PBP, SF, SSF: Branching Programs and Bottleneck 

Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 

B. A Rogues' Gallery of Reductions ......................... 305 
B.1 Reduction Definitions: :::;~, :::;~, .......................... 305 
B.2 Shorthands: R and E ................................... 307 
B.3 Facts about Reductions ................................. 307 
B.4 Circuit-Based Reductions: NCk and ACk ................. 308 
B.5 Bibliographic Notes .................................... 308 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 

Index ......................................................... 335 





1. The Self-Reducibility Technique 

A set S is sparse if it contains at most polynomially many elements at each 
length, i.e., 

(3 polynomial p)(Vn)[lj{x I xES 1\ jxj = n}ll ~ p(n)]. (1.1) 

This chapter studies one of the oldest questions in computational complexity 
theory: Can sparse sets be NP-complete? 

As we noted in the Preface, the proofs of most results in complexity theory 
rely on algorithms, and the proofs in this chapter certainly support that claim. 
In Sect. 1.1, we1 will use a sequence of increasingly elaborate deterministic 
tree-pruning and interval-pruning procedures to show that sparse sets cannot 
be ~~-complete, or even ~ttt-hard, for NP unless P = NP. (The appendices 
contain definitions of and introductions to the reduction types, such as ~~ 
and ~ttt• and the complexity classes, such asP and NP, that are used in this 
book.) 

Section 1.2 studies whether NP can have ~~-complete or ~~-hard sparse 
sets. pNP[O(logn)] denotes the class of languages that can be accepted by 
some deterministic polynomial-time Turing machine allowed at most O(log n) 
queries to some NP oracle. In Sect. 1.2, we will-via binary search, self­
reducibility algorithms, and nondeterministic algorithms-prove that sparse 
sets cannot be ~~-complete for NP unless the polynomial hierarchy collapses 
to pNP[O(logn)J, and that sparse sets cannot be ~~-hard for NP unless the 
polynomial hierarchy collapses to NPNP. 

As is often the case in complexity-theoretic proofs, we will typically use 
in the construction of our algorithms the hypothesis of the theorem that the 
algorithm is establishing (e.g., we will build a P algorithm for SAT, and will 
use in the algorithm the-literally hypothetical-sparse ~~-complete set for 
NP). In fact, this "theorems via algorithms under hypotheses" approach is 
employed in each section of this chapter. 

FUrthermore, most of Sects. 1.1 and 1.2 are unified by the spirit of their 
algorithmic attack, which is to exploit the "(disjunctive) self-reducibility" of 
SAT-basically, the fact that a boolean formula is satisfiable if and only if 
either it is satisfiable with its first variable set to False or it is satisfiable with 

1 In this book, "we" usually refers to the authors and the readers as we travel 
together in our exploration of complexity theory. 
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its first variable set to True. A partial exception to the use of this attack 
in those sections is the left set technique, which we use in Sect. 1.1.2. This 
technique, while in some sense a veiled tree-pruning procedure inspired by a 
long line of self-reducibility-based tree-pruning procedures, adds a new twist 
to this type of argument, rather than being a direct invocation of SAT's 
self-reducibility. 

Section 1.3 studies not whether there are sparse NP-complete sets, but 
rather whether NP - P contains any sparse sets at all. Like the previous 
sections, this section employs explicit algorithmic constructions that them­
selves use objects hypothesized to exist by the hypotheses of the theorems 
for which they are providing proofs. The actual result we arrive at is that 
NP - P contains sparse sets if and only if deterministic and nondeterministic 
exponential time differ. 

Throughout this book, we will leave the type of quantified variables im­
plicit when it is clear from context what that type is. For example, in equa­
tion 1.1, the "(Vn)" is implicitly "(Vn E {0,1,2, ... })," and "(Vx)" is typi­
cally a shorthand for "(Vx E E*)." We will use a colon to denote a constraint 
on a variable, i.e., "(Vx: R(x)) [S(x)]" means "(Vx) [R(x) => S(x)]," and 
"(:lx: R(x)) [S(x)]" means "(:lx) [R(x) 1\ S(x)]." For any set A and any nat­
ural number n, we will use A~n to denote the strings of A that are of length 
at most n, and we will use A=n to denote the strings of A that are of length 
exactly n. Given a 'lUring machine M, we will use L(M) to denote the lan­
guage accepted by the machine (with respect to whatever the acceptance 
mechanism of the machine is). 

1.1 GEM: There Are No Sparse NP-Complete Sets 
Unless P=NP 

1.1.1 Setting the Stage: The Pruning Technique 

Before we turn to Mahaney's Theorem-NP has sparse complete sets only if 
P = NP-and its generalization to bounded-truth-table reductions, we first 
prove two weaker results that display the self-reducibility-based tree-pruning 
approach in a simpler setting. (Below, in a small abuse of notation we are 
taking "1" in certain places-such as in expressions like "1 *"-as a shorthand 
for the regular expression representing the set { 1}.) 

Definition 1.1 A set T is a tally set exactly if T ~ 1 *. 

Theorem 1.2 If there is a tally set that is ~'fn-hard for NP, then fl = NP. 

Corollary 1.3 If there is a tally set that is NP-complete, then P = NP. 

We note in passing that if P = NP, then the singleton set {1} is trivially 
both NP-complete and coNP-complete. Thus, all the "if ... then ... " theorems 
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of this section (Sect. 1.1) have true converses. We state them in "if ... then ... " 
form to stress the interesting direction. 

Proof of Theorem 1.2 LetT be a tally set that is ~~-hard for NP. Since 
the NP-complete set 

SAT = {f I f is a satisfiable boolean formula} 

is in NP and T is ~~-hard for NP, it follows that SAT~~T. Let g be a 
deterministic polynomial-time function many-one reducing SAT toT. Let k 
be an integer such that ('v'x)[lg(x)l ~ lxlk + k]; since g is computable by some 
deterministic polynomial-time Turing machine, such a k indeed must exist 
since that machine outputs at most one character per step. 

We now give, under the hypothesis of the theorem, a deterministic 
polynomial-time algorithm for SAT, via a simple tree-pruning procedure. 
The input to our algorithm is a boolean formula F. Without loss of general­
ity, let its variables be VI, ... , Vm and let m :?: 1. We will denote the result of 
assigning values to some of the variables of F via expressions of the following 
form: F[vi = True, V3 = False], where True denotes the constant true and 
False denotes the constant false. For example, if F = VI V v2 V V3 then 

F[vi = True, V3 = False] = True V V2 V False, 

and 
(F[vi = True])[v3 =False] =True V v2 V False. 

Our algorithm has stages numbered 0, 1, ... , m + 1. At the end of each 
stage (except the final one), we pass forward a collection of boolean formulas. 
Initially, we view ourselves as having just completed Stage 0, and we view 
ourselves as passing forward from Stage 0 a collection, C, containing the 
single formula F. 
Stage i, 1 :::; i ::5 m, assuming that the collection at the end 
of Stage i - 1 is the following collection of formulas: { F1 , ••• , Ft.}. 
Step 1 Let C be the collection 

{FI[vi =True], F2[vi =True], ... Fl[vi =True], 
Fl[vi =False], F2[vi =False], ... Fe[vi =False]}. 

Step 2 Set C' to be 0. 
Step 3 For each formula fin C (in arbitrary order) do: 

1. Compute g(f). 
2. If g(f) E 1 * and for no formula h E C' does g(f) = g( h), then add f to 

C'. 

End Stage i [C' is the collection that gets passed on to Stage i + 1] 

The action of our algorithm at Stage m + 1 is simple: F is satisfiable if 
and only if some member of the (variable-free) formula collection output by 
Stage m evaluates to being true. 
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As to the correctness of our algorithm, note that after Stage 0 it certainly 
holds that 

the collection, C, contains some satisfiable formula 
{::::::::} 

F is satisfiable, 
(1.2) 

since after Stage 0 formula F is the only formula in the collection. Note also 
that, for each i, 1 ~ i ~ m, 

the collection input to Stage i contains some 
satisfiable formula 

{::::::::} 

the collection output by Stage i contains some 
satisfiable formula. 

(1.3) 

Will now argue that this is so, via using a self-reducibility-based argument. In 
the present context, the relevant self-reducibility fact is that for any formula 
F containing v as one of its variables, 

F is satisfiable {::::::::} 
((F[v =True] is satisfiable) V (F[v =False] is satisfiable)), 

since any satisfying assignment must assign some value to each variable. So 
Step 1 of Stage i does no damage to our invariant, equation 1.3. What about 
Steps 2 and 3? (In terms of the connection to Step 1, it is important to keep 
in mind that if, for example, formula F having variable v is in our collection 
at the start of the stage and is satisfiable, then it must be the case that 

(F[v =True] is satisfiable) V (F[v =False] is satisfiable), 

so it must be the case that 

g(F[v = True]) E TV g(F[v = False]) E T. 

And of course, T ~ 1 *.) Steps 2 and 3 "prune" the formula set as follows. 
Each formula f from Step 1 is kept unless either 

a. g(f) ¢ 1 *, or 
b. g(f) E 1 * but some hE C' has g(f) = g(h). 

Both these ways, (a) and (b), of dropping formulas are harmless. Recall that 
SAT~~T via function g, and so iff E SAT then g(f) E T. However, regard­
ing (a), T ~ 1 *so if g(f) ¢ 1 *then g(f) ¢ T, and so f ¢SAT. Regarding (b), 
if g(f) = g(h) and h has already been added to the collection to be output by 
Stage (i), then there is no need to output f as---since SAT~~T via reduction 
g-we know that 

f E SAT {::::::::} g(f) E T 

and 
hE SAT {::::::::} g(h) E T. 
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Thus, f E SAT <==> h E SAT, and so by discarding f but leaving in h, 
we do no damage to our invariant, equation 1.3. So by equations 1.2 and 1.3 
we see that F is satisfiable if and only if some formula output by Stage m 
is satisfiable. As the formulas output by Stage m have no free variables, this 
just means that one of them must evaluate to being true, which is precisely 
what Stage m + 1 checks. 

Thus, the algorithm correctly checks whether F is satisfiable. But is this a 
polynomial-time algorithm? IFI will denote the length ofF, i.e., the number 
of bits in the representation of F. Let IFI = p. Note that after any stage 
there are at most pk + k + 1 formulas in the output collection, and each of 
these formulas is of size at most p. This size claim holds as each formula in 
an output collection is formed by one or more assignments of variables of 
F to being True or False, and such assignments certainly will not cause an 
increase in length (in a standard, reasonable encoding). We will say that a 
string s is a tally string exactly if s E 1 *. The pk + k + 1 figure above holds 
as (due to the final part of Step 3 of our algorithm) we output at most one 
formula for each tally string to which (nk + k-time function) g can map, and 
even if g outputs a 1 on each step, g can output in pk + k steps no tally string 
longer than 1 Pk +k. So, taking into account the fact that the empty string is a 
(degenerate) tally string, we have our pk + k + 1 figure. From this, from the 
specification of the stages, and from the fact that g itself is a polynomial-time 
computable function, it follows clearly that the entire algorithm runs in time 
polynomial in IFI· 0 

In the proof of Theorem 1.2, we used self-reducibility to split into two each 
member of a set of formulas, and then we pruned the resulting set using the 
fact that formulas mapping to non-tally strings could be eliminated, and the 
fact that only one formula mapping to a given tally string need be kept. By 
repeating this process we walked down the self-reducibility tree of any given 
formula, yet we pruned that tree well enough to ensure that only a polynomial 
number of nodes had to be examined at each level of the tree. By the self­
reducibility tree-more specifically this is a disjunctive self-reducibility tree­
of a formula, we mean the tree that has the formula as its root, and in which 
each node corresponding to a formula with some variables unassigned has as 
its left and right children the same formula but with the lexicographically 
first unassigned variable set respectively to True and to False. 

In the proof of Theorem 1.2, we were greatly helped by the fact that we 
were dealing with whether tally sets are hard for NP. Tally strings are easily 
identifiable as such, and that made our pruning scheme straightforward. We 
now turn to a slightly more difficult case. 

Theorem 1.4 I! there is a sparse set that is s~ -hard for coNP, then 
P=NP. 

Corollary 1.5 If there is a sparse coNP-complete set, then P = NP. 
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The proof of Theorem 1.4 goes as follows. As in the proof of Theorem 1.2, 
we wish to use our hypothesis to construct a polynomial-time algorithm for 
SAT. Indeed, we wish to do so by expanding and pruning the self-reducibility 
tree as was done in the proof of Theorem 1.2. The key obstacle is that the 
pruning procedure from the proof of Theorem 1.2 no longer works, since 
unlike tally sets, sparse sets are not necessarily "P-capturable" (a set is P­
capturable if it is a subset of some sparse P set). In the following proof, 
we replace the tree-pruning procedure of Theorem 1.2 with a tree-pruning 
procedure based on the following counting trick. We expand our tree, while 
pruning only duplicates; we argue that if the tree ever becomes larger than a 
certain polynomial size, then the very failure of our tree pruning proves that 
the formula is satisfiable. 

Proof of Theorem 1.4 LetS be the (hypothetical) sparse set that is :5~­
hard for coNP. For each .e, let Pt(n) denote the polynomial nl +.e. Let d be 
such that ('v'n)[JIS~nll :5 Pd(n)].2 Since SATE NP, it follows that SAT:5~S. 
Let g be a deterministic polynomial-time function many-one reducing SAT to 
S. Let k be an an integer such that ('v'x)[lg(x)l :5 Pk(n); since g is computed 
by a deterministic polynomial-time Turing machine, such a k indeed exists. 

We now give, under the hypothesis of this theorem, a deterministic 
polynomial-time algorithm for SAT, via a simple tree-pruning procedure. 
As in the proof of Theorem 1.2, let F be an input formula, and let m be the 
number of variables in F. Without loss of generality, let m ~ 1 and let the 
variables ofF be named v1, ... , Vrn· Each stage of our construction will pass 
forward a collection of formulas. View Stage 0 as passing on to the next stage 
the collection containing just the formula F. We now specify Stage i. Note 
that Steps 1 and 2 are the same as in the proof of Theorem 1.2, Step 3 is 
modified, and Step 4 is new. 

Stage i, 1 ~ i ~ m, assuming the collection at the end of Stage i -1 
is{Ft, ... ,FL}. 
Step 1 Let C be the collection 

{Fl[vi =True], F2[vi =True], ... Ft[Vi =True], 
F1[vi =False], F2[vi =False], ... Ft[vi =False]}. 

Step 2 Set C' to be 0. 
Step 3 For each formula f inC (in arbitrary order) do: 

1. Compute g(f). 
2. If for no formula hE C' does g(!) = g(h), then add f to C'. 

2 The IJS5nll, as opposed to the IIS=n11 that implicitly appears in the definition 
of "sparse set" (equation 1.1), is not a typographical error. Both yield valid and 
equivalent definitions of the class of sparse sets. The JJS=nll approach is, as we 
will see in Chap. 3, a bit more fine-grained. However, the proof of the present 
theorem works most smoothly with the IJSSnJI definition. 
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Step 4 If C' contains at least Pd(Pk(IFI))+1 elements, stop and immediately 
declare that FE SAT. (The reason for the Pd(Pk(IFI)) + 1 figure will be made 
clear below.) 

End Stage i [C' is the collection that gets passed on to Stage i + 1] 

The action of our algorithm at Stage m + 1 is as follows: If some member 
of the (variable-free) formula collection output by Stage m evaluates to being 
true we declare FE SAT, and otherwise we declare F ¢SAT. 

Why does this algorithm work? Let n represent IFI· Since Pd(Pk(n)) + 1 is 
a polynomial in the input size, F, it is clear that the above algorithm runs in 
polynomial time. If the hypothesis of Step 4 is never met, then the algorithm 
is correct for reasons similar to those showing the correctness of the proof of 
Theorem 1.2. 

If Step 4 is ever invoked, then at the stage at which it is invoked, we 
have Pd(Pk(n)) + 1 distinct strings being mapped to by the non-pruned nodes 
at the current level of our self-reducibility tree. (Recall that by the self­
reducibility tree-more specifically this is a disjunctive self-reducibility tree­
of a formula, we mean the tree that has the formula as its root, and in which 
each node corresponding to a formula with some variables unassigned has as 
its left and right children the same formula but with the lexicographically 
first unassigned variable set respectively to True and False.) Note that each 
of these mapped-to strings is of length at most Pk(n) since that is the longest 
string that reduction g can output on inputs of size at most n. However, there 
are only Pd (Pk ( n)) strings in S~Pk (n}. As usual, E denotes our alphabet, 
and as usual we take E = {0, 1}. So since the formulas in our collection 
map to Pd(Pk(n)) + 1 distinct strings in (E*)~Pk(n), at least one formula in 
our collection, call it H, maps under the action of g to a string in 8.3 So 
g(H) ¢ S. However, SAT reduces to S via g, soH is satisfiable. Since H was 
obtained by making substitutions to some variables of F, it follows that F is 
satisfiable. Thus, if the hypothesis of Step 4 is ever met, it is indeed correct 
to halt immediately and declare that F is satisfiable. 0 Theorem 1.4 

Pause to Ponder 1.6 In light of the comment in footnote 3, change the 
proof so that Step 4 does not terminate the algorithm, but rather the algorithm 
drives forward to explicitly find a satisfying assignment for F. (Hint: The 
crucial point is to, via pruning, keep the tree from getting too large. The 
following footnote contains a give-away hint. 4 ) 

3 Note that in this case we know that such an H exists, but we have no idea which 
formula is such an H. See Pause to Ponder 1.6 for how to modify the proof to 
make it more constructive. 

4 Change Step 4 so that, as soon as C' contains Pd(Pk(n)l + 1 formulas, no more 
elements are added to C' at the current level. 
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1.1.2 The Left Set Technique 

1.1.2.1 Sparse Complete Sets for NP. So far we have seen, as the proofs 
of Theorems 1.2 and 1.4, tree-pruning algorithms that show that "thin" sets 
cannot be hard for certain complexity classes. Inspired by these two results, 
Mahaney extended them by proving the following lovely, natural result. 

Theorem 1. 7 If NP has sparse complete sets then P = NP. 

Pause to Ponder 1.8 The reader will want to convince him- or herself of 
the fact that the approach of the proof of Theorem 1.4 utterly fails to establish 
Theorem 1. 7. (See this footnote for why. 5) 

We will not prove Theorem 1.7 now since we soon prove, as Theorem 1.10, 
a more general result showcasing the left set technique, and that result will 
immediately imply Theorem 1.7. Briefly put, the new technique needed to 
prove Theorems 1.7 and 1.10 is the notion of a "left set." Very informally, a 
left set fills in gaps so as to make binary search easier. 

Theorem 1. 7 establishes that if there is a sparse NP-complete set then 
P = NP. For NP, the existence of sparse NP-hard sets and the existence 
of sparse NP-complete sets stand or fall together. (One can alternatively 
conclude this from the fact that Theorem 1.10 establishes its result for NP­
~~tt-hardness rather than merely for NP-~~tt-completeness.) 

Theorem 1.9 NP has sparse ~~-hard sets if and only if NP has sparse 
~~-complete sets. 

Proof The "if" direction is immediate. So, we need only prove that if NP 
has a ~~-hard sparse set then it has a ~~-complete sparse set. Let S be 
any sparse set that is ~~-hard for NP. Since S is ~~-hard, it holds that 
SAT~~S. Let f be a polynomial-time computable function that many-one 
reduces SAT to S. Define 

S' = {Ok#y I k ;::: 0 1\ (::lx E SAT)[k;::: lxl 1\ f(x) = y]}. 

The rough intuition here is that S' is almost /(SAT), except to make the 
proof work it via the Ok also has a padding part. Note that if Ok#z E S' 
then certainly z E S. S' is clearly in NP, since to test whether Ok#z is 
in S' we nondeterministically guess a string x of length at most k and we 
nondeterministically guess a potential certificate of x E SAT (i.e., we guess a 
complete assignment of the variables of the formula x), and (on each guessed 
path) we accept if the guessed string/certificate pair is such that f(x) = z 

5 The analogous proof would merely be able to claim that if the tree were getting 
"bushy," there would be at least one unsatisfiable formula among the collection. 
This says nothing regarding whether some other formula might be satisfiable. 
Thus, even if the set C' is getting very large, we have no obvious way to prune 
it. 
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and the certificate proves that x E SAT. Given that S is sparse, it is not 
hard to see that S' is also sparse. Finally, S' is NP-hard because, in light of 
the fact that SAT::;~S via polynomial-time reduction f, it is not hard to see 
that SAT::;~S' via the reduction f'(x) = olxl#f(x). 0 

We now turn to presenting the left set technique. We do so via proving 
that if some sparse set is NP-complete under bounded-truth-table reductions 
then P = NP. 

Theorem 1.10 If there is a sparse set then P = NP that is ::;~tt-hard for 
NP, then P = NP. 

In the rest of the section, we prove Theorem 1.10. 

1.1.2.2 The Left Set and Wmax· Let L be an arbitrary member of NP. 
There exist a polynomial p and a language in A E P such that, for every 
X E E", 

x E L {::::::::} (::lw E Ep(lxll)[(x, w) E A]. 

For each x E E" and w E E", call w a witness for x E L with respect to A 
and p if lwl = p(lxl) and (x, w) EA. Define the left set with respect to A and 
p, denoted by Left[A,p], to be 

{(x,y) I x E E" 1\ y E EP(Ixl) 1\ (::lw E Ep(lxll)[w ~ y 1\ (x,w) E A]}, 

i.e., Left[A, p] is the set of all (x, y) such that y belongs to Ep(lxl) and is "to 
the left" of some witness for x E L with respect to A and p. For each x E E", 
define 

Wmax(x) = max{y E EP(Ixlll (x,y) E A}; 

if {y E EP(Ixlll (x, y) E A} is empty, then Wmax(x) is undefined. In other 
words, Wmax(x) is the lexicographic maximum of the witnesses for x E L 
with respect to A and p. Clearly, for every x E E", 

X E L {::::::::} Wmax(x) is defined, 

and 
x E L {::::::::} (::lyE EP(Ixll)[(x, y) E Left[A,p]]. 

Furthermore, for every x E E", the set 

{y E Ep(lxl) I (x, y) E Left[A, p]} 

equals {y E EP(Ixll I QP(Ixl) ::::; y ::::; Wmax(x)} if x E L and equals 0 otherwise 
{see Fig. 1.1). More precisely, 

Also, 

(Vx E E")(Vy E EP(Ixll)[(x,y) E Left[A,p] {::::::::} y E Wmax(x)]. 

(Vx E E")(Vy,y' E EP(Ixll)[(((x,y) E Left[A,p]) 1\ (y' < y)) 
===> (x,y') E Left[A,p]]. 

{1.4) 
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0 ... 0 witnesses 1.. .1 

0 .. . 0 no witnesses 1.. .1 

Fig. 1.1 The left set Left[A,p]. Top: The case when x E L. The arrows above are 
witnesses for x E L with respect to A and p, Wmax(x) is the rightmost arrow, and 
the shaded area is {y E ~P(I:~:I) I (x, y) E Left[A, p]}. Bottom: The case when x rj. L. 
Wmax(x) is undefined and {y E ~P(I:~:I) I (x,y) E Left[A,p]} = 00 

Note that Left[A,p] is in NP via the nondeterministic Turing machine 
that, on input (x, y), guesses w E EP(Ixl), and accepts if 

(y E EP(Ixl)) 1\ (y ::=; w) 1\ ( (x, y) E A) 

and rejects otherwise. 
Below, we introduce a useful characterization of ::=;~tt reductions. Let k 2:: 

1. A k-truth-table condition is a (k+1)-tuple C such that the first component 
of C is a boolean function of arity k and each of the other components of 
Cis a member of E*. For a k-truth-table condition C =(a, vi, ... ,vk), we 
call a the truth-table of C, call {w I (3i : 1 ::::; i ::::; k)[w = vi]} the queries 
of C, and, for each i, 1 ::::; i ::::; k, call Vi the ith query of C. For a language 
D, we say that the k-truth-table condition (a, vi, .. 0 ,vk) is satisfied by D if 
a(xn(v!), ... , xn(vk)) = 1. 

Proposition 1.11 Suppose that a language C is ::=;~tt-reducible to a lan­
guage D. Then there exist an integer k 2:: 1 and a polynomial-time computable 
function f from E* to the set of all k-truth-table conditions, such that for all 
u E E*, 

u E C {::::::::} f ( u) is satisfied by D. 

Proof of Proposition 1.11 Suppose that, for some k;::: 1, a language C 
is ::=;r-tt-reducible to a language D via (fo, Bo) such that fo E FP and B 0 E P. 
For all u E E*, there exist some l, 1 ::::; l ::::; k, and VI, .. 0 , vz E E*, such that 

• fo(u) =vi#··· #vz#, and 
• u E Left[A,p] {::::::::} u#xn(v!) · · · xn(vz) E Bo, 

where#¢ E. Let !I be the function from E* to (E*#)k defined for all u E E* 
by 
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where fo(u) = v1# ···#vi#· Define B1 to be the set of all u#b1 · · · bk, 
u E E*, b1, ... ,bk E E, such that 

u#b1 · · · b1 E Bo, 

where lis the integer such that fo(u) E (E*#)1• Since B0 E P and foE FP, 
it holds that B1 E P and 11 E FP. 

Let (3 = XD(E). Let u E E* and let fo(u) = v1# ···#vi#· Then 

u#xv(vl) · · · xv(v1) E Bo <==> u#xv(vl) · · · xv(v,)f3k-l E B1. 

Since 11(u) = v1# · · · #v1#k+1-l, we have that the pair (11,Bl) witnesses 
that C ::;ttt D. 

Define function f from E* to the set of all k-truth-table conditions as 
follows: For each u E E*, 

f(u) = (a,v1, ... ,vk), 

where 11 ( u) = v1 # · · · #vk # and 0! is the boolean function defined for all 
b1, ... ,bk E {0,1}k by 

a(b1, ... , bk) = XB 1 (u#b1 · · · bk)· 

Since 11 E FP and k is a constant, f E FP. For every u E E*, 

u E C <==> u#xv(vl) · · · xv(vk) E B1 

and 

u#xv(vl) · · · xv(vk) E B1 <==> a(xv(vl), ... , xv(vk)) = 1, 

where 11(u) = v1# · · · #vk#· So, for all u E E*, 

u E C <==> f(u) is satisfied by D. 

Thus, the statement of the proposition holds. 0 Proposition 1.11 
Suppose that NP has a sparse ::;~tt-hard set, S. Since L was an arbi­

trary member of NP, it suffices to prove that L E P. Since Le.ft[A, p] E NP, 
Le.ft[A,p]::;~ttS. So, by Proposition 1.11, there exist some k 2:: 1 and f E FP 
such that, for all u E E*, f(u) is a k-truth-table condition, and 

u E Le.ft[A,p] <==> f(u) is satisfied by S. 

In preparation for the remainder of the proof, we define some polynomials. Let 
Pl be a strictly increasing polynomial such that for all x E E* and y E EP(Ixl), 
I (x, Y) I ::; Pl (I xi). Let P2 be a strictly increasing polynomial such that for all 
u E E*, every query of f ( u) has length at most P2( lui). Let P3 be a strictly 
increasing polynomial such that for all integers n 2:: 0 IIS~nll ::; p3(n). Define 
q(n) = P3(P2(Pl(n))). Then, for all x E E*, 

ll{w E S I (:lyE EP(Ixll)[w is a query of /((x,y))]}ll::; q(lxl). 

Define r(n) = k!2k(2q(n)+1)k. Also, for each d, 0::; d $ k, define rd(n) = (k­
d)!2k-d(2q(n) + 1)k-d. Note that r0 =rand Tk is the constant 1 polynomial. 
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1.1.2.3 A Polynomial-Time Search Procedure for Wmax· To prove 
that L E P, we will develop a polynomial-time procedure that, on input x E 
E*, generates a list of strings in EP(Ixl) such that, if Wmax(x) is defined then 
the list is guaranteed to contain Wmax(x). The existence of such a procedure 
implies L E P as follows: Let M be a Turing machine that, on input x E E*, 
runs the enumeration procedure to obtain a list of candidates for Wmax(x), 
and accept if the list contains a string y such that (x, y) E A and reject 
otherwise. Since the enumeration procedure runs in polynomial time and 
A E P, M can be made polynomial-time bounded. Since the output list of 
the enumeration procedure is guaranteed to contain Wmax(x) if it is defined, 
M accepts if x E L. If x fl. L, there is no y E EP(Ixl) such that (x, y) E A, so 
M rejects x. Thus, M correctly decides L. Hence, L E P. 

In the rest of the proof we will focus on developing such an enumeration 
procedure. To describe the procedure we need to define some notions. 

Let n 2: 1 be an integer. Let I be a subset of En. We say that I is an 
interval over En if there exist y, z E En such that 

y S z and I = { u E En J y S u S z}. 

We call y and z respectively the left end and the right end of I, and write 
[y, z] to denote I. Let I = [u, v] and J = [y, z] be two intervals over En. We 
say that I and J are disjoint if they are disjoint as sets, i.e., either v < y or 
z < u. If I and J are disjoint and v < y, we say that I is lexicographically 
smaller than J, and write I< J. 

Let x E E* and let A be a set of pairwise disjoint intervals over En. We 
say that A is nice for x if 

x E L ===} (::II E A)[wmax(x) E I]. 

Note that for all x E E* 

• { [QP(Ixl), 1P(ixl)]} is nice for x regardless of whether x E L, and 
• if x fl. L, then every set of pairwise disjoint intervals over EP(Ixl) is nice 

for x. 

Let T be an ordered (possibly empty) list such that, if T is not empty then 
each entry of T is of the form (w, b) for some w E E* and b E {0, 1 }. We 
call such a list a hypothesis list. We say that a hypothesis list T is correct if 
every pair ( w, b) in the list satisfies xs ( w) = b. Let x E E*, let A be a set of 
pairwise disjoint intervals over EP(Ixl)' let r be a subset of A, and let T be a 
hypothesis list. We say that r is a refinement of A for X under T if 

( (A is nice for x) 1\ ( T is correct)) ===} r is nice for x. 

The following fact states some useful properties of refinements. 
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Fact 1.12 

1. IfA=rl U ... Urm andri, ... ,r;. arerefinementsofrl, ... ,rkfor 
X under T, respectively, then ri u ... u r;. is a refinement of A for X 

under T. 

2. If e is a refinement of r for X under T and 8' is a refinement of e for 
X under T, then 8' is a refinement of r for X under T. 

To generate candidates for Wmax(x), starting with the initial value 

we repeat the following two-phase process p(lxl) times. 

• Splitting Split each interval in A into upper and lower halves. 
• Culling If IIAII ~ r(lxl), skip this phase. If IIAII 2: r(lxl) + 1, do the fol­

lowing: Set T to the empty list. Call a subroutine CULL on input (x, A, T) 
to obtain T £; A that has cardinality less than or equal to r(lxl) and is 
nice for x. Replace A with T. 

When the the two-phase process has been executed p(lxl) times, each interval 
in A has size exactly 1, i.e., is of the form [u, u] for some u E EP(Ixl). The 
output of the enumeration procedure is the list of all strings u E Ep(lxl) such 
that [u, u] E A. 

Note that if A is nice for x at the beginning of the splitting phase then it is 
nice for x at the end of the splitting phase. Since both p and rare polynomials, 
if CULL runs in polynomial time, the entire generation procedure runs in 
polynomial time. Since CULL is guaranteed to output a refinement, if x E L 
then there is always one interval in A that contains Wmax(x). So, if x E L, 
Wmax(x) is included in the list of candidates at the end. So, we have only to 
show that a polynomial-time procedure CULL exists that, on input (x, A, r) 
with IIAII 2: r(lxl) + 1, finds T £; A having cardinality at most r(lxl) such 
that T is a refinement of A for x under T. 

For the sake of simplicity, in the following discussion, let x E E* be fixed. 
Since only splitting and elimination are the operations executed to modify 
intervals, we can assume that the intervals in A are pairwise disjoint during 
the entire enumeration procedure. So, for every pair of distinct intervals, 
I and J, appearing in the input to CULL, we will assume that they are 
disjoint, and thus, either I< J or I> J. We also induce a mapping from the 
set of all interval over Ep(lxl) to the set of all k-truth-table conditions. Let 
I = [u, v] be an interval over EP(Ixl). The image of I induced by f, denoted 
by ![I], is f( (x, u) ). Let f[I] = (a:, w1, ... , wk)· For each i, 1 ~ i ~ k, Q[I, i] 
to denote wi. 

1.1.2.4 The Structure of the Culling Method. Each input (x,r,r) to 
CULL is supposed to satisfy the following conditions: 

• Tis a hypothesis list and its length, lrl, is less than or equal to k. 
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• r is a set of pairwise disjoint intervals over EP(Ixl) having cardinality strictly 
greater than r1.,.1 (lxl). 

• If lrl ;::: 1, then the following condition holds: Let d = lrl and T = 
[(wi,bi), ... ,(wd,bd)] for some WI, ... ,wd E E* and bi, ... ,bd E {0, 1}. 
Then, for all I E r, there exist d pairwise distinct elements of { 1, ... , k}, 
}I, ... ,jd, such that for all r, 1 ~ r ~ d, Q[I,jr] = Wr. 

Given an input (x,r,r) that meets this specification, CULL may call itself 
recursively in the case when lrl < k. The number of recursive call that CULL 
makes is less than or equal to 2(k- lrl)(2q(lxl) + 1) and the input to each 
recursive call is a triple of the form (x, r'' r') for some r' s;;;_ rand a hypothesis 
list r' such that lr'l = lrl + 1. Thus, the computation of CULL on input 
(x, r, r) can be viewed as a tree of depth bounded by k -lrl. 

The hypothesis list T is used to refine, for each interval I E r' the 
k-truth-table condition f[I] to a (k - lrl)-truth-table condition. We de­
note the refinement of f[I] with respect to T by J.,.[I]. Suppose that T = 
[(wi,bi), ... ,(wd,bd)] for some d;::: 1, WI, ... ,wd E E*, and bi, ... ,bd E 
{0, 1}. Let I be an arbitrary interval in rand let f[I] = (a, vi, ... ,vk)· 
Then, f.,.[I] = ((3, Vjp .•. , vik-d), where (3 and Vjp •.. , vik-d are defined as 
follows: 

• For s = 1, ... , d, in that order, let p8 be the smallest of r, 1 ~ r ~ k, such 
that (Q[I, r] = w 8 ) 1\ (Vt: 1 ~ t ~ s -1)[r =f. Pt]· 

• For every i, 1 ~ i ~ k- d, let Ji be the ith smallest element in { 1, ... , k}-

{p~, · · · , Pd}· 
• (3 is the boolean function of arity (k- d) that is constructed from a by 

simultaneously fixing for all s, 1 ~ s ~ d, the argument at position p8 to 
bs. 

We will write (3.,.[I] to denote the truth-table of f.,.[I] and Q.,.[I] to denote 
the queries of f.,.[I]. Note that if the hypothesis list T is correct, then for all 
IE r, f[I] is satisfied by S if and only if f.,.[I] is satisfied by S. 

Suppose that lrl = k. Then, for all I E r, J.,.[I] is a boolean function of 
arity 0, i.e., a boolean constant. Since rk(lxl) = 1, CULL cannot select more 
than one interval from r to generate its output. CULL computes S = {I E 

r I f.,.[I] = (True)}. If Sis nonempty, CULL selects the largest element in 
S in lexicographic order; if S is empty, CULL outputs the empty set. We 
claim that the output of CULL is a refinement of r for X under T. To see 
why, suppose that r is nice for X and that the hypothesis list T is correct. 
Then, for every interval I= [u,v] E r, Wmax(x) is less than or equal to u if 
(3.,.[I] = True and is strictly greater than u otherwise. So, for every interval 
IE r, Wmax(x) (/.I if either f3.,.[I] =False or I is not the largest element in 
Sin lexicographic order. Thus, it is safe to to select the largest element in S 
in lexicographic order. 

On the other hand, suppose that lrl < k. Then CULL executes two 
phases, Phases 1 and 2. In Phase 1, CULL eliminates intervals from r so that 
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f.,.[I] =f. f.,.[J] for every pair of distinct intervals I, J E r. In Phase 2, CULL 
selects from r disjoint subsets, rl, ... ,r!, 1 ~ l ~ 2(k- lrJ)(2q(n) + 1), 
where it is guaranteed that no intervals in the rest of r Contain Wmax(x) 
if T is correct. For each of the subsets, CULL makes exactly two recursive 
calls. The output of CULL(x,r,r) is the union of the outputs of all the 2l 
recursive calls. 

Below we describe the two phases of CULL. Let (x, r, r) be an input to 
CULL. Let d = lrl. Suppose that 0 ~ d ~ k- 1. 

Phase 1: Making f.,. unambiguous CULL executes the following: 

• While there exist two intervals I, I' E r such that I< I' E r and f.,.[I] = 
f.,.[I'], find the smallest such pair (I, I') in lexicographic order and eliminate 
I from r. 

Let r' be the set r when CULL quits the loop. We claim that r' is a 
refinement of r for x under T. To see why, assume that Tis correct. Suppose 
that r contains two intervals I = [u, v] and I' = [u', v'] such that I < I' and 
f.,.[I] = f.,.[I']. Then f.,.[I] is satisfied by S if and only if f.,.[I'] is satisfied by 
S. Since Tis correct, f.,.[I] is satisfied by S if and only if ![I] is satisfied by 
S. Also, f.,.[I'] is satisfied by S if and only if f[I'] is satisfied by S. So, ![I] 
is satisfied by S if and only if f[I'] is satisfied by S. Then, by equation 1.4, 
we have 

Wmax(x) ~ u ¢=:> Wmax(x) ~ u'. 

In particular, Wmax(x) ~ u ==? Wmax(x) ~ u'. This implies that either 
Wmax(x) < u or Wmax(x) ~ u'. Since u' > v ~ u, it holds that either 
Wmax(x) < u or Wmax(x) > v. Thus, Wmax(x) ~ I. So, r - {I} is a re­
finement of r for X under T. By part 2 of Fact 1.12, each time an interval is 
eliminate by executing the above algorithm, the resulting set is a refinement 
of r for X under T. Thus, r' is a refinement of r for X under T. 

Phase 2: Refining r' CULL splits r' into two groups .D.0 and .D. 1 , where 
for each b E {0, 1 }, 

.D.b ={IE r'l ,6.,.[1](0, ... ,0) = b}. 

CULL refines .D.o and .D. 1 separately. 

Refining .D.o: Suppose .D.o is nonempty. CULL computes an integer m ~ 1 
and a sequence of intervals I1, I2, ... , Im E .D.o, I 1 < I2 < · · · < Im, as 
follows: 

• I1 is the lexicographic minimum of the intervals in .D.o. 
• For each t ~ 1 such that It is defined, let St+l = {I E .D.o I (Vj : 1 ~ j ~ t) 

[Q.,.[I] n Q.,.[Ii] = 0]}. If St+l = 0, then It+l is undefined. If St+l =f. 0, 
then It+l is the lexicographic minimum of the intervals in St+l· 

• m is the largest t such that It is defined. 
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Define 
!::::..' _ { D..o if m ~ q(lxl), 

0 - {J E D..o I J < Iq(jxl)+d otherwise. 

We claim that !::::..~ is a refinement of !::::..0 for x under T. If m ~ q(lxl), then 
!::::..~ = !::::..0, so !::::..~ clearly is a refinement of D..o for x under r. So, suppose 
that m ~ q(n) + 1, and thus, that !::::..~ ~ !::::..0. Suppose that Tis correct. For 
each j, 1 ~ j ~ m, let I; = [u;,v;]. Assume Uq(jxi)+1 ~ Wmax(x). Then 
for all j, 1 ~ j ~ q(lxl) + 1, u; ~ Wmax(x). Since T is correct, for all j, 
1 ~ j ~ q(lxl) + 1, fr[I;] is satisfied by S. For each j, 1 ~ j ~ q(lxl) + 1, 
.Br[I;](O, ... ,0) = 0, and thus, Qr[I;] n S # 0. The intervals h, ... ,lm are 
chosen so that Qr[h], ... , Qr[Im] are pairwise disjoint. Thus, 

u 
1:-=;;:::;q(jxi)+l 

This is a contradiction, because the number of strings in S that may appear 
as a query string in f( (x, y)) for some y E EP(Ixl) is at most q(lxl). Thus, 
Wmax(x) < Uq(ixll+ 1 • So, all intervals IE D..o whose left end is greater than or 
equal to Uq(lxi)+ 1 can be safely eliminated from D.o. Hence,!::::..~ is a refinement 
of !::::..0 for x under T. 

Let mo = min{m,q(lxl)} and 

R= U Qr[I;]. 
1:-=;;:::;mo 

Let h = IIRII· Then h ~ (k-d)mo. For every IE!::::..~, there exists some y E R 
such that y E Qr[I]. Let y1, ... ,yh be the enumeration of the strings in R 
in lexicographic order. For each j, 1 ~ j ~ h, let 

9; ={I I (IE D..o) 1\ (Vs: 1 ~ s ~ j -1)[I ~e.] 1\ (Y; E Qr[I])}. 

By the choice of the intervals I1, ... , Im, 81, · · · , eh are all nonempty and 
!::::..~ = 81 U · · · U 9h. For each j, 1 ~ j ~ h, and each bE {0, 1}, let 9j,b be 
the set of intervals that CULL on input (x, 8;, r) outputs as a refinement 
of 9; for x under r', where T 1 is T with the pair (y;, b) appended at the end. 
Let Yo = U1::;;::;h ubE{0,1} e;,b. By part 1 of Fact 1.12, if CULL correctly 
computes a refinement for all the recursive calls, then Y 0 is a refinement of 
D..o for x under T. 

Dividing !::::..1: Suppose that !::::..1 # 0. CULL computes an integer m ~ 1 
and a sequence of intervals I1, I2, ... , Im E D..o, h > I2 > · · · > Im, as 
follows: 

• I 1 is the lexicographic maximum of the intervals in !::::..1 . 
• For each t ~ 1 such that It is defined, let st+1 = { J E !::::..1 I (Vj : 1 ~ j ~ t) 

[Qr[I] n Qr[I;] = 0]}. If St+1 = 0, then It+1 is undefined. If Bt+l # 0, 
then It+l is the lexicographic maximum of the intervals in !::::..1. 

• m is the largest t such that It is defined. 
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Define 
D.' _ { D..1 if m ~ q(Jxi) + 1, 

1 - { J E D.~ I J ~ Iq(lxi)+l} otherwise. 

We claim that D.~ is a refinement of D..1 for x under r. If m ~ q(Jxi) + 1, 
then D.~ = D..1. so D.~ clearly is a refinement of D.. 1 for x under r. So, suppose 
that m ~ q(n) + 2, and thus, that D.~ s; D..1. Suppose that r is correct. For 
each j, 1 ~ j ~ m, let Ij = [uj,Vj]· Assume Uq(lxl)+1 > Wmax(x). Then 
for all j, 1 ~ j ~ q(Jxi) + 1, Uj > Wmax(x). Since r is correct, for all j, 
1 ~ j ~ q(Jxi) + 1, fr[IJ] is not satisfied by S. For every j, 1 ~ j ~ q(Jxi) + 1, 
.8r[I1](0, ... , 0) = 1. So, for every j, 1 ~ j ~ q(Jxi) + 1, Qr[I1] n S =f. 0. 
The intervals !1. ... , Im are chosen so that Qr[I1], ... , Qr[Im] are pairwise 
disjoint. Thus, 

JJSn u 
1~j~q(lxi)+l 

This is a contradiction. So, Wmax(x) ~ Uq(lxi)+I· This implies that if r is 
correct, then all intervals IE D..1 whose right end is strictly less than Uq(lxl)+1 
can be eliminated from D..1. Hence, D.~ is a refinement of D..1 for x under r. 
The rest of the procedure is essentially the same as that of Case 1. The only 
difference is that the number of selected intervals is at most q(Jxi) + 1, and 
thus, the total number of refinements that are combined to form a refinement 
of D.~ is at most 2(k-d)(q(Jxi)+1). LetT 1 denote the union of the refinements 
obtained by the recursive calls. 

The output T of CULL is To U T1. Suppose that for each b E {0, 1}, 
Tb is a refinement of D.b for x under r. Since D. = D.o U D..1. by part 1 of 
Fact 1.12, Tis a refinement of D. for x under r. The total number ofrecursive 
calls that CULL makes is 2(k- Jrl)(2q(Jxl) + 1). 

1.1.2.5 Correctness and Analysis of the Culling Method. Since the 
depth of recursion is bounded by k, the entire culling procedure runs in time 
polynomial in JxJ. The correctness of CULL can be proven by induction on 
the length of the hypothesis list, going down from k to 0. For the base case, 
let the length be k. We already showed that if the length of hypothesis list 
is k then CULL works correctly. For the induction step, let 0 ~ d ~ k - 1 
and suppose that CULL works correctly in the case when the length of the 
hypothesis list is greater than or equal to d + 1. Suppose that (x, r, r) is 
given to CULL such that Jrl = d. In each of the recursive calls that CULL 
makes on input (x, r, r), the length of the hypothesis list is d + 1, so by the 
induction hypothesis, the output of each of the recursive calls is correct. This 
implies that the output of CULL on (x, r, r) is a refinement of r. 

We also claim that, for every d, 0 ~ d ~ k, the number of intervals in the 
output of CULL in the case when the hypothesis list has length d is at most 
rd(Jxi). Again, this is proven by induction on d, going down from k to 0. The 
claim certainly holds for the base case, i.e., when d = k, since the output of 
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CULL contains at most one interval when the hypothesis list has length k 
and rk is the constant 1 function. For the induction step, let d = do for some 
d0 , 0 $ do $ k- 1, and suppose that the claims holds for all values of Jrl 
between d0 + 1 and k. Let (x, r, r) be an input to CULL such that Jrj =d. 
The number of recursive calls that CULL on input (x,r,r) is at most 

2((k- d)q(Jxl) + 2(k- d)(q(Jxl) + 1)) = 2(k- d)(2q(lxl) + 1). 

In each of the recursive calls that are made, the length of the hypothesis list 
is d + 1, so by the induction hypothesis, the output of each recursive call 
has at most rd+I (Jxl) elements. So, the number of intervals in the output of 
CULL on input (x,r,r) is at most 

2(k- d)(2q(Jxj) + 1)rd+I (2q(Jxl) + 1). 

This is rd(Jxl). Thus, the claim holds for d. 
Since r0 = r, the number of intervals in the output of the culling phase is 

at most r(Jxl) as desired. Hence, L E P. 0 

1.2 The Turing Case 

In the previous section, we saw that if any sparse set is NP-hard or NP­
complete with respect to many-one reductions or even bounded-truth-table 
reductions, then P = NP. In this section, we ask whether any sparse set can 
be NP-hard or NP-complete with respect to Turing reductions. Since Turing 
reductions are more flexible than many-one reductions, this is a potentially 
weaker assumption than many-one completeness or many-one hardness. In 
fact, it remains an open question whether these hypotheses imply that P = 
NP, though there is some relativized evidence suggesting that such a strong 
conclusion is unlikely. However, one can achieve a weaker collapse of the 
polynomial hierarchy, and we do so in this section. 

Unlike the previous section, the results and proofs for the $?;­
completeness and $?;-hardness cases are quite different. We start with the 
$?;-complete case, which uses what is informally known as a "census" ap­
proach. The hallmark of algorithms based on the census approach is that 
they first obtain for a set (usually a sparse set) the exact number of elements 
that the set contains up to some given length, and then they exploit that 
information. 

The e~ level of the polynomial hierarchy (see Sect. A.4) captures the 
power of parallel access to NP. In particular, is known to equal the down­
ward closure under truth-table reductions (see Sect. B.1) of NP; this clo­
sure is denoted (see the notational shorthands of Sect. B.2) Rft(NP). Thus, 
Theorem 1.14 proves that if NP has Turing-complete sparse sets, then the en­
tire polynomial hierarchy can be accepted via parallel access to NP. However, 
the following equality is known to hold. 



1.2 The Turing Case 19 

Proposition 1.13 Rft(NP) = pNP(CJ(logn)J. 

We will use the latter form of e~ in the proof below. 

Theorem 1.14 lfNP has sparse, for NP $.~-complete sets then PH= e~. 

Proof Let S be a sparse set that is $.~-complete for NP. For each £, let 
Pt(n) denote ni +f. Let j be such that ('v'n)[IIS~nll $. p3(n)]. Let M be 
a deterministic polynomial-time 'lUring machine such that SAT = L(M8 ); 

such a machine must exist, as S is 'lUring-hard for NP. Let k be such that 
Pk(n) bounds the runtime of M regardless ofthe oracle M has; without loss 
of generality, let M be chosen so that such a k exists. 

Pause to Ponder 1.15 Show why this "without loss of generality claim" 
holds. 

(Answer sketch for Pause to Ponder 1.15: Given a machine M, let the 
machines M 1 , M2, .. . , be as follows. Mf(x) will simulate the action of exactly 
Pi(lxl) steps of the action of MA(x), and then will halt in an accepting state 
if MA(x) halted and accepted within Pi(lxl) steps, and otherwise will reject. 
Note that since the overhead involved in simulating one step of machine is at 
most polynomial, for each i, there will exist ani such that for every A it holds 
that MiA runs in time at most Pi(n). Furthermore, in each relativized world 
A in which MA runs in time at most Pi, it will hold that L(MA) = L(MiA). 
Relatedly, in our proof, given the machine M such that SAT= L(M8 ), we 
will in light of whatever polynomial-time bound M 8 obeys similarly replace 
M with an appropriate M3 from the list of machines just described.) 

Let L be an arbitrary set in :E~. Note that, since SAT is NP-complete, it 
is clear that :E~ = NPSAT. So, in particular, there is some nondeterministic 
polynomial-time 'lUring machine N such that L = L(NSAT). Let f be such 
that Pt(n) bounds the nondeterministic runtime of N for all oracles; without 
loss of generality, let N be chosen such that such an integer exists (see Pause 
to Ponder 1.15). Note that L = L(NL(M5 )). 

Define: 

V = {O#ln#lq IIIS~nll ~ q} U 
{l#x#ln#lq I (:JZ ~ s~n)[IIZII = q 1\ X E L(NL(Mz>m. 

Note that, in light of the fact that Sis an NP set, V E NP. 
We now give a e~ algorithm that accepts L. In particular, we give an 

algorithm that makes O(log n) calls to the NP oracle V. Suppose the input 
to our algorithm is the string y. 

Step 1 In O(log IYJ) sequential queries to V determine IIS~Pk(Pt(lyl))ll· 
Our queries will be of the form "0#1Pk(Pt(lyi))#F ," where we will vary 
z in a binary search fashion until we home in on the exact value of 
IIS~Pk(Pt(IYI)) II· Since IIS~Pk(Pt(IYI)) II is bounded by a polynomial in y, namely, 
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by Pi(Pk(Pt(lyl))), it holds that O(log IYI) queries indeed suffice for binary 
search to pinpoint the census value. Let the census value obtained be de­
noted r. 
Step 2 Ask to V the query 1#y#1Pt(Pk{lyl))#1r, and accept if and only if 
the answer is that 1#y#1Pt(Pk(lyi))#F E V. 

That completes the statement of the algorithm. Note that the algorithm 
clearly is a e~ algorithm. Furthermore, note that the algorithm indeed ac­
cepts L. This is simply because, given that Step 1 obtains the true census r, 
the Step 2 query to V can accept only if the actual strings in S~Pk(Pt(lyl)) 
are guessed (because there are only r strings at those lengths, so if r distinct 
strings inS have been guessed, then we have guessed all of S~Pk(Pt(lyl))) and, 
when used by M to generate a prefix of SAT (and note that this prefix is 
correct on all queries to SAT of length at most Pt(lyl), since such queries 
generate queries to S of length at most Pk(Pt(lyl))), causes N to accept. 

So, since L was an arbitrary set from E~, we have E~ = 8~. Since 8~ 
is closed under complementation, this implies E~ = II~, which itself implies 
PH= E~. So PH= E~ = 8~, completing our proof. 0 

The proof for the case of ::;~-hardness is more difficult than the case of 
::;~-completeness, since the census proof used above crucially uses the fact 
that the sparse set is in NP. The proof below rolls out a different trick. It 
extensively uses nondeterminism to guess a set of strings that, while perhaps 
not the exact elements of a prefix of the sparse NP-::;~-hard set, function 
just as usefully as such a prefix. The following result is often referred to as 
the Karp-Lipton Theorem. 

Theorem 1.16 (The Karp-Lipton Theorem) If NP has sparse ::;~­
hard sets then PH = NPNP. 

Proof Let S be a sparse set that is ::;~-hard for NP. For each f., let p1(n) 
denote n1 +f.. Let j be such that ('v'n)[IIS~nll ::; Pi(n)]. Let M be a deter­
ministic polynomial-time Turing machine such that SAT = L(M8 ); such a 
machine must exist, as Sis Turing-hard for NP. Let k be such that Pk(n) 
bounds the runtime of M for all oracles; without loss of generality, let M be 
such that such an integer exists (see Pause to Ponder 1.15). 

Let L be an arbitrary set in E~. We will give a E~ algorithm for L. This 
establishes that E~ = E~, which itself implies that PH = E~, thus proving 
the theorem. 

NPSAT 
Note that, since SAT is NP-complete, it is clear that E~ = NP . So, in 

particular, there are two nondeterministic polynomial-time Turing machines 
L(NSAT) 

N 1 and N2 such that L(N1 2 ) = L. Let f. be such that p1(n) bounds 
the nondeterministic runtime of N1 for all oracles, and such that Pt(n) also 
bounds the nondeterministic runtime of N2 for all oracles; without loss of 
generality, let N 1 and N2 be such that such an integer exists (see Pause to 
Ponder 1.15). 
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Define 

V0 = {0#1n#S' I (3z E (E*)~n)((a) z is not a well-formed formula 
and M 8 ' (z) accepts; or (b) z is a well-formed formula free 
variables and either (b1) M 8 ' (z) accepts and z ¢ SAT or 
(b2) M 8' (z) rejects and z E SAT; or (c) z is a well-formed 
formula variables z1 , z2 , ... and it is not the case that: M 8 ' (z) 
accepts if and only if 

(M8' (z[z1 =True]) accepts V M 8' (z[z1 =False]) accepts)]}, 

where, as defined earlier in this chapter, z( ... ] denotes z with 
the indicated variables assigned as noted. 

V1 = {1#S'#z I z E L(Ni'<Ms'))}. 

V = Vo U V1. 

Note that V E NP. Informally, V functions as follows. The 0#1n#S' strings 
in V determine whether given sets of strings "work" as sparse oracles that (on 
all instances of length at most n) allow M to correctly accept SAT. Or, more 
exactly, it checks if a given set fails to simulate SAT correctly. Of course, 
the fact that S is a sparse Turing-hard set for NP ensures that there are 
some such sets S' that do simulate SAT correctly in this sense; however, it 
is possible that sets S' other than prefixes of S may also happen to simulate 
SAT correctly in this sense. The 1# · · · part of V takes a set of strings that 
happens to simulate SAT as just described, and uses them, in concert with 
M, to simulate SAT. 

We now give a NPNP algorithm that accepts L. In particular, we give 
an NPV algorithm. Suppose the input to our algorithm is the stringy. Note 
that the longest possible query to SAT that N2 will make on queries N 1 asks 

L(NSAT) 
to its oracle during the run of N 1 2 (y) is p£(p£(iyi)). Note also that M, 
on inputs of length P£(P£(iyi)), asks its oracle only questions of length at 
most Pk(p£(P£(iyi))). And finally, note that there is some sparse oracleU such 
that L(M(U~Pk<Pt<Pt<l,ll»)) = SAT~Pt(Pt<IYI)); for example, the set Sis such 
an oracle. 

Step 1 Nondeterministically guess a set S' ~ (E*)~Pk(Pt(Pt(lyl))) satisfying 
IIS'II ~ Pi(Pk(P£(P£(1YI)))). If 0#1Pk(Pt(Pt(lyi)))#S' E V then reject. Other­
wise, go to Step 2. 
Step 2 Simulate the action of N1(y) except that, each time N1(y) makes a 
query z to its L(N~AT) oracle, ask instead the query 1#S'#z to V. 

That completes the description of the algorithm. Note that the algorithm 
we have given is clearly a E~ algorithm. Furthermore, note that the algorithm 
indeed accepts L. This is simply because Step 1 obtains a valid set of strings S' 
that either are S~Pk(Pt(Pt(IYI))), or that, in the action of machine M, function 
just as well as S~Pk(Pt(Pt(lyl))) in simulating SAT. That is, we obtain a set of 
strings S' such that 
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SAT~Pk (Pt(Pt(IYI))) = ( L(MS')) ~Pk(Pt(Pt(iyi))) • 

This correct prefix of SAT is just long enough that it ensures that Step 2 of 
the algorithm will correctly simulate N~AT. D 

This result has been extended in various ways. One very useful strength­
ening that we will refer to later is that one can replace the base-level 
NP machine with an expected-polynomial-time probabilistic machine. (The 
parenthetical equivalence comment in the theorem is based on the well­
known fact, which is an easy exercise that we commend to the reader, that 
R~({Si Sis sparse})= Pjpoly.) 

Theorem 1.17 If NP has sparse 5:.~-hard sets (equivalently, if NP s;; 
p /poly), then PH = zppNP. 

1.3 The Case of Merely Putting Sparse Sets in NP- P: 
The Hartmanis-Immerman-Sewelson Encoding 

In the previous sections we studied whether classes such as NP had com­
plete or hard sparse sets with respect to various reductions. We know from 
Theorem 1.7, for example, that there is no NP-complete sparse set unless 
P=NP. 

In this section, we ask whether there is any sparse set in NP - P. Note 
in particular that we are not here asking whether there is any sparse set in 
NP - P that is NP-complete; by Theorem 1. 7 the answer to that question 
is clearly "no." We here are instead merely asking whether any sparse set in 
NP can be so complex as to lack deterministic polynomial-time algorithms. 

Before approaching this question, let us motivate it from a quite dif­
ferent direction. One central goal of computational complexity theory is to 
understand the relative power of different complexity classes. For example, 
is deterministic polynomial-time computation a strictly weaker notion than 
nondeterministic polynomial-time computation, that is P =F NP? The ideal 
results along such lines are results collapsing complexity classes or separating 
complexity classes. 

In fact, complexity theorists have achieved a number of just such results­
outright, nontrivial complexity class collapses and separations. For example, 
the strong exponential hierarchy-an exponential-time analog of the poly­
nomial hierarchy-is known to collapse, and for very small space bounds a 
space analog of the polynomial hierarchy is known to truly separate. The 
famous time and space hierarchy theorems also provide unconditional sepa­
ration results. Unfortunately, not one such result is known to be useful in the 
realm between P and PSPACE. It remains plausible that P = PSPACE and 
it remains plausible that P =F PSPACE. 

Given this disturbingly critical gap in our knowledge of the power of com­
plexity classes between P and PSPACE-exactly the computational realm in 
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which most interesting real-world problems fall-what can be done? One ap­
proach is, instead of directly trying to separate or collapse the classes, to link 
the many open questions that exist within this range. The philosophy behind 
this is very similar to the philosophy behind NP-completeness theory. There, 
we still do not know whether NP-complete problems have polynomial-time 
algorithms. However, we do know that, since all NP-complete problems are 
~~-interreducible, they stand or fall together; either all have polynomial-time 
algorithms or none do. 

In the context of complexity classes between P and PSPACE, the goal 
along these lines would be to link together as many open questions as pos­
sible, ideally with "if and only if" links. It turns out that it often is easy to 
"upward translate" collapses, that is, to show that if small classes collapse 
then (seemingly) larger classes collapse. The truly difficult challenge is to 
"downward translate" equalities: to show that if larger classes collapse then 
(seemingly) smaller classes collapse. 

In this section we study a famous downward translation that partially 
links the P = NP question to the collapse of exponential-time classes. In 
particular, we will ask whether the collapse of deterministic and nondeter­
ministic exponential time implies any collapse in the classes between P and 
PSPACE. The really blockbuster result to seek would be a theorem estab­
lishing that E = NE ==> P = NP. However, it is an open question whether 
this can be established. What is known, and what we will here prove, is the 
following theorem, which says that the collapse of NE to E is equivalent to 
putting into P all sparse sets in NP. 

Theorem 1.18 The following are equivalent: 

1. E=NE. 
2. NP - P contains no sparse sets. 
3. NP - P contains no tally sets. 

Proof Part 2 clearly implies part 3, 
theorem follows immediately from this 
Lemma 1.21. 

as every tally set is sparse. The 
fact, and from Lemmas 1.19 and 

D 
The following easy lemma shows that if no tally sets exist in NP - P, then 

NE collapses to E. 

Lemma 1.19 IJNP- P contains no tally sets then E = NE. 

Proof Let L be some set in NE, and assume that NP - P contains no 
tally sets. Let N be a nondeterministic exponential-time machine such that 
L(N) = L. Define L' = {1k I (:Jx E L)[k = (1x)bin]}, where for any string 
(over {0,1}) z the expression (z)bin denotes the integer the string represents 
when viewed as a binary integer, e.g., (1000)bin = 8. 

Note that L' E NP, since the following algorithm accepts L'. On input y, 
reject if y is not of the form 1 k for some k > 0. Otherwise y = 1 k for some 
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k > 0. Write k in binary, and let s be the binary of representation of k to the 
right of, and not including, its leftmost one, viewed as a binary string. Call 
this string w. (If k = 1, then w = t:.) Simulate N(w) (thus accepting if and 
only if N(w) accepts). Though N is an exponential-time machine, the length 
of w is logarithmic in the length of y, and thus the overall nondeterministic 
runtime of this algorithm is, for some constant c, at most 0(2clogn). 

Thus, L' E NP. However, by hypothesis this implies that L' is in P. So, 
let M be a deterministic polynomial-time machine such that L(M) = L'. We 
now describe a deterministic exponential-time algorithm for L. On input a, 
compute the string b = 1 (la)bin, and then simulate M(b), accepting if and only 
if M(b) accepts. Since M is a polynomial-time machine and lbl $ 2lal, the 
number of steps that M(b) runs is (2n)c = 2cn. As the overhead of doing the 
simulation and the cost of obtaining b from a are also at most exponential in 
the input's length, clearly our algorithm for Lis a deterministic exponential-
time algorithm. Thus, L E E, which completes our proof. 0 

Finally, we must prove that if E = NE then all sparse NP sets in fact are 
in P. 

Pause to Ponder 1.20 As an easy warmup exercise, try to prove the sim­
pler claim: If E = NE then all tally sets in NP are in P. 

A sketch of the solution to Pause to Ponder 1.20 is as follows. If L is a tally 
set in NP, then let L' = {xi(x is 0 or xis a binary string of nonzero length 
with no leading zeros) and 1 (x)bin E L}. It is not hard to see that L' E NE. 
Thus by assumption L' E E, and thus there is a natural P algorithm for L, 
namely, the algorithm that on input a rejects if a fl. 1 * and that if a = 1 k 

writes k as 0 if k = 0 and otherwise as k in binary with no leading zeros, 
and then simulates the E algorithm for L' on this string. This concludes the 
proof sketch for Pause to Ponder 1.20. 

However, recall that we must prove the stronger result that if E = NE then 
all sparse NP sets are in P. Historically, the result in Pause to Ponder 1.20 
was established many years before this stronger result. If one looks carefully 
at the proof just sketched for Pause to Ponder 1.20, it is clear that the 
proof, even though it works well for the stated case (tally sets), breaks down 
catastrophically for sparse sets. The reason it fails to apply to sparse sets is 
that the proof is crucially using the fact that the length of a string in a tally 
set fully determines the string. In a sparse set there may be a polynomial 
number of strings at a given length. Thus the very, very simple encoding 
used in the proof sketch of Pause to Ponder 1.20, namely, representing tally 
strings by their length, is not powerful enough to distinguish same-length 
strings in a sparse set. 

To do so, we will define a special "Hartmanis-lmmerman-Sewelson en­
coding set" that crushes the information of any sparse NP set into extremely 
bite-sized morsels from which the membership of the set can be easily recon­
structed. In fact, the encoding manages to put all useful information about a 
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sparse NP set's length n strings into length-0 (log n) instances of the encod­
ing set-and yet maintain the easy decodability that is required to establish 
the following lemma. 

Lemma 1.21 If E = NE then NP - P contains no sparse sets. 

Proof Let L be some sparse NP set, and assume that E = NE. Given that 
Lis sparse, there is some polynomial, call it q, such that (Vn)[jj£=nll ~ q(n)]. 
Define the following encoding set: 

L' = {O#n#k IIIL=n11 ~ k} U 
{1#n#c#i#j I (:lz1, Z2, ... , Zc E £=n)[zl <lex Z2 <!ex 

· · · <!ex Zc 1\ the jth bit of Zi is 1]}. 

Since L E NP, it is clear that L' E NE. So by our assumption, L' E E. 
We will now use the fact that L' E E to give a P algorithm for L. Our 

P algorithm for L works as follows. On input x, let n = jxj. Query L' to 
determine which of the following list of polynomially many strings belong 
to £': O#n#O, 0#n#1, 0#n#2, ... , O#n#q(n), where here and later in the 
proof the actual calls to L' will for the numerical arguments (the n's, c, i, 
j, and k of the definition of L') be coded as (and within L' will be decoded 
back from) binary strings. Given these answers, set 

c = ma.x{k I 0 ~ k ~ q(n) 1\ O#n#k E £'}. 

Note that c = IIL=nll· Now ask the following questions to L': 

1#n#c#1#1, 1#n#c#1#2, ... , 1#n#c#1#n, 
1#n#c#2#1, 1#n#c#2#2, ... , 1#n#c#2#n, 

' 1#n#c#c#1, 1#n#c#c#2, ... , 1#n#c#c#n. 

The answers to this list of polynomially many questions to L' give, bit by bit, 
the entire set of length n strings in L. If our input, x, belongs to this set then 
accept, and otherwise reject. Though L' E E, each of the polynomially many 
queries asked to L' (during the execution of the algorithm just described) is 
of length O(log n). Thus, it is clear that the algorithm is indeed a polynomial-
time algorithm. D 

Theorem 1.18 was but the start of a long line of research into downward 
translations. Though the full line of research is beyond the scope of this book, 
and is still a subject of active research and advances, it is now known that the 
query hierarchy to NP itself shows certain downward translations of equality. 
In particular, the following result says that if one and two questions to E1 
yield the same power, then the polynomial hierarchy collapses not just to 
pE: [l) but in fact even to E~ itself. 

Theorem 1.22 Let k > 1. E~ =II~ if and only if pEWJ = pE:I21. 
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1.4 OPEN ISSUE: Does the Disjunctive Case Hold? 

Theorem 1. 7 shows that NP lacks sparse ~~-complete sets unless P = NP. 
Does this result generalize to bounded-truth-table, conjunctive-truth-table, 
and disjunctive-truth-table reductions: ~rw ~~ttl and ~~tt? 

Theorem 1.10 already generalizes Theorem 1. 7 to the case of ~rtc 
hardness. Using the left set technique it is also easy to generalize the result 
to the case of ~~tt-hardness: If NP has ~~tt-hard sparse sets then P = NP. 

The case of ~~tt-hardness remains very much open. 

Open Question 1.23 Can one prove: IjNP has ~~tt-hard sparse sets, then 
P=NP? 

However, it is kn<;>wn that proving the statement would be quite strong. In 
particular, the following somewhat surprising relationship is known. 

Proposition 1.24 Every set that ~rtt-reduces to a sparse set in fact ~~tt­
reduces to some sparse set. 

Thus, if one could prove the result of Open Question 1.23, that result would 
immediately imply Theorem 1.10. 

1.5 Bibliographic Notes 

Theorem 1.2 (which is often referred to as "Berman's Theorem") and 
Corollary 1.3 are due to Berman [Ber78], and the proof approach yields 
the analog of these results not just for the tally sets but also for the 
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Theorem 1.4 and Corollary 1.5 are due to Fortune [For79]. Among the re­
sults that followed soon after the work of Fortune were advances by Ukko­
nen [Ukk83], Yap [Yap83], and Yesha [Yes83]. 

Theorems 1. 7 (which is known as "Mahaney's Theorem") and 
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work is sometimes forgotten, but is quite interesting. The famous Berman­
Hartmanis Isomorphism Conjecture [BH77], which conjectures that all NP­
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Hartmanis Isomorphism Conjecture (see [HM80]): if such a set exists, then 
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Theorem 1.10 (which is often referred to as "the Ogiwara-Watanabe 
Theorem") is due to Ogiwara and Watanabe ([OW91], see also [HL94]), 
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who introduced the left set technique in the study of sparse complete sets. 
Somewhat more general results than Theorem 1.10 are now known to hold, 
due to work of Homer and Longpre [HL94], Arvind et al. [AHH+93], and 
Glafier ([GlaOO], see also [GHOO]). Our presentation is based on the work of 
Homer and Longpre [HL94]. 
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with respect to many complexity classes and many types of reductions, that 
started with Berman's work and that continues to this day. Numerous surveys 
of general or specialized work on sparse complete sets exist [HM80,Mah86, 
Mah89,You92,HOW92,vM097,C097,GHOO]. 

Regarding the relativized evidence mentioned on page 18, Immerman 
and Mahaney [IM89] have shown that there are relativized worlds in which 
NP has sparse Turing-hard sets yet P =f. NP. Arvind et al. [AHH+93] ex­
tended this to show that there are relativized worlds in which NP has sparse 
Turing-complete sets yet the boolean hierarchy [CGH+88] does not collapse, 
and Kadin [Kad89] showed that there are relativized worlds in which NP 
has sparse Turing-complete sets yet some e~ languages cannot be accepted 
via P machines making o(log n) sequential queries to NP. 

Proposition 1.13 is due to Hemachandra [Hem89]. Theorem 1.14 is due 
to Kadin [Kad89]. Theorem 1.16 is due to Karp and Lipton [KL80], and we 
prove it here using a nice, intuitive, alternate proof line first suggested by 
Hopcroft ([Hop81], see also [BBS86]). The fact that ~({SIS is sparse})= 
P /poly appears in a paper by Berman and Hartmanis [BH77], where it is 
attributed to Meyer. Theorem 1.17 is due to Kobler and Watanabe ([KW98], 
see also [KS97]) based on work of Bshouty et al. [BCKT94,BCG+96]. 

Cai [Cai01] has proven that the "symmetric alternation" version ofNpNP, 
a class known as S~ [Can96,RS98], satisfies S~ ~ zppNP. In light of Sen­
gupta's observation (see the discussion in [Cai01]) that a Hopcroft-approach 
proof of Theorem 1.16 in fact can be used to conclude that S~ =PH, Cai's 
result says that Sengupta's collapse to S~ is at least as strong as, and poten­
tially is even stronger than, that of Theorem 1.16. 

The collapse of the strong exponential-time hierarchy referred to near the 
start of Sect. 1.3 is due to Hemachandra [Hem89], and the separation of small­
space alternation hierarchies referred to in Sect. 1.3 is due, independently 
(see [Wag93]), to Liskiewicz and Reischuk [LR96,LR97], von Braunmiihl, 
Gengler, and Rettinger [vBGR93,vBGR94], and Geffert [Gef94]. The study 
of time and space hierarchy theorems is a rich one, and dates back to the 
pathbreaking work of Hartmanis, Lewis, and Stearns [HS65,LSH65,SHL65]. 

Lemma 1.19 and the result stated in Pause to Ponder 1.20-and thus the 
equivalence of parts 1 and 3 of Theorem 1.18-are due to Book [Boo74b]. 

The Hartmanis-Immerman-Sewelson Encoding, and in particular 
Lemma 1.21 (and thus in effect the equivalence of parts 1 and 2 of 
Theorem 1.18), was first employed by Hartmanis [Har83]. The technique 
was further explored by Hartmanis, Immerman, and Sewelson ( [HIS85], see 
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also [All91,AW90]). Even the Hartmanis-Immerman-Sewelson Encoding has 
its limitations. Though it does prove that E = NE if and only if NP - P 
has sparse sets, it does not seem to suffice if we shift our attention from NP 
(and its exponential analog, NE) to UP, FewP, EBP, ZPP, RP, and BPP (and 
their respective exponential analogs). In fact, the Buhrman-Hemaspaandra­
Longpre Encoding [BHL95], a different, later encoding encoding based on 
some elegant combinatorics [EFF82,EFF85,NW94], has been used by Rao, 
Rothe, and Watanabe [RRW94] to show that the EBP and "FewP" analogs of 
Theorem 1.18 do hold. That is, they for example prove that E equals, "EBE," 
the exponential-time analog of EBP, if and only if EBP- P contains sparse 
sets. In contrast with this, Hartmanis, Immerman, and Sewelson showed 
that there are oracles relative to which the coNP analog of Theorem 1.18 
fails. Hemaspaandra and Jha [HJ95a] showed that there are oracles relative 
to which the the ZPP, R, and BPP analogs of Theorem 1.18 fail, and they also 
showed that even for the NP case the "immunity" analog of Theorem 1.18 
fails. Allender and Wilson [All91,AW90] have shown that one claimed "su­
persparse" analog of Theorem 1.18 fails, but that in fact certain analogs can 
be obtained. For some classes, for example UP, it remains an open question 
whether an analog of Theorem 1.18 can be obtained. 

The proof of Lemma 1.21 proves something a bit stronger than what the 
lemma itself asserts. In particular, the proof makes it clear that: If E = NE 
then every sparse NP set is P-printable (i.e., there is an algorithm that on 
input 1 n prints all length n strings in the given sparse NP set). This stronger 
claim is due to Hartmanis and Yesha [HY84]. 

Regarding downward translations of equality relating exponential-time 
classes to smaller classes, we mention that a truly striking result of Babai, 
Fortnow, Nisan, and Wigderson [BFNW93] shows: If a certain exponential­
time analog of the polynomial hierarchy collapses to E, then P = BPP. This 
is not quite a "downward" translation of equality, as it is not clear in gen­
eral whether BPP ~ E (though that does hold under the hypothesis of their 
theorem, due to the conclusion of their theorem), but this result nonethe­
less represents a remarkable connection between exponential-time classes and 
polynomial-time classes. 

A E~ = II~ conclusion, and thus a downward translation of equal­
ity for classes in the NP query hierarchy, was reached by Hemaspaandra, 
Hemaspaandra, and Hempel [HHH99a] for the case k > 2. Buhrman and 
Fortnow [BF99] extended their result to the k = 2 case. These appear as 
Theorem 1.22. Downward translations of equality are known not just for the 
1-vs-2 query case but also for the j-vs-(j+1) query case ([HHH99a,HHH99b], 
see also [HHH98]), but they involve equality translations within the bounded­
access-to-E~ hierarchies, rather than equality translations to E~ =II~. 

In contrast with the difficulty of proving downward translations of equal­
ity, upward translations of equality are so routine that they are considered 
by most people to be "normal behavior." For example, it is well-known for 
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almost all pairs of levels of the polynomial hierarchy that if the levels are 
equal then the polynomial hierarchy collapses. This result dates back to the 
seminal work of Meyer and Stockmeyer, who defined the polynomial hierar­
chy [MS72,Sto76]. The fascinating exception is whether et = ~t implies that 
the polynomial hierarchy collapses. Despite intense study, this issue remains 
open-see the discussion in [Hem94,HRZ95]. 

Nonetheless, it is far from clear that the view that upward translation 
of equality is a "normal" behavior of complexity classes is a itself a correct 
view. It does tend to hold within the polynomial hierarchy, which is where 
the intuition of most complexity theorists has been forged, but the polyno­
mial hierarchy has many peculiar properties that even its close cousins lack 
(stemming from such features as the fact that the set of all polynomials hap­
pens to be closed under composition-in contrast to the set of logarithmic 
functions or the set of exponential functions), and thus is far from an ideal 
basis for predictions. In fact, Hartmanis, Immerman, and Sewelson [HIS85] 
and Impagliazzo and Tardos [IT89] have shown that there is an oracle rel­
ative to which upward translation of equality fails in an exponential-time 
analog of the polynomial hierarchy, and Hemaspaandra and Jha ([HJ95a], 
see also [BG98]) have shown the same for the limited-nondeterminism hier­
archy of NP-the so-called (3 hierarchy of Kintala and Fischer [KF80] and 
Diaz and Toran [DT90]. 

Proposition 1.24 is due to Allender et al. [AHOW92]. Though Open 
Question 1.23, with its P = NP conjectured conclusion from the assump­
tion of there being sparse ~~tt-hard sets for NP, indeed remains open, 
some consequences-though not as strong as P = NP-are known to fol­
low from the existence of sparse ~~tt-hard sets for NP. In particular, Cai, 
Naik, and Sivakumar have shown that if NP has sparse ~~tt-hard sets then 
RP = NP [CNS96]. It is also known that if NP has sparse ~~tt-hard sets, 
then there is a polynomial-time set A such that every unsatisfiable boolean 
formula belongs to A and every boolean formula that has exactly one satis­
fying assignment belongs to A (implicit in [CNS95], as noted by van Melke­
beek [vM97] and Sivakumar [SivOO]). That is, A correctly solves SAT on all 
inputs having at most one solution, but might not accept some satisfiable 
formulas having more than one satisfying assignment. 





2. The One-Way Function Technique 

No proven one-way functions are known. Not even one. Nonetheless, one-way 
functions play a central role in complexity theory and cryptography. In com­
plexity theory, one-way functions have been used in the (to date unsuccessful) 
attempts to show that there exist two NP-complete sets that are not essen­
tially the same set in disguise (i.e., that are not polynomial-time isomorphic). 
In average-case and worst-case cryptography, one-way functions have been 
used as key components in the construction of cryptographic protocols. 

Fortunately, the comment made above about not even one one-way func­
tion being known is, though true, a bit deceptive. Good candidates for being 
one-way functions are known. In fact, complete characterizations now exist 
regarding the existence of one-way functions. In particular, it is now known 
that the type of one-way function used in average-case cryptography exists if 
and only if pseudorandom generators exist. It is also known that the type of 
one-way function used in both computational complexity theory and worst­
case cryptography exists if and only if two well-known complexity classes 
differ. 

This chapter's GEM section proves the latter result. We will see in that 
section that one way in which one-way functions are classified is in terms of 
their level of many-to-one-ness-what types of collision are allowed. Sect. 2.2 
proves the rather remarkable result that one-to-one one-way functions exist 
if and only if constant-to-one one-way functions exist. Though this does not 
say that low-collision-intensity one-way-function classes all collapse to mutual 
equality, it does say that their existence stands or falls together. Section 2.3 
looks at two-argument one-way functions and in particular at the extremely 
powerful (associative, commutative, total, and strongly noninvertible) types 
of one-way functions that have been supposed-to-exist and used as hypothet­
ical building blocks for protocols in worst-case cryptography. We prove that 
they are just as likely to exist as are standard one-way functions. So, one 
might as well feel free to use these "killer" building blocks, as their existence 
stands or falls together with the existence of standard building blocks. 
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2.1 GEM: Characterizing the Existence of One-Way 
Functions 

Informally put, a one-way function is a function that is easy to compute and 
hard to invert. However, to be able to rigorously characterize whether one­
way functions exist, we will have to formally pin down each of these notions. 
In addition, we will require a technical condition known as "honesty," which is 
needed to keep the entire discussion from being trivialized. Also, the functions 
discussed in the definitions and theorems of this section and Sect. 2.2 are one­
argument functions, that is, their type is f : E* -+ E*; in Sect. 2.3, we will 
extend the notion of one-way function to the case of two-argument functions. 

Definition 2.1 We say a (possibly nontotal) function f, is honest if 

(3 polynomial q)(Vy E range(f))(3x)[lxl ~ q(iyl) 1\ f(x) = y]. 

Definition 2.2 We say a {possibly nontotal) function f is polynomial-time 
invertible if there is a (possibly nontotal) polynomial-time computable func­
tion g such that1 

(Vy E range(J))[y E domain(g) 1\ g(y) E domain(!) 1\ f(g(y)) = y]. 

Definition 2.3 We say a (possibly nontotal) function f is one-way if 

1. f is polynomial-time computable, 
2. f is not polynomial-time invertible, and 
3. f is honest. 

Let us see why the honesty condition is natural and needed. Con­
sider the function f(x) = lflogloglog(max{lxl,4})l, that is, a string of 
flogloglog(ma.x{lxl,4})l ones. This function's outputs are so short relative 
to its inputs that, simply to have enough time to write down an inverse, 
any machine inverting f must take triple exponential time. Thus, f is a 
polynomial-time computable function that is not polynomial-time invertible. 
However, this noninvertibility is simply an artifact of the dramatically length­
decreasing nature of f. As this type of length-trick noninvertibility is of no 
help at all in cryptography or complexity theory, we preclude it by putting 
the honesty condition into our definition of a one-way function. 

The honesty condition says that each element y of the range of f has 
some inverse whose length is at most polynomially longer than the length 
of y. So, for honest functions f, f does have short inverses, and iff is not 

1 The "1\" here is a bit subtle, since if "y E domain(g)" does not hold, the 
expression "g(y) E domain{!) 1\ f(g(y)) = y" isn't even meaningful. In fact, the 
"1\" is really a "cand" (a "conditional and")-an "1\" such that the right-hand 
side is evaluated only if the left-hand side evaluates to "true." However, since 
this type of thing, here and elsewhere, is clear from context, we use " 1\ " as our 
notation. 
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polynomial-time invertible the reason is not a length trick, but rather reflects 
our intuitive notion of what noninvertibility should mean. 

Of course, having defined one-way functions, the natural question that 
immediately arises is whether one-way functions exist. This question is one 
of the major open issues in complexity theory and worst-case cryptography. 
However, it is not a new open issue, but rather is a familiar issue in disguise. 
In particular, Theorem 2.5 proves that this question in fact is a restatement 
of the famous "P =f. NP?" question, and for one-to-one functions it is a re­
statement of the question "P =f. UP?" 

The reason the one-to-one case is often studied is that it corresponds to 
the case where each encrypted message has at most one possible decoding­
an obviously desirable situation. 

Definition 2.4 We say a (possibly nontotal) function f : E* --+ E* is one­
to-one if (Vy E E*)[ll{x I f(x) = Y}ll::; 1]. 

Theorem 2.5 

1. One-way functions exist if and only if P =f. NP. 
2. One-to-one one-way functions exist if and only if P =f. UP. 

Proof We first prove part 1. 
Let us start with the "if" direction. Assume that P =f. NP. Let A be a 

language in NP - P. So, it certainly holds that there will exist an NPTM 
(nondeterministic polynomial-time Turing machine) N such that A= L(N). 
We assume (·, ·) is some standard pairing function (i.e., a bijection between 
E* X E* and E* that is polynomial-time computable and polynomial-time 
invertible). Consider the function f( (x, w)) that outputs Ox if w is an ac­
cepting path of N(x) and that outputs lx otherwise. This function is clearly 
polynomial-time computable and honest (the polynomial-time computability 
and invertibility of the pairing function block it from so severely distorting 
lengths as to destroy honesty). Suppose that f were polynomial-time invert­
ible, via function g. Then we have that A E P, as shown by the following 
algorithm. On any input y, if Oy ¢ domain(g) then reject y. Otherwise, inter­
pret g(Oy) as a pair and test whether its second component is an accepting 
path of N(y). If so then accept and otherwise reject. However, as we as­
sumed that A ¢ P, A E P is a contradiction, and so our supposition that f 
is invertible must be incorrect. So, f is a polynomial-time computable, hon­
est function that is not polynomial-time invertible. That is, it is a one-way 
function. 

We now turn to the "only if" direction of part 1. Assume that one-way 
functions exist and that f is a one-way function. Let p be the honesty poly­
nomial for f, in the sense of Definition 2.1. Consider the following language. 

L = { (z,pre) I (3y)[IYI + lprel ::; p(lzl) 1\ f(pre · y) = z]}, 

where "·" denotes string concatenation. Clearly, L E NP. However, if L E P 
we can invert f by prefix search. That is, to invert z we ask first "(z, €) E L?" 



34 2. The One-Way Function Technique 

If the answer is no, then z is not in the range of f. If the answer is yes, we 
check whether f(£) = z and if so we have found a preimage under f of z 
as desired, and otherwise we ask each of the questions "(z, 0) E L?" and 
"(z, 1) E L?" At least one must receive the answer yes. We now proceed as 
above to check whether that one is the inverse. If so we are done, and if not 
we expand one bit further (if both receive the answer yes, we choose either 
one, but not both, to expand further) and continue similarly. For strings z 
that are in the range of f, we will find a certificate in polynomial time, as 
with each pair of questions we get one additional bit of a certificate, and the 
certificates are of length at most p(lzl). We conclude that L E NP- P. Thus 
we have shown the "only if" direction of part 1. 

The proof of part 2 is almost the same as the above, except we require 
unambiguity of the NP machines and we add unambiguity to the inverses 
of the functions. To make this work requires some minor proof tweaking; for 
completeness, we include a proof of the changed part. However, we urge the 
reader to see the proof not just by reading it below but rather by first him- or 
herself checking that the previous proof with minor modification does cover 
this case. 

We prove part 2's "if" direction. Assume that P =f. UP. Let A be alan­
guage in UP- P. So, it certainly holds that there will exist an NPTM N 
such that A= L(N) and such that on each input x, N(x) has at most one 
accepting computation path. Let p be a polynomial bounding the runtime 
of N. Consider the function f( (x, w)) that outputs Ox if w is an accepting 
path of N(x) and that outputs 1(x, w) otherwise. This function is clearly 
polynomial-time computable and honest. Since N has at most one accepting 
path per input, and since we have modified f to now send the nonaccept­
ing witnesses to distinct locations, f is a one-to-one function. However, if 
f were polynomial-time invertible then by the same algorithm given in the 
case of part 1, we would conclude that A E P, yielding a contradiction. So, 
f is a polynomial-time computable, honest, one-to-one function that is not 
polynomial-time invertible. That is, it is a one-to-one one-way function. 

We now turn to the "only if" direction of part 2. Assume that one-to­
one one-way functions exist and that f is such a function. The language L 
constructed in the proof of part 1 will in fact be in UP due to f's one-to-one­
ness, and the rest of the "only if" direction of part 1 holds without change, 
thus completing our proof. 0 

The proof of Theorem 2.5 is a model of the one-way function technique, 
namely, proving results via the connection between certificates for machine 
acceptance and the invertibility of functions. We will draw on this approach 
both in Sect. 2.2, in the form of Fact 2.9, and in Sect. 2.3, where the main 
proof is also an example of the one-way function technique. 
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2.2 Unambiguous One-Way Functions Exist If and Only 
If Bounded-Ambiguity One-Way Functions Exist 

In the GEM section, we saw that the existence of one-to-one one-way functions 
is characterized by P =f:. UP, but the existence of one-way functions is char­
acterized by the less demanding condition P =f:. NP. Though P =f:. UP implies 
P =f:. NP, the converse has never been established. That is, it is at least plau­
sible that one-way functions exist but that no one-to-one one-way functions 
exist. 

In contrast, we will now prove that for a certain narrower gap in allowed 
amount of many-to-one-ness, the existence of one-way function at the two 
levels of many-to-one-ness stands or falls together. In particular, we prove 
that one-to-one one-way functions exist if and only if constant-to-one one­
way functions functions exists. 

Definition 2.6 1. For each k 2:: 1, we say that a (possibly nontotal) func­
tion f is k-to-one if (Vy E range(f))[lj{x I f(x) = Y}il ~ k]. 

2. We say that a (possibly nontotal) function f is of bounded-ambiguity if 
there is a k 2:: 1 such that f is k-to-one. 

Note that "1-to-one" is synonymous with "one-to-one" (Definition 2.4), 
and so we will use the terms interchangeably. Note that such functions fare 
completely unambiguous in terms of inversion; each element of range(!) has 
exactly one inverse. In the literature, bounded-ambiguity functions are often 
referred to as "constant-to-one" or "0(1)-to-one" functions. 

Theorem 2.7 Unambiguous (i.e., one-to-one) one-way functions exist if 
and only if bounded-ambiguity one-way functions exist. 

Proof All one-to-one functions are bounded-ambiguity functions, so the 
"only if" direction holds. 

We will prove the "if" direction somewhat indirectly. Recall that part 2 
of Theorem 2.5 shows that one-to-one one-way functions exist if and only if 
P =f:. UP. By an exactly analogous proof, we have Fact 2.9. 

Definition 2.8 A language L is in UP~k, k 2:: 1, if there is an NPTM N 
such that 

1. (Vx E L)[N(x) has at least one and at most k accepting paths], and 
2. (Vx E L)[N(x) has no accepting paths]. 

Fact 2.9 For each k 2:: 2, k-to-one one-way functions exist if and only if 
P=j:.UP9. 

Our attack on the "if" direction of Theorem 2.7 will be to prove by in­
duction that, for all k E {1, 2, 3, ... }, 

P=UP===}P=UP9. 
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This clearly holds fork= 1, as UP= UP9. 
Assume, inductively, that we have proven P = UP =* P = UP::;k'· 

We will now show that P =UP ==} P = UP::;k'+l· So, assume P =UP. 
Let L be an arbitrary member of UP<k'+l· Let N be an NPTM-having at 
most k' + 1 accepting paths on each input-that accepts L (in the sense of 
Definition 2.8). Consider the set 

B ={xI N(x) has exactly k' + 1 accepting paths}. 

Clearly, B E UP, via the machine that on each input x guesses each lexi­
cographically ordered (k' +I)-tuple of distinct computation paths and that 
accepts on such a path exactly if each of the k' + 1 guessed paths is an 
accepting path on input x. So by our P =UP assumption, BE P. 

However, since B E P, the set 

D ={xI x ~ B AxE L(N)} 

is in UP :Sk'. Namely, we first deterministically check-using some P algorithm 
for B, and we just argued that B E P so some such algorithm exists under 
our current assumptions-whether x is in B. If x E B we reject, and if 
x ~ B we directly simulate N(x). This latter simulation will have at most k' 
accepting paths, as x ~ B precludes there being exactly k' + 1 paths, and N's 
choice precludes there being more thank'+ 1 paths. Since DE UP<k', we 
conclude from our inductive hypothesis (which wasP= UP ==} P = UP::;k' ), 
and our assumption that P = UP, that D E P. Since P is closed under 
union, BUD E P. However, L = BUD, and since L was an arbitrary 
member of UP::;k'+I. we have now established our inductive step, namely, 
that P =UP =* P = UP:Sk'+l· D 

It remains an open research issue whether Theorem 2. 7 can be extended 
to a nonconstant level of many-to-one-ness. Certainly, the proof technique 
used above does not seem valuable beyond the constant-to-one case. 

2.3 Strong, Total, Commutative, Associative One-Way 
Functions Exist If and Only If One-Way Functions Exist 

In this chapter, we have until now focused on the theory of one-argument one­
way functions. The present section studies two-argument (henceforth denoted 
2-ary) one-way functions. Such functions arise naturally in the study of cryp­
tographic protocols. In fact, their study and the most interesting new issues 
they pose were directly motivated by proposed cryptographic protocols. 

In particular, Rabi, Rivest, and Sherman have proposed interesting pro­
tocols for digital signatures and multiparty secret-key agreement that used as 
building blocks (hypothetical) 2-ary one-way functions having also such prop­
erties as being total, commutative, associative, and "strongly noninvertible." 
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This immediately raises the question of how likely it is that such functions 
exist. As we will see in this section, a satisfying answer can be given to this 
question: One-way functions exist if and only if strongly noninvertible, total, 
commutative, associative, 2-ary one-way functions exist. 

Before we prove this theorem, we first formally define what we mean for 
2-ary functions by each of these properties. 

Definition 2.10 We say a {possibly nontotal) 2-ary function f : E* x E* -+ 

E* is honest if 

(3 polynomial q)(Vy E range(f))(3x, x')[lxl + lx'l ~ q(lyl) 1\ f(x, x') = y]. 

Note that Definition 2.10 does not require that lxl + lx'l ~ q(lyl) hold 
for every x and x' for which f(x,x') = y; the definition merely requires that 
each element of range(!) have at least one appropriate pair (x, x'). 

Definition 2.11 We say a (possibly nontotal) 2-ary function f : E* x E* -+ 

E* is (polynomial-time) invertible if there is a (possibly nontotal) polynomial­
time computable function g such that, for each y E range(!), 

y E domain(g) 1\ 

(first(g(y)), second(g(y))) E domain(!) 1\ 

f(first(g(y)), second(g(y))) = y, 

where the projection functions first(z) and second(z) denote, respectively, the 
first and second components of the unique ordered pair of strings that when 
paired give z. 

Definition 2.12 We say a {possibly nontotal) 2-ary function f : E* x E* -+ 

E* is one-way if 

1. f is polynomial-time computable, 
2. f is not polynomial-time invertible, and 
3. f is honest. 

Next, we turn towards defining strong noninvertibility. Informally put, 
strong noninvertibility means that even given one of the inputs as well as the 
output, the other input cannot in general be computed in polynomial time. 
We capture this formally as Definition 2.14 below, being careful to avoid the 
analog for strongness of a length-based "honesty" trick that might artificially 
block inversion via shrinking lengths in one argument.2 

2 Note that our definition does confer s-honesty on functions that wildly shrink 
their arguments, but do so in parallel for both their arguments. For example, 
consider the function f(a,b) that equals rlogloglog(max(lal,4))l when ial = lbl, 
and that is undefined otherwise. This obviously dishonest function is in fact 
"s-honest." 
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Definition 2.13 We say a (possibly nontotal) 2-ary function f : E* x E* --4 

E* iss-honest if 

1. (3 polynomial q) (Vy, a: (3b)[f(a, b)= y] ) 

(3b')[lb'l :5 q(iYi + lal) 1\ f(a, b') = y]. 

2. (3 polynomial q) (Vy, b: (3a)[f(a, b) = y] ) 

(3a')[la'l :5 q(iyi + lbi) 1\ f(a',b) = y]. 

Definition 2.14 We say a (possibly nontotal) 2-ary function f : E* x E* --4 

E* is strongly (polynomial-time) noninvertible if it is s-honest and yet neither 
of the following conditions holds. 

1. There is a (possibly nontotal) polynomial-time computable function g : 
E* x E* --4 E* such that (Vy E range(f))(Vx1,x2 : (x1,x2) E 

domain(!) 1\ f(x1,x2) = y)[(y,xi) E domain(g) A f(x1,g(y,x1)) = y]. 
2. There is a (possibly nontotal) polynomial-time computable function g : 

E* x E* --4 E* such that (Vy E range(f))(Vx1,x2 : (x1,x2) E 
domain(!) 1\ f(x1,x2) = y)[(y,x2) E domain(g) 1\ f(g(y,x2),xi) = y]. 

We define associativity and commutativity only for the case of total func­
tions, as Theorem 2.16 uses these notions only for that case. However, we 
mention in passing (and the Bibliographic Notes discuss in more detail) that 
if one tries to apply analogs of these notions to partial functions, one must 
be very careful. There are two different ways one can do this, and confusing 
them has led to serious problems in the literature. 

Definition 2.15 

1. We say a total, 2-ary function f: E* x E* --4 E* is associative if 

(Vx, y, z)[f(f(x, y), z) = f(x, f(y, z))]. 

2. We say a total, 2-ary function f : E* x E* --4 E* is commutative if 

(Vx, y)[f(x, y) = f(y, x)J. 

For example, applying the notion in the natural way to functions that may 
interpret their input strings as integers, the 2-ary function "multiplication (of 
integers)" is associative and commutative, the 2-ary function "concatenation 
(of strings)" is associative but not commutative, and the 2-ary function "sub­
traction (of integers)" is neither associative nor commutative. 

We can now state the main theorem of this section. 

Theorem 2.16 One-way functions exist if and only if strongly noninvert­
ible, total, commutative, associative, 2-ary one-way functions exist. 
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Before we prove Theorem 2.16, we prove the following easy proposition, 
from which it is clear that Theorem 2.16 can be alternatively interpreted as 
saying that for 2-ary functions, the existence of one-way functions stands or 
falls together with the existence of strongly noninvertible, total, commutative, 
associative one-way functions, and also stands or falls together with P f. NP. 

Proposition 2.17 The following are equivalent. 

1. One-way functions exist. 
2. 2-ary one-way functions exist. 
3. P f. NP. 

Proof (1) = (3) by Theorem 2.5. 
To show (2) ==> (1), let(·,·) be a pairing function with the standard nice 

properties (see the proof of Theorem 2.5), and that in addition is nondecreas­
ing in each argument when the other argument is fixed. Let f : E* x E* --+ E* 
be any 2-ary one-way function. Then it is easy to see that g : E* --+ E* defined 
by 

g(z) = f(first(z), second(z)) 

is a one-way function, where first(z) denotes the first component of the 
(unique) pair mapped to z by the pairing function, and second(z) denotes the 
second component of the (unique) pair mapped to z by the pairing function. 
So (2) ==> (1). 

If h : E* --+ E* is a one-way function, then h' : E* X E* --+ E* defined 
by h'(x, y) = (h(x), y) is easily seen to be a 2-ary one-way function, as is 
h"(x, y) = (h(x), h(y)) (in fact, the latter even throws in for free strong 
noninvertibility). So (1) ==> (2). D 

We now turn to the proof of Theorem 2.16. 

Proof of Theorem 2.16 It follows from Proposition 2.17 that one-way 
functions exist if 2-ary one-way functions exist, and thus one-way functions 
certainly exist if strongly noninvertible, total, commutative, associative, 2-
ary one-way functions functions exist. So we need only show that if one-way 
functions exist then strongly noninvertible, total, commutative, associative, 
2-ary one-way functions exist. In fact, by Proposition 2.17 it suffices to show 
that if P f. NP then there exist functions. 

So, assume P f. NP. Then there will exist an NPTM N' such that L(N') E 
NP- P. By standard machine manipulation it follows that there exists a 
polynomial p, satisfying ('v'n)[p(n) > n], and an NPTM N such that L(N') = 
L(N) (thus, L(N) E NP- P) and on each input x each computation path 
of N(x) has exactly p(lxl) bits. We will view these paths (the sequences of 
nondeterministic guesses) as potential witnesses for x E L(N), and we will 
call such a path a witness (for x E L(N)) exactly if it is an accepting path 
of N(x). To formalize this, we define W(x) to be the set of all witnesses for 
x E L(N). Note that x E L(N) {==} W(x) f. 0, and that each witness has 
length polynomially related to lxl. Note also that, due to the "by standard 
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machine manipulation" sentence above, a string can never be a witness for 
its own membership. 

Let our pairing function (-, ·) be as in the proof of Proposition 2.17. 
Lett be any fixed string such that t rf. L(N). By t1 we denote t with the 

bit 1 appended. 
We now define our strongly noninvertible, total, commutative, associative, 

2-ary one-way function, f. Let f be as follows. 

f(u,v)= 

(x,lexmin(w1,w2)) if u = (x,w1) 1\ v = (x,w2) 1\ {w1,w2} ~ 
W(x) 

(x,x) if (3w E W(x))[{ u, v} = { (x, x), (x, w) }] 

(t, tl) otherwise, 

where lexmin(z, z') denotes the lexicographically lesser of z and z'. We men­
tion immediately that due to our having required that p(n) > n, in the 
{ u, v} = { (x, x), (x, w)} case above, there is no chance of x being a witness 
string for x E L(N), as all witnesses for x are longer than x. 

Intuitively, the action of the above function is as follows. It has two inputs, 
and it expects them each to be a pairing of the same string, x, with itself or 
with a witness for x E L(N). (Note that 

{(x,w) J wE W(x)} 

is in P, i.e., witness testing is easy.) If the input is of the wrong form-two 
different first components, or the same first components but some second 
component that is neither x nor a member of W(x)-then f outputs a dis­
tinguished string that will function as a garbage dump. Otherwise f will re­
duce by one the number of witness instances. That is, if both its inputs are x 
paired with elements of W(x), then f reduces the number of witness instances 
from two to one by outputting x paired with the lexicographically smaller3 

witness; it is legal for the second components to both hold the same witness, 
which is why we said "witness instance" above, rather than "witness." Simi­
larly, if f has just one witness instance among the second components of the 
(first-component-matching) inputs, then it will reduce to zero the number of 
witness instances by outputting (x, x). If f has no witness instances among 
its two inputs, it maps to the garbage-dump string. 

Let us verify that f is a strongly noninvertible, total, commutative, asso­
ciative, 2-ary one-way function. 

From its definition, it is clear that 2-ary function f is total and 
polynomial-time computable. 

3 As we will see, choosing the lexicographically smaller witness will help us obtain 
the algebraic properties we seek. 
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Also, f is commutative. Why? Consider f(u,v). If either of the last two 
cases of the definition of f hold we trivially have f(u, v) = f(v, u), and if 
the first case holds, we also have f(u,v) = f(v,u), since lexmin itself is 
commutative. 

f also is strongly noninvertible. It is not hard to see that f is s-honest. 
Interestingly, the only nonobvious case regarding s-honesty is inverting the 
garbage output string given one of the inputs that mapped to it. However, 
due to our having been so specific about fixing the witness of a string x 
to be of length exactly p(lxl), even with either argument fixed we can find 
a string for the other argument that is of appropriate length. So, f is s­
honest. Continuing, let us suppose that f is not strongly noninvertible. Then, 
given its s-honesty, this must be because it can be inverted with respect 
to (at least) one of its two arguments given the other argument and the 
output. Let us consider the first case, i.e., that condition 1 of the definition 
of strong noninvertibility (Definition 2.14) holds. So, there is a polynomial­
time function g such that for each x E L(N) it holds that g((x,x), (x,x)) 
must output a string of the form (x, w) with w E W(x). (If x fj. L(N), 
then g( (x, x), (x, x)) may output anything it likes, but as testing membership 
in W(x) is easy it cannot possibly fool us into thinking that it has output 
a witness for x E L(N).) This gives a polynomial-time algorithm for testing 
membership in L(N): On input x, compute g( (x, x), (x, x)) and accept exactly 
if g((x,x), (x,x)) is of the form (x,w) for some wE W(x). However, we know 
that L(N) fj. P, so our supposition that condition 1 of Definition 2.14 holds 
must itself be wrong. By the symmetric, analogous argument, condition 2 of 
Definition 2.14 cannot hold. So, f is indeed strongly noninvertible. 

It would be tempting to claim that strong noninvertibility immediately 
implies that the "noninvertibility" component of Definition 2.12 is satisfied. 
However, for subtle reasons, this is not so. (Indeed, it is known that unless 
P = NP there exist honest, strongly noninvertible functions that are invert­
ible.) Nonetheless, the flavor of the preceding argument about strong non­
invertibility still can be used to show noninvertibility in the current setting; 
simply inverting based on the output (x, x) will put into our hands strings 
at least one of which is a pair having as its second component a witness for 
x E L(N), if any such witness exists. 

Furthermore, f is honest. Due to the fact that (by our choice of N) wit­
nesses are of polynomial length relative to the strings whose membership in 
L(N) they certify-and that our pairing function is polynomial-time com­
putable and polynomial-time invertible and so it cannot distort lengths by 
more than a polynomial amount, i.e., I (a, b) I and Ia I+ lbl each are bounded by 
a polynomial in the other-the first two cases of the definition of f pose no 
problem. The only case that remains is when our range element is the special 
string (t, tl). However, a single range point can never on its own preclude 
honesty. That is, consider the shortest string mapping to (t, tl) and choose 
our honesty polynomial large enough to stretch from I (t, tl) I up to the length 
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of that one string and to handle the honesty of the first two cases of the 
definition of f. This is legal and handles this case, as honesty requires that 
range elements have at least one relatively short inverse, not that they have 
all their inverses be relatively short. 

So, we have left only the issue of whether f is associative. Our goal is to 
show that, for each z, z', z" E E*, 

f(!(z, z'), z") = f(z, f(z', z")). 

Let first and second be as in the proof of Proposition 2.17. We say a string 
a is legal if 

(3x)(3w)[w E W(x) 1\ a= (x,w)]. 

It follows from the definition off that if at least two of z, z', and z" are 
not legal then f(!(z,z'),z") = f(z,f(z',z")) = (t,tl). (Recall that by the 
choice, on page 40, of t, and by the definition of J, (t, tl) will function 
here as an "absorbing" element.) Similarly, f(!(z, z'), z") = f(z, f(z', z")) = 
(t, tl) unless first(z) = first(z') = first(z"). And if first(z) = first(z') = 
first(z") and exactly one z, z', and z" is not legal, then we still will have 
f(!(z, z'), z") = f(z, f(z', z")) = (t, tl) unless the one that is not legal is the 
string (first ( z), first ( z)). 

The only remaining case is that first(z) = first(z') = first(z"), and ei­
ther two or three of z, z', and z" have second components belonging to 
W(first(z)), and in the case that exactly two of z, z', and z" have second 
components belonging to W(first(z)) it also holds that the remaining string 
is (first(z), first(z)). 

If first(z) = first(z') = first(z") and exactly two of z, z', and z" have 
second components belonging to W (first ( z)) and the remaining string is 
(first(z),first(z)), then applying the definition off we have 

f(!(z, z'), z") = f(z, f(z', z")) = (first(z),first(z)). 

If first(z) = first(z') = first(z") and exactly three of z, z', and z" have second 
components belonging to W(first(z)), then applying the definition off we 
see that 

f(!(z,z'),z") = f(z,f(z',z")) = (first(z),q), 

where q is the lexicographically least of second(z), second(z'), and second(z"). 
Thus, f is associative. 
So, we have shown that f is a strongly noninvertible, total, commutative, 

associative, 2-ary one-way function. D 

2.4 OPEN ISSUE: Low-Ambiguity, Commutative, 
Associative One-Way Functions? 

We ideally would like our one-way functions to be one-to-one or, if that 
cannot be achieved, to have as few preimages as possible. Exactly what can 
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be said about upper and lower bounds on the degree of many-to-one-ness 
of total, associative, 2-ary one-way functions-under various assumptions or 
unconditionally? Some preliminary work has been done, but matching upper 
and lower bounds have so far proven elusive. 

A major open issue regarding one-way functions is whether one-way func­
tions exist if the polynomial hierarchy does not collapse. That is, can one 
prove that P =UP ===} PH collapses? For that matter, can one prove that 
UP = NP ===} PH collapses? 

2.5 Bibliographic Notes 

Section 2.1 covers two related notions: one-way functions and one-to-one one­
way functions. The earliest citation we know of for the one-way functions part 
of Theorem 2.5 is a paper by Watanabe ((Wat88], see also (BDG95,Sel92, 
BFH78,Bra79]). The one-to-one one-way functions part of Theorem 2.5, and 
the related definitions, are due to Grollmann and Selman (GS88]. This result 
was also obtained independently by Berman (Ber77] and Ko (Ko85]. 

Of course, there are a range of "how many"-to-one-ness levels between 
one-to-one and many-to-one, and they similarly and very naturally have been 
shown to be characterized by the collapse of complexity classes. For exam­
ple, Allender and Rubinstein (AR88] show that polynomial-to-one one-way 
functions exist if and only if P =I Few P. 

Similarly, the constant-to-one cases are relevant to Sect. 2.2. This section 
is based on the work of Watanabe (Wat88], who in particular established 
Theorem 2.7. Definition 2.8 is due to Beigel (Bei89] and Fact 2.9 is stated 
explicitly in Hemaspaandra and Zimand (HZ93], who study the structure and 
potential collapses of bounded-ambiguity classes such as UP::;k and coUP::;k· 

Regarding Sect. 2.3, Rabi, Sherman, and Rivest raised the issue of how 
algebraic properties interacted with 2-ary one-way functions ((RS93,RS97, 
She86], see the discussion and literature pointers in those papers), and de­
veloped secret-key agreement and digital signature protocols that interest­
ingly use such functions as building blocks. Rabi and Sherman proved (RS93, 
RS97] that P = NP if and only if commutative, associative, 2-ary one-way 
functions functions {(RS93,RS97,She86]. exist. However, their functions are 
nontotal and are not strongly noninvertible. The main theorem of Sect. 2.3, 
Theorem 2.16, is due to Hemaspaandra and Rothe [HR99]. The counter­
intuitive result mentioned in passing in the proof of Theorem 2.16-that if 
P =I NP then there exist honest, strongly noninvertible, polynomial-time com­
putable functions that are polynomial-time invertible-is due to Hemaspaan­
dra, Pasanen, and Rothe (HPR01]. 

As mentioned on page 38, some tricky issues arise in the study of asso­
ciativity of partial functions. In fact, two distinct notions of associativity can 
be studied, and they are inspired by ideas dating back to the early work of 
Kleene [Kle52], namely, "complete equality" versus ''weak equality." Simply 
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put, the issue is whether f(a) = x should be considered true when x E E* 
and a fj_ domain(!). These issues are discussed in detail by Hemaspaandra 
and Rothe [HR99], who in particular prove that, due to a subtle confusion 
between the two notions, a claim of Rabi and Sherman [RS97,She86] is invalid 
if UP# NP. 

Regarding Sect. 2.4, Rabi and Sherman ([RS97], see the discussion 
in [HR99]) show that no total, "weakly associative," 2-ary one-way functions 
exist, which implies that no total, associative, 2-ary one-way functions ex­
ist. Hemaspaandra and Rothe [HR99] note that lack of one-to-one-ness holds 
per force for any commutative 2-ary function having some distinct elements 
in its domain, and they propose a more general notion to study that they 
call unordered injectivity. Homan [HomOO] provides a deep and direct study 
of what upper and lower bounds hold on the degree of many-to-one-ness of 
2-ary functions, and of the interactions between that, algebraic properties, in­
vertibility properties, and complexity-theoretic hypotheses. For example, he 
proves that if P # UP then there exists a 0( n )-to-one, strongly noninvertible, 
total, associative, 2-ary one-way function. 

Selman [Sel92] has written a general survey of one-way functions, and 
a later survey by Beygelzimer et al. [BHHR99] focuses on the study of 
associative, 2-ary one-way functions. These references all study worst-case 
cryptocomplexity. References on the related but distinct study of average­
case cryptocomplexity and that area's notion of one-way functions include 
the books of Luby [Lub96] and Goldreich [GolOl]. The result, mentioned in 
this chapter's introduction, that the type of one-way function used in average­
case cryptography exists if and only if pseudorandom generators exist is due 
to Hastad, Impagliazzo, Levin, and Luby [HILL99]. 



3. The Tournament Divide and Conquer 
Technique 

If computer science were a country rather than a field, one can well imag­
ine that its motto would be "Divide and Conquer," which might have edged 
out "In Polynomial Time We Trust." Indeed, divide and conquer techniques 
accompany the computer scientist from the introduction to binary search 
through the mastery of cutting-edge algorithmic techniques. However, com­
puter scientists do not own the franchise. Divide and conquer techniques are 
useful in many fields. 

In this chapter's GEM, we will prove via divide and conquer a result from 
tournament theory. Perhaps surprisingly, we will see that this tournament 
theory result immediately yields an upper bound on the nonuniform com­
plexity of semi-feasible sets, i.e., how much advice various classes need to 
accept them (Sect. 3.1). The result-with a bit of work-also proves that NP 
machines cannot find unique satisfying assignments to satisfiable formulas 
unless the polynomial hierarchy collapses (Sect. 3.3). 

We also will exactly pinpoint the maximum nonuniform complexity of 
semi-feasible sets (Sect. 3.2). 

3.1 GEM: The Semi-feasible Sets Have Small Circuits 

Consider a k-node graph, having no self-loops, such that for each pair, {a, b}, 
of distinct nodes we have a directed edge from a to b or a directed edge from b 
to a, but not both such edges. Such a structure is known as a k-tournament 
(see Fig. 3.1). One may think of this as a round-robin tournament in which 
each node represents a player, and the edge between two players is directed 
towards whichever of the two won the match they played (no ties are allowed). 
Tournaments have been extensively studied. However, for our purposes at the 
moment, we need only the following simple claim (Theorem 3.1): In any k­
tournament, there exists some small collection of players such that every 
player in the tournament defeats at least one member of that small collection 
(we consider each member, by convention, to defeat him- or herself). 

For a graph G, let Vc denote the vertex set of G and let Ec denote the 
edge set of G. Let (a, b) denote an edge pointing from a to b. In our sports 
tournament analog, we draw between players a and b the edge (a, b) if b 
defeats a, and (b, a) if a defeats b; that is, edges point towards winners. 
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c 

Fig. 3.1 A 5-Tournament 

Theorem 3.1 If G is a k-tournament on nodes Vc 
there exists a setH~ {1, 2, ... , k} such that 

1. IIHII::; llog(k + 1)J, and 

{1, 2, ... , k} then 

2. for each v E Vc- H, there is some g E H such that (g, v) E Ec. 

Proof Consider a tournament in which there are k players. Thus, each 
player plays k - 1 games. Note that some player must lose at least half the 
time, i.e., must lose at least lk2 1l games. This is because in each game 
someone wins and someone loses, so the total number of wins equals the 
total number of losses. However, if no player were to lose at least half the 
time, then each player individually has strictly more wins than losses, and 
thus overall there are strictly more wins than losses, which is impossible. 

Select some player who loses at least half the games he plays and place him 
in the set H. Remove from consideration that player and all the players that 
defeat that player. Note that the new player set has at most k - ( 1 + I k2 1 l) = 
I~ l-1 players. Consider the tournament induced by restricting our attention 
to only the edges (games) in the old tournament played between players of this 
reduced set. Note that, in this reduced tournament, our previous argument 
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will again apply, and so there will be a player who loses to at least half the 
players in the reduced tournament. Add that player to H and again reduce the 
tournament. Continuing this process, we eventually arrive at a set H having 
property 2 from the statement of the theorem, since there will eventually be 
no vertices under consideration. Also, the number of elements in His bounded 
by the recurrence relation: 8(0) = 0 and, for each k ~ 1, S(k) ~ 1+S(f~l-1). 
As is standard, this recurrence relation implies S(k) ~ Llog(k + 1)J. 0 

This innocuous theorem in fact proves that the semi-feasible sets have 
small circuits. (Readers who are not familiar with the definitions of small 
circuits and semi-feasible sets should at this point quickly read the introduc­
tions to these topics contained in, respectively, Sects. A.6 and A.14.) 

Theorem 3.2 P-sel ~ P /poly. 

Informally, the proof goes as follows: At each length n in any semi-feasible 
(equivalently, P-selective) set L, there will always exist, by Theorem 3.1, a 
small set of nodes in L such that every element in L =n defeats one of these 
nodes, and this small set of nodes itself will function for us as a "small advice 
set" for L (since each string in L will defeat one of these nodes, and by the 
definition of semi-feasibility any string that defeats one of these nodes must 
be in L). 

Proof Consider a semi-feasible set L. Recall that to prove that L has small 
circuits (i.e., L E P /poly), it suffices (see Sect. A.6) to provide a function g 
and a set A E P such that 

('v'x) [x E L {::::::::} (x, g(Jxl)) E A] (3.1) 

and 

(3 polynomial q) ('v'n) [Jg(n)J ~ q(n)]. (3.2) 

Consider the length n strings in L, L =n. Let f : E* X E* ~ E* be a 
polynomial-time computable function that is a P-selector for semi-feasible 
set L. Without loss of generality, we assume that f(a, b) = f(b, a) for all 
a and b, as if f does not satisfy this condition, it can be replaced by the 
function 

f'(a, b) = /(min{ a, b }, max{a, b} ), 

which does satisfy this condition and, as follows clearly from the fact that f 
is a P-selector for L, f' is also a P-selector for L. Consider the tournament on 
L=n induced by f. That is, consider a simple (i.e., having no self-loops) graph 
G whose nodes are the elements of L =n, and such that for any a, b E L =n, 
a =f. b, it holds that (a, b) E Ea {::::::::} f(a, b) = b. Note that this indeed 
is a tournament. Theorem 3.1, applied to this tournament, states that there 
exists a small set Hn (in particular, JJHnll ~ Llog(1 + I!L=nJI)J ~ n+ 1) such 
that this set Hn contains only members of L =n and for every element of L =n 
there is some element hE Hn satisfying f(h, x) = x. Note that if x E Hn the 
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test is whether f(x,x) = x, which is always true. Note also that if L contains 
no length n elements, then Hn = 0. 

We now state the advice function and advice interpreter for semi-feasible 
set L. The advice function, g(n), outputs Hn, coded in any fixed natural way. 
Clearly, equation 3.2 holds as, for each n, Hn has at most n + 1 elements, 
each n bits long. Our advice interpreter set for L is 

A = { (x, y) I y is a (possibly empty) list of length n elements 
v1, ... , Vz, and for some j it holds that f(vj,x) = x}. 

Clearly, A E P, as f is a polynomial-time computable function. Does 
equation 3.1 hold? Let x E L. Then (x,g(lxl)) E A by our choice of g and 
A. Let x ¢ L. Let n = lxl. Suppose (x,g(lxl)) EA. Then for some hiE Hn 
it must hold that f(hi,x) = x. However, all elements of Hn are in L=n, so, 
since f is a P-selector function, the fact that x has defeated an element of L 
implies that x E L. So if x ¢ L then (x, g(lxl)) ¢A. 0 

Pause to Ponder 3.3 In this section, we saw that P-sel ~ P /poly. Can 
one, based on the proof presented in this section, say a bit more about the 
number of advice bits than merely that a polynomial number (the ''poly" of 
P /poly) of advice bits suffice? For example, do O(n2 ) bits suffice? That is, 
does it hold that P-sel ~ P /quadratic? Hint: Consider the cardinality of the 
sets Hn in the proof of Theorem 3.2, and the number of bits in each element 
ofHn. 

Looking towards the topic of the next section, one can also ask: Is there a 
class C such that P -sel ~ C /linear ? 

3.2 Optimal Advice for the Semi-feasible Sets 

In some sense, computer science is the study of the efficient handling of 
information. In this section we ask: How much information do semi-feasible 
sets contain? 

In the previous section, we saw that P-sel ~ P /poly. However, we proved 
a bit more. The actual advice function used at length n was a coding of at 
most n + 1 strings of length n. Thus, O(n2 ) bits are easily sufficient. So we 
have the following theorem. 

Definition 3.4 

1. Let linear denote the class of all functions f such that f(n) = O(n).1 

2. Let quadratic denote the class of all functions f such that f(n) = O(n2 ). 

1 We could also have defined ~ to be all functions f such that for some c 
and all n we have f(n) = en. Though linear "I ~. it is not hard to see 
that P/linear = P/~. as the length of a linear function itself holds little 
information-at most O(logn) bits. Analogous comments hold for the quadratic 
case. 
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Theorem 3.5 P-sel ~ P/quadratic. 

Can we get by with a subquadratic number of advice bits? In this section, 
we will see that linear-sized advice suffices, if we are allowed to use powerful 
advice interpreters. In particular, rather than use advice interpreters running 
in deterministic polynomial time, we will use advice interpreters running in 
probabilistic polynomial time (Theorem 3.7) and nondeterministic polyno­
mial time (Theorem 3.10). We will eventually show that linear advice is the 
best one can do; no strength of advice interpreter can always work success­
fully on the semi-feasible sets using sublinear advice. 

Recall from Sect. A.6 that to prove that L E Cjlinear we must provide a 
function g and a set A E C such that 

(Vx) [x E L {:::=:> (x,g(lxl)) E A] (3.3) 

and 

(:lq E linear) (Vn) [lg(n)l = q(n)]. (3.4) 

We now prove that P-sel ~ PP /linear. That is, linear advice suffices 
to accept semi-feasible sets, given advice interpreters that are probabilistic 
polynomial-time machines (see Sect. A.12 for an introduction to PP). Later 
in this section, we will extend this result by showing the even stronger claim 
that P-sel ~ NP /linear. 

Pause to Ponder 3.6 Prove that P -sel ~ PP /linear. [Hint: Count!] 

Theorem 3. 7 P -sel ~ PP /linear. 

Proof Let us be given a set L E P-sel and a P-selector function f for L. As 
before, without loss of generality, we may assume that for all a and b it holds 
that f(a, b) = f(b, a). Our advice function will be the census function of L at 
the given length, i.e., g(n) = IIL=nll, padded if needed with leading zeros so 
as to be exactly n + 1 bits long. (This is enough bits since 0 ~ IIL=nll ~ 2n, 
so there are at most 1 + 2n possible census values.) Consider a string y of 
length n. If y E L, then 

ll{z In= lzl/\ f(y, z) = z }II ~ IIL=n11, 

as only elements in L can defeat elements in L according to a P-selector 
function. On the other hand, if y rJ. L, then 

ll{z In= lzl/\ f(y, z) = z}ll > IIL=n11, 

as each element in IIL=nll defeats y, and also y defeats y. Our advice inter­
pretation set-the A of equation 3.3-is defined by the following, where m is 
interpreted as the binary representation of an integer. 

A= {(x,m) I m 2:: ll{z I f(x,z) = z 1\ lzl = lxl}ll}. 
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It is not hard to see that A E PP. (We leave the proof as an easy exercise 
for the reader. Hint: Construct a PP machine that has two types of paths. 
For each z of length lxl, we have a path that accepts if and only if f(x, z) =f. z. 
Also, there will be other paths that accept or reject so as to ensure that the 
machine has the right acceptance/rejection threshold.) Thus, L E PP/linear, 
as IIL=nil E {0, 1, ... , 2n}, so as noted above n + 1 bits suffice for the advice 
function. 0 

Unfortunately, PP is a very powerful class. PP 2 NP and, within the flex­
ibility of Turing reductions, PP contains the entire polynomial hierarchy (see 
Sect. A.12). It turns out that such powerful interpreters are not needed. NP 
interpreters suffice. To see this, we will have to return briefly to tournament 
theory in order to obtain an easy but useful lemma. 

Given a directed graph G, and a node v EVa, let 

Ro,a(v) = {v} 

and, for each i > 0, let 

Ri,a(v) = Ri-l,G U {z EVa I (3w E Ri-I,a(v)) [(w, z) E Ea]}. 

That is, Ri,a(v) denotes the set of nodes that can be reached from v via 
directed paths of length at most i. For any i, G, and S $;;; Va, define 

Ri,a(S) ={wE Va I (3v E S) [wE Ri,a(v)]}. 

Theorem 3.1 says that if G is a k-tournament, then there is a relatively 
small setH such that Va = R 1,a(H). That is, there exists a small collection 
of nodes from which all nodes can be reached via paths of length at most 
one. We now claim that in any k tournament, there is some node from which 
all nodes can be reached via remarkably short paths (just how short they are 
will be the topic of Pause to Ponder 3.8). 

Note that it is clear, by induction, that in a k-tournament there is a node 
v such that Va = Rk-l,a(v). Why? When one adds a node, either it points 
to the node that (inductively) reached all other nodes, or it is pointed to by 
that node. In the former case, the new node reaches all nodes, and in the 
latter CaSe, the node that inductively reached all nodes other than the new 
node also reaches the new node, in both cases via sufficiently short paths. 

Similarly, it is clear that in a k-tournament, there is a node v such that 
Va = Rrlogkl,a(v). We quickly sketch a proof. In the proof of Theorem 3.1 
we defined a sequence of nodes v1, ... , Vm and a sequence of sets T1 , ... , Tm, 

m :::; llog(k + 1)J, such that for every i, each element in Ti defeats Vi and 
Vi defeats Vi+l, ... , Vm· So, for every i, Vi is reachable from Vm by the path 
[vm, Vm-1. ... , Vi], and every element u inTi is reachable via this path with 
extra edge (vi, u). Thus, every node is reachable from Vm by a path of length 
m :::; 1 + (llog(k + 1)J - 1). Also, in the special case k = 1 it is clear that 
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length zero paths suffice. So in all cases each node is reachable via paths of 
length at most flog k l· 

Va = Rpogkl,a(v) is a result that is strong enough to allow us to prove 
the forthcoming Theorem 3.10. However, we prove as Theorem 3.9 a stronger 
result that gives more insight into the shortness of paths in tournaments, and 
thus into the nonuniform complexity of the semi-feasible sets. 

Pause to Ponder 3.8 As just discussed, in each k-tournament there is a 
node from which all nodes can be reached via paths of at most logarithmic 
length. Improve this to the claim that in each k-tournament there is a node 
from which all nodes can be reached via paths of length about most O(log" k). 
Beyond that, improve this further to the claim that in each k-tournament 
there is a node from which all nodes can be reached via paths of constant­
bounded length. [Note: Don't first peek at Theorem 3.9 below, as it will bias 
your thoughts on this by showing you the value of the constant.] 

Theorem 3.9 If G is a k-tournament, then there is a v E Va such that 
Va = R2,c(v). 

Proof The result obviously holds for !-tournaments and 2-tournaments. 
Inductively, assume it holds for all k tournaments. Consider an arbitrary 
k +!-tournament, G. Let a be a node of that tournament, and let G' be the 
k-tournament induced by the nodes of G other than a. By induction, there 
is a node binG' such that R2,G'(b) = VG'· 

If the edge between a and b points to a we are done, as in that case 
R2,a(b) = Va. So let us henceforth assume that the edge between a and b 
points to b. If a E R2,a(b) we also are done, as in that case R2,c(b) = Va. So 
let us henceforth also assume that a¢ R2,c(b). 

However, if a (j. R2,a(b) that implies that, for each node c E R 1,c(b), the 
edge between a and c points from a to c. This in turn implies that R2,c(a) = 
Va. Why? We already know (in light of our "henceforth" assumptions) 
R 1,a(b) ~ RI,c(a). We also have R2,G'(b)- RI,G'(b) ~ R2,c(a), namely, 
as any length two path from b has as its second node a node from R 1,c,(b), 
but all such nodes are also pointed to by a. So, since Va = R2,G'(b) U{a}, 
we have Va ~ R2,c(a). D 

Theorem 3.1, a tournament theory result, yielded a consequence about the 
semi-feasible sets, Theorem 3.2. Analogously, the tournament theory result 
proven above, Theorem 3.9, also yields our promised result about the semi­
feasible sets: P-sel ~ NP /linear. 

The linear advice at each length n is simply the element (whose existence 
is ensured by Theorem 3.9) that reaches all elements of L=n via extremely 
short paths. The nondeterministic interpreter merely guesses the short paths. 

Theorem 3.10 P-sel ~ NP/linear. 

Proof Let L E P-sel, via P-selector function f. As usual, we assume without 
loss of generality that ('Va, b) [f(a, b)= f(b, a)]. Assume also that the special 
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case jxj = 0 is hard-coded into the advice interpreter (i.e., whether f E £).We 
give the advice function, g, and the advice interpreter, A E NP, that prove 
L E NP /linear. For each n ~ 1, g( n) will be 1 n+l if L =n = 0 and otherwise 
equals Own, where Wn is the length n string in L =n such that, by Theorem 3.9, 
each node in the tournament induced on £=n by f (i.e., the tournament in 
which there is a node for each member of L =n and for a, b E L =n, a =f. b, 
directed edge (a, b) is in the graph if and only if f(a, b) =b) can be reached 
from Wn via paths of length at most two. The advice interpreter set A is as 
follows. 

A = { (x, Ow) I there is a path of length at most two, in the tourna­
ment induced on L=n by J, from w to x }. 

Clearly, g is of linear length and A E NP. If x E L, then by construction 
(x, J(jxl)) E A. If x fl. L, then (x, J(jxl)) fl. A, as if (x, J(jxl)) E A, then we 
have a z E {0, 1, 2} and a directed path 

from Wn to x, i.e., one satisfying 

So, since Wn E L, by the definition of semi-feasibility we also have that each 
ai must be in L. Thus, az = x must be in L. This yields a contradiction. 0 

Since P-sel is closed under complementation, we have the following corol­
lary. 

Corollary 3.11 P-sel ~ NP /linear n coNP /linear. 

In fact, note that Theorem 3.9 ensures that the guessed paths from Wn 

will be very short-of length at most two. So our NP interpreter, when re­
solving the question "Is x in L?, jxj = n" in fact need only guess a path 
of length at most two, with each element on the path being itself an n-bit 
string. So, since we can deterministically check for paths of length at most 
one, n nondeterministic guess bits in fact suffice. Thus, we certainly have the 
following corollary to the proof. 

Corollary (to the proof) 3.12 Each semi-feasible set can be accepted 
with linear advice via an NP machine using linear nondeterminism. 

Though Theorem 3.10 speaks merely of linear advice, one can say a bit 
more about the amount of advice. In fact, the proof of Theorem 3.10 shows 
that 

P-sel ~ NP /n + 1, 

(this is a shorthand for P-sel ~ NP /h(n), where h(n)' = n + 1, and recall that 
this means that the advice string must be of length exactly h(n)). Is this 
optimal? We now show that, though n + 1 bits suffice, n bits do not suffice. 

Theorem 3.13 P-sel ~ NP/n. 
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The proof here is less about computation than about information content. 
We'll see that n bits simply cannot hold enough information to disambiguate 
a certain family of semi-feasible sets. 

Proof We will construct a set, L, consisting mostly of holes. That is, at 
widely spaced lengths, our set will include exactly some (possibly empty) left 
cut of the strings of that length, and at all other lengths it will be empty (see 
Fig. 3.2). Yet, we will ensure that the set is of limited complexity. This will 
allow us to conduct a brute-force search, at each shorter length that might 
contain strings, of exactly which strings are at those lengths. 

2li-l 

In particular, let £0 = 2, and for each i ~ 1, let li = 22 . Let 
Q = {£0, £1, £2, ... }. We will construct L to ensure that the following three 
conditions hold. 

L ~ Eio U Ei1 U Ei2 U · · ·. That is, all strings in L have (3.5) 
lengths from the set Q. 

For each x andy, if !x! = !YI and x :5zex y andy E L, then (3.6) 
x E L. That is, at each length Lis a (perhaps empty) left 
cut of the strings at that length. 

Our proof concludes with the following two claims, and their proofs. 

Claim 3.14 Any set L satisfying equations 3.5, 3.6, and 3. 7 is semi­
feasible. 

Claim 3.15 There is a set L ¢ NP /n satisfying equations 3.5, 3.6, and 3. 7. 

Proof of Claim 3.14 Let L satisfy equations 3.5, 3.6, and 3.7. Consider 
the following function f. 

f(x, y) = l ~;n{x, y) 
min{x,y} 
max{x,y} 

if IYI ¢ Q, 
if !xl ¢ Q A IYI E Q, 
if !xl E Q A IYI E Q A lxl = !Y!, 
if !xl E Q A IYI E Q A !x! # IYIA min{x,y} E L, 
if !x! E Q A IYI E Q A !x! # IYIA min{x,y} ¢ L. 

It is clear that f is a selector function for L, as no case above outputs an 
element not in L if at least one of the arguments is in L. Keeping in mind 
the widely spaced left cut structure of L, f can be computed in polynomial 
time as follows. The first three cases clearly are in polynomial time. As to 

22 22222 

the last two cases, recall that Q is ofthe form Q = {2, 22 , 22 , ..• }. So if 
2mln{lo:l,llll} 

!xl E Q, !YI E Q, and !xl # !Y!, it must hold that max{!xl, IYI} ~ 22 . 

Since L is computable in time 22n, that means that a machine running in 
time polynomial in !xl + !YI can easily (in the last two cases) compute by 
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0 ... ... 0 

x ... xo .. . .. 0 

0 ... ... 0 

2 X I 0 0 I 0 

1 0 0 

0 0 

t 
string lengths Key: 0 = element is not in L. 

X = element is in L. 

For example, the "length 2" row in this example 
says that 00 E L, 01 ¢ L, 10 ¢ L, and 11 ¢ L. 

Fig. 3.2 Typical Structure of L 

brute-force search whether min{x,y} E L. Thus, f is a P-selector for L, soL 
is semi-feasible. D Claim 3.14 

Proof of Claim 3.15 Let N1 , N2, N3 , ... be a standard, easily com­
putable list of NPTMs (nondeterministic polynomial-time Turing machines) 
such that 

NP = {B I (3i) [L(Ni) = B]}. 

Let ( ·, ·) be a fixed, nice, 2-ary pairing function. Let the enumeration 
N1, N2, N3, ... be such that, for each i and k, N(i,k) is simply Ni. So in 
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the enumeration N1, N2, N3, ... , each machine Ni will appear infinitely of­
ten. Our proof proceeds by diagonalization, in stages. 
Stage l: At this stage we define the contents of £=l. If l fl. Q, then set 
L =l = 0 and move on to stage l + 1. 

If l E Q, then do the following suite of simulations for at most 22' steps 
(total). If this number of steps is reached and we have not completed the 
following, then let L=l = 0. Say lis the (i, k)th element of Q; that is, define 
i and k (which both will depend on l) to be the unique integers satisfying 
(i, k) = ll{j I j E Q 1\ j ~ l}ll· 

Consider N(i,k). For each of the 2t potential advice strings y of length l, 
do the following. 

For each of the 2l strings x of length l run N(i,k) { (x, y) ). If none of these 
2t runs accept, then let rightmosty = 1t-l. Otherwise, let 

rightmosty = ma.x{x llxl = ll\ N(i,k)((x,y)) accepts}. 

Since for each of the 2t potential advice strings of length l we chose at 
most one "rightmost" string, the total number of rightmost strings is at most 
2t. So the set 

is not empty. Let Jt be an element of Jt, for example, the lexicographically 
smallest element of Jl. Set 

L=l = {x it= lxl/\ X ~lea: jt}. (3.8) 

End of Stage l 
By construction, equation 3.5 holds, and by equation 3.8, equation 3.6 

holds. By the fact that we allow at most 22' steps in the simulation, equa­
tion 3.7 holds. It remains to show that L fl. NP jn. Suppose L E NP /n via 
NP language L'. Let i' be such that L(Ni') = L'. Note that, for each k', 
N(i',k') = Ni'· For all sufficiently large k', in stage (i',k') the construction 

completes without being cut off by the 22' step bound. This is because the 
stage l that satisfies (i', k') = ll{j I j E Q 1\ j ~ l}ll requires about 

2l2l ( 2blc) 2 

steps {for some positive constants b and c that are dependent only on i), 
the three terms respectively being due to the loop over advice strings, the 
loop over input strings, and the simulation of an NP machine (converted to an 
EXP brute-force machine, and allowing quadratic overhead for the simulation 
of that machine on a universal EXP machine). For all sufficiently large l, this 
is less than 22'. So for a fixed i', it holds that, for all but finitely many k', 
the stage l where l is the (i', k')th element of Q will use no more than 22' 
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steps. Let k" (implicitly, k" = k"(i')) be one k' for which completion does 
occur. Let l" denote the (i', k")th element of Q. Notice that by construction 

l" (namely, the construction's choice of Jl") none of the 2 advice strings of 

length l" when given as advice to N(i',k")---equivalently to Ni'-yields, at 

length l", L =l". In particular, we have the following two claims. 

1. If IJt."l = l", then for each length l" advice string, y, either Ni' ( Ut.", y)) 
rejects (yet Jt." E L) or for some length l" string z that is, lexicographi­
cally, strictly greater than Jt." it holds that Ni' ( (z, y)) accepts (yet z ¢ L ). 

2. If IJt."l = l" -1, then £=l" is empty but for each advice stringy E Et." 
l" there is an x E E such that Ni'((x,y)) accepts. 

Thus, L ¢ L' jn. This contradicts our supposition that L E NP /n via NP 
language L'. 0 Claim 3.15 

0 Theorem 3.13 
In fact, it is not hard to modify the proof of Theorem 3.13 to yield the 

following more general claim. We leave the proof to the reader. [Hint: Use 
the same "large gaps, and 'brute force' short strings" technique used in the 
proof of Theorem 3.13, but modify the gaps and the time complexity to be 
sensitive to the time bound h(n).] 

Theorem 3.16 Let h(n) be any recursive function. P-sel ~ 

DTIME[h(n)Jin. 

3.3 Unique Solutions Collapse the Polynomial Hierarchy 

A central focus of computational complexity theory is whether large col­
lections of computational objects can be thinned down. The Isolation Tech­
nique, the focus of Chap. 4, provides a probabilistic approach to this thinning 
process. In this section, we approach the issue of thinning from a different 
perspective. We ask whether, given a satisfiable boolean formula, a nondeter­
ministic polynomial-time function can cull a single satisfying assignment from 
its set of satisfying assignments. We'll soon define exactly what is meant by 
a nondeterministic function, and will see that if this thinning could be done, 
then the polynomial hierarchy would collapse. 

Nondeterministic polynomial-time functions can easily find all satisfying 
assignments of satisfiable formulas. Thus, we have the curious case-which 
at first may even seem paradoxical-that it is easier to find all solutions 
than to cull out one solution. This is not a paradox. We are dealing with 
nondeterministic functions. When they are multivalued their various values 
appear on distinct paths in a potentially very bushy tree (formal definitions 
follow soon). So "simply taking the smallest output and discarding the rest" 
cannot be done in any obvious way within the power of nondeterministic 
functions, as an individual path has no obvious way of telling whether the 
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satisfying assignment it obtained and is about to output is lexicographically 
smaller than whatever satisfying assignments its many sibling paths may have 
obtained. 

To put into context the strength one needs to cull satisfying assignments, 
note that machines seemingly a bit stronger than NPTMs can cull satisfy­
ing assignments unconditionally, and deterministic polynomial-time machines 
cannot cull satisfying assignments unless P = NP. Both these claims, as for­
malized in the following proposition, are immediate. In particular, part 2 
holds since an FPNP function can even, by prefix search, find the lexico­
graphically smallest satisfying assignment of a given formula. 

Proposition 3.17 

1. P = NP {:=:} there is a polynomial-time computable function f such 
that 

(VF E SAT) [J(F) is a satisfying assignment ofF]. 

2. There is a function f computable by a polynomial-time machine with an 
NP oracle (i.e., f E FPNP) such that 

(VF E SAT) [!(F) is a satisfying assignment ofF]. 

Our case, whether NP functions can cull a single satisfying assignment, is 
intermediate (perhaps not strictly~ in logical likelihood between the case of 
FP functions and the case of FPN functions. 

Curiously enough, though the main result of this section does not seem on 
its face to be about semi-feasible sets, a nondeterministic analog of the semi­
feasible sets plays a central role in the proof. In particular, the tournament 
divide and conquer approach of Sect. 3.1 will be central here, though in the 
context of nondeterministic selector functions. First, though, we state some 
definitions. 

The class NPMV captures the notion of multivalued nondeterministic 
function computation. The class NPSV captures the notion of single-valued 
nondeterministic function computation. 

Definition 3.18 

1. Let f be a multi valued function. set- f(x) denotes the set of all values that 
are an output of f(x). Note that if f(x) has no output then set-f(x) = 0. 

2. We consider any given nondeterministic polynomial-time machine N to 
implicitly compute a (potentially partial) multivalued function, namely, 
the function !N defined by set-fN(x) = {y I some computation path of 
N(x) outputs y}. NPMV denotes the class of functions computed in this 
sense by nondeterministic polynomial-time machines. 

3. A (potentially partial) multi valued function f is said to be single-valued if 
(Vx) [liset-f(x)ll ~ 1]. NPSV denotes the class of all single-valuedNPMV 
functions. 
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Note that there is a function f E NPMV such that, for all F E SAT, 
set- f(F) consists of all F's satisfying assignments. 

Our notion of "thinning" a multivalued function is the standard one: 
refinement. A refinement of multivalued function f is a function g with the 
same domain and containing a subset (possibly nonproper) off's values. 

Definition 3.19 Given multivalued functions f and g, we say g is a refine­
ment off if 

1. (\lx) [set-g(x) = 0 -<=? set-f(x) = 0], and 
2. (\lx) [set-g(x) ~ set-f(x)]. 

We now can state the main theorem of this section. If for each NPMV 
function there exists an NPSV function that is a refinement of the NPMV 
function, then the polynomial hierarchy collapses quite dramatically. 

Theorem 3.20 lf all NPMV functions have NPSV refinements, then PH = 
zppNP. 

Since zppA ~ NPA for all A, we have the following corollary. 

Corollary 3.21 If all NPMV functions have NPSV refinements, then 
PH=NPNP. 

Lemma 3.23 connects the hypothesis of Theorem 3.20 to the equivalent 
hypothesis that nondeterministic polynomial-time machines can cull a single 
satisfying assignment for any input satisfiable formula. 

We will need the following famous result, which we state without proof. 

Theorem 3.22 (Cook's Theorem) Let Ni be a standard enumeration of 
NPTMs. There is a function !cooK E FP, mapping from strings to boolean 
formulas, such that 

1. (Vi) (\lx) [Ni(x) accepts -<=? fcooK(Ni,x) is satisfiable], 
2. (3gcooK E FP) (Vi) (\lx) [gcooK(fcooK(Ni,x)) = (Ni,x)], and 
3. (3hcooK E FP) (Vi) (\lx) (\Ia) [if a is a satisfying assignment of 

fcooK(Ni,x), then hcooK(Ni,x, a) outputs an accepting computation 
path of Ni(x)]. 

Lemma 3.23 The following are equivalent: 

1. Every NPMV function has an NPSV refinement. 
2. (3/ E NPSV) (\IF E SAT) [f(F) is a satisfying assignment of F].2 

Proof Consider the NPMV function h defined by 

set-h(F) ={a I a is a satisfying assignment ofF}. 

2 We use f(F) here as a shorthand, for those inputs on which FE SAT, for the 
single element in the one-element set that comprises set-f(F). 
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If every NPMV function has an NPSV refinement, then h does. This refine­
ment satisfies part 2 of the lemma. 

Suppose (3! E NPSV) (VF E SAT) [f(F) is a satisfying assignment ofF]. 

Let 1 be one such f. 
Let g E NPMV, via function-computing NPTM Ni. Without loss of gen­

erality let Ni be such that paths that output values are (always) accepting 
paths (i.e., their final state is an accepting state), and paths that do not 
output values are (always) rejecting paths (i.e., their final state is not an 
accepting state); since Ni is a function-computing machine, this addition of 
accepting final states may seem pointless, but in fact it will be useful in letting 
us employ the machinery of Cook's Theorem, which links accepting paths to 
satisfying assignments. Let !cooK and hcooK be as in Theorem 3.22. We now 
give an NPTM N computing an NPSV refinement of g. On input x, N deter­
ministically computes fcooK(Ni, x) and then nondeterministically guesses a 
path of NPSV function J. If along our guessed path 1 has no output then 
we will make no output along the current path. If along our guessed path 
1 does have an output, call it a, then we along the current path first check 
whether a is a satisfying assignment of fcooK(Ni, x). If a is not a satisfying 
assignment of fcooK(Ni, x) (a strange situation that might in fact occur, 
due to Lemma 3.23's part 2 being silent on the issue of what f does, aside 
from having at most one output value, when F ¢ SAT), then we make no 
output on the current path. If a is a satisfying assignment of fcooK(Ni, x), 
then on our current path we deterministically compute hcooK(Ni, x, a)-call 
this value path-and then we deterministically compute what value is output 
along computation path path of the computation of Ni(x) and output that 
value along our current path. 0 

We will use two key lemmas-Lemmas 3.25 and 3.27-and one new def­
inition in the proof of Theorem 3.20. The new definition extends to partial 
nondeterministic functions the notion of semi-feasible computation. 

Definition 3.24 Let :F be any (possibly partial, possibly multivalued) func­
tion class. We say a set L is :F-selective if there is a multivalued function 
f E :F such that 

1. (Vx,y) [set-f(x,y) ~ {x,y}], and 
2. (Vx,y)[(xELVyEL) => 0i=set-f(x,y)~L]. 

That is, selector functions, in this generalized sense, (1) never choose strings 
that are not among their arguments, and (2) if at least one of the function's 
arguments is in the set then they must choose at least one argument and 
they must choose no argument that is not in the set. Note that what is 
typically referred to in the literature by the notation "P-selective" (i.e., the 
semi-feasible) would be referred to as "FPtotat-selective" were one to rigidly 
follow the notation of Definition 3.24. 

Lemma 3.25 NPSV-sel n NP ~ (NP n coNP)/poly. 
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We defer the proof of the above lemma until after the proof of the main 
theorem, Theorem 3.20. 

Theorem 1.16, the Karp-Lipton Theorem, states that if NP has 
sparse ::;~-hard sets (equivalently and more to the point here, if NP s;;; 
P /poly), then the polynomial hierarchy collapses to NPNP. Can one es­
tablish the same strong conclusion from the weaker hypothesis that NP s;;; 
(NP n coNP)/poly? Not only is the answer yes, but this stronger result is 
in fact essentially implicit in the earlier result, via relativization. Such a sit­
uation is referred to, only half-jokingly, as "proof by relativization." We now 
give such a proof for the stronger result. 

Lemma 3.26 NP s;;; (NP n coNP)/poly ===} PH = NPNP. 

Proof By Theorem 1.16, 

NP s;;; P /poly ===} PH = NPNP. 

Also, it is true that this result relativizes, i.e.,3 

('v'A) [NPA s;;; pA /poly ===} PHA = NPNPA]. (3.9) 

Assume NP s;;; (NP n coNP)/poly. So SAT E (NP n coNP)/poly, say 
via NP n coNP set B. By equation 3.9, taking A= B, we have 

NP 8 s;;; P8 /poly ===} PH8 = NPNPB. (3.10) 

However, NP s;;; NP 8 s;;; NPNP n coNP = NP (Sect. A.4) and P8 s;;; 
pNP n coNP = NP n coNP (Sect. A.4). So by our NP s;;; (NP n coNP)/poly 
assumption, the hypothesis of equation 3.10 holds for B. (One can alterna­
tively see that, under our assumption, the hypothesis of equation 3.10 holds 
via noting that if SAT E B/poly then NP s;;; R~(B/poly) s;;; P8 /poly.) 

Thus, by equation 3.10, PH8 = NPNPB. However, since B E NP n coNP, 

PH8 = PH and NPNPB = NPNP_ Thus, NP s;;; (NP n coNP)/poly ===} 

PH= NPNP. 0 

3 We leave it as an exercise to the reader to verify this. The proof given in this book 
for the Karp-Lipton Theorem actually does not relativize, as it is based on the 
concrete set SAT. To relativize the proof cleanly one, however, may employ the 
same idea refocused onto an NP-complete set that, like SAT, is self-reducible, but 
that is also nicely relativizable. A good example of such a set is the set LA that we 
will now define. Let N1, N2, ... be a standard enumeration of NP (oracle) Turing 
machines index such that each machine Ni is i+ni time-bounded on every oracle. 
Such enumerations do to exist. Define LA= {Ni#x#pre#pad#pad I (N/'(x) has 
an accepting path such that pre is a prefix of the guess bits along that accepting 
path) and (Jprefixi+Jpadi = i+ni)}. Note that LA is not just ::;~A-complete for 
NPA but even is ::;~-complete for NPA, for each A. LA is also (2-disjunctively) 
self-reducible; the doubling of pad ensures that we decrease in length within the 
self-reduction. 
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We'll employ the following slightly stronger form, based on Theorem 1.17, 
of this result. 

Lemma 3.27 NP ~ (NP n coNP)/poly ==? PH= zppNP. 

We now can prove the main theorem. 

Proof of Theorem 3.20 Assume that all NPMV functions have NPSV 
refinements. Consider the multivalued function !sAT such that, for each x 
andy, 

set-fsAT(x,y) = {x,y} n SAT. 

This function is in NPMV, as it is computed by a nondeterministic 
polynomial-time machine that nondeterministically chooses x or y, and then 
nondeterministically chooses a variable assignment to the chosen formula, 
and then outputs the chosen formula if that assignment satisfies the formula. 

By hypothesis, all NPMV functions have NPSV refinements. Let 9SAT be 
an NPSV refinement of !sAT· Note that 9SAT is defined exactly if at least one 
of its arguments is in SAT, 9SAT is an NPSV function, and if at least one of 
9sAT's arguments is in SAT then 9SAT outputs an argument that is in SAT. 
Indeed, 9SAT is an NPSV-selector function for SAT. Thus, SATE NPSV-sel. 
Note that 

{L I {3B E NPSV-sel) [L ~~ B]} 

clearly equals NPSV-sel, as such an L has the NPSV-selector function fL 
defined, for all x and y, by: 

{ 
{x} if fB(g(x),g(y)) = g(x) 

set-fL(x,y) = {y} if !B(g(x),g(y)) = g(y) 
0 otherwise, 

where fB is the NPSV-selector function forB and g is the many-one reduction 
from L to B. Since each NP set ~~-reduces to SAT, it follows that NP ~ 
NPSV-sel n NP. So by Lemma 3.25 NP ~ (NP n coNP)/poly. Thus, by 
Lemma 3.27, PH = zppNP. 0 Theorem 3.20 

We now turn to proving the key lemma, Lemma 3.25. There is something 
a wee bit surprising about this lemma. In particular, one might expect only 
the potentially weaker4 (and also true) claim 

NPSV-sel n NP ~ (NPfpoly) n{coNP/poly). 

This is because sets in NPSV-sel have selector functions that are merely par­
tial, and partial functions usually confound (NP n coNP)fpoly-type proofs 
because to prove that a set is in (NP n coNP)fpoly requires a set that is 
NP n coNP-like for all advice strings-not just the correct advice string. 

4 Though clearly (NP n coNP)/poly ~ (NP /poly) n (coNP /poly), it remains an 
open question whether (NP n coNP)jpoly = (NP /poly) n (coNP /poly). 



62 3. The Tournament Divide and Conquer Technique 

The proof of Lemma 3.25 finesses this by combining the divide and conquer 
idea behind this chapter's GEM section with a trick: requiring membership 
proofs to be part of the advice. This, plus the fact that NPSV-selector func­
tions are only partially partial-the definition of selectivity requires them to 
be defined whenever at least one of their arguments is in the set for which 
they are selectors-suffices to prove the result. 

Proof of Lemma 3.25 Let L be an arbitrary set in NPSV-sel n NP. Let 
N L be an NPTM accepting L. Let f E NPSV be a selector function for L. 
Without loss of generality, assume 

(Vx,y) [set-f(x,y) = set-f(y,x)]. 

We specify an advice interpreter A E NP n coNP and an advice function g 
showing that L E (NP n coNP)/poly. 

A= {(x, ((a1, a2, ... , az), (w1, w2, ... , Wz1 ))) I 
z = z' and 
(Vi: 1::; i :<:; z) [wi is an accepting path of NL(ai)] and 
(3i : 1 ::; i ::; z) [x E set- f(x, ai) ]}. 

Clearly, A E NP. A is also in NP, as the following NPTM N accepts A. 
N accepts immediately if the input is syntactically ill-formed or if z # z'. 
Otherwise, N deterministically checks whether (Vi : 1 ::; i ::; z) [wi is an 
accepting path of NL(ai)] and N immediately accepts if this check fails. 
Otherwise, N rejects immediately if x E {a1, a2, ... , az}. Otherwise, note 
that {a1, a2, ... , az} ~ L, as N has seen and checked membership certificates 
for each ai. So, by the definition of an NPSV-selector function, for each i it 
holds that jjset- f(ai, x)ll = 1. N now nondeterministically guesses and checks 
the unique value of set- f(ai, x) for all i. The nondeterministic path(s) that 
correctly guess and check for all i which of x and ai is the unique element 
in set-f(ai,x) accept if and only if for all i it holds that set-f(ai,x) = {ai}· 
This completes our NP algorithm for A. 

Our advice function is as follows. At each length n, consider L=n. NPSV­
selector function f induces a tournament on L =n as follows. By the definition 
of an NPSV -selector function, for each a, b E L =n, a # b, exactly one of 
a E set- f(a, b) and b E set- f(a, b) holds, so f induces a tournament in the 
same fashion as in Sect. 3.1: for a, b E L=n, a # b, edge (a, b) will be in 
our tournament if and only if set-f(a,b) = {b}. By Theorem 3.1, there is a 
set Hn ~ En, IIHnll :<:; n, such that each element y of L=n either is in Hn 
or for some h E Hn satisfies set- f(y, h) = y. Our advice string for length n 
will be ((h1, h2, ... , hz), (w1, w2, ... , Wz)), where (h1, h2, ... , hz) =Hand 
each Wi is an accepting path of NL(hi)· This advice function is polynomially 
length-bounded. 

The set A and this advice function indeed do prove that L E 
(NP n coNP)/poly, as the interpreter A-with this advice function-will 
at each length n accept exactly those strings that are in Hn or that defeat 
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a string in Hn, and by Theorem 3.1 and the properties of NPSV-selector 
functions, this describes exactly L =n. 0 Lemma 3.25 

One must distinguish between Theorem 3.20 and the following seemingly 
similar question, which remains open. 

Open Question 3.28 Does UP = NP imply that the polynomial hierarchy 
collapses? 

The distinction between this question and Theorem 3.20 is that NPSV ma­
chines output at most one value, but this value may appear on many paths. 
Indeed, it is not known either that UP = NP if all NPMV functions have 
NPSV refinements, or that UP = NP only if all NPMV functions have NPSV 
refinements. 

3.4 OPEN ISSUE: Are the Semi-feasible Sets in 
P /linear? 

Are the semi-feasible sets contained in P /linear? Note that from Sects. 3.1 
and 3.2 we know 

P-sel ~ NP /linear n P /quadratic. 

Seeking the best of both worlds, we might wonder whether P-sel ~ P /linear 
can be established. 

We suspect that P-sel Sf: P /linear. However, to prove this might be chal­
lenging, as proving this implies Pi= NP. This is so since P-sel ~ NP/linear, 
so if P = NP then P-sel ~ P /linear. On the other hand, it remains plau­
sible that, via some clever algorithm, one can unconditionally prove that 
P-sel ~ P /linear. 

Open Question 3.29 P-sel ~ P /linear? 

3.5 Bibliographic Notes 

Section 3.1 is based on the work of Ko [Ko83]. In that paper, Ko establishes 
not just that P-sel ~ P /poly, but even that a slightly more general class, 
known as the weakly P-selective sets, is also contained in P /poly. Later work 
by Amir, Beigel, and Gasarch [ABGOO], Hemaspaandra et al. [HJRW97], and 
Ogihara [Ogi95b] shows that P /poly contains other broad generalizations of 
the semi-feasible sets. 

Section 3.2 is based on the work of Hemaspaandra and Torenvliet [HT96] 
and Hemaspaandra, Nasipak, and Parkins [HNP98], except Theorem 3.7, 
which is implicit in a proof of Hemaspaandra et al. [HNOS96a], and 
Theorem 3.9, a standard fact from graph theory first noted in the 



64 3. The Tournament Divide and Conquer Technique 

1950s ([Lan53], see also [Wes96]). An incomparable but related result has been 
proven by Burtschick and Lindner [BL97]. They prove that R~(n)-T(P-sel) ~ 
Ejlinear. 

Section 3.3 is based on the work of Hemaspaandra et al. [HNOS96b]. 
Book, Long, and Selman ([BLS84], see also [BLS85,Sel94]) first introduced 
the function classes NPSV and NPMV (Definition 3.18). Refinements (Def­
inition 3.19) have been carefully studied by Selman [Sel94]. Lemma 3.23 is 
also due to Selman [Sel94]. Semi-feasibility (selectivity) was extended to non­
deterministic total functions by Hemaspaandra et al. [HHN+95], and was ex­
tended to nondeterministic partial functions (Definition 3.24) by Hemaspaan­
dra et al. [HNOS96b]. Wang [Wan95] has studied extending semi-feasibility 
to counting classes. Though in this chapter we use "semi-feasible" as a syn­
onym for "P-selective," we mention that in the literature "semi-feasible" 
is often used in a broader sense that encompasses such nondeterministic 
and other analogs of P-selectivity. Lemma 3.26 was first stated, with some­
what complex direct proofs, by Abadi, Feigenbaum, and Kilian [AFK89] and 
Kamper [Kam91]; the fact that it is implicit in the original Karp-Lipton re­
sult [KL80] was noted by Hemaspaandra et al. [HHN+95], whose proof we 
follow here. 

Lemma 3.27 is due to Kobler and Watanabe [KW98]. Related to the 
work of Cai mentioned in the Bibliographic Notes of Chap. 1, from the 
hypothesis of Lemma 3.27 one can even conclude that (S~)NP n coNP = 
PH [CCH001], which in light of the fact that (S~)NP n coNP ~ zppNP 
([Cai01], see also [CCH001]), is at least as strong as Lemma 3.27. 

Theorem 3.22, Cook's Theorem, is due to Cook [Coo71], though it is 
stated here in a relatively strong form. Levin [Lev75] independently dis­
covered Cook's Theorem, and thus it sometimes is referred to in the lit­
erature as the Cook-Levin Theorem or, in light of the contributions of 
Karp [Kar72], as the Cook-Karp-Levin Theorem. The interesting issue of 
whether a Theorem 3.20-like result holds for FP~P remains open. That is, 
it is not known whether: If every NPMV function has a refinement com­
putable via polynomial-time truth-table access to NP, then the polynomial 
hierarchy collapses. It is known that the statement "every NPMV function 
has a refinement computable via polynomial-time truth-table access to NP" 
fails relative to some oracles ([IT89], see [BT96a]) yet holds relative to a 
random oracle ([WT93] and the proof is based on the Isolation Technique of 
Chap. 4). Ogihara [Ogi96a] has shown that if every NPMV function has are­
finement computable via polynomial-time sublinear-truth-table access to NP, 
then the polynomial hierarchy collapses. The issue of footnote 4, i.e., whether 
(NP n coNP)/poly equals (NP /poly) n (coNP /poly), has been studied by 
Gavalda and Balcazar ([GB91], see also [CHW99]). Though the question re­
mains open, Gavalda and Balcazar do give a structural consequence that 
would follow from this equality. 
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Theorem 3.20, which is due to Hemaspaandra et al. [HNOS96b], states 
that the polynomial hierarchy collapses if each NPMV function has an NPSV 
refinement. Can more be said? In fact, Hemaspaandra et al. [HNOS96b] 
prove-as implicitly does the proof in this chapter-the stronger result that 
the polynomial hierarchy collapses if each NP2V function has an NPSV re­
finement (where the k in NPkV means "at most k distinct values on any 
input"). Other papers have continued to explore what refinement assump­
tions imply polynomial hierarchy collapses. In particular, Ogihara [Ogi96a] 
proved that if NPMV functions have NPFewV refinements then the polyno­
mial hierarchy collapses, where NPFewV (a class first studied, under different 
names, by Book, Long, and Selman [BLS84], see also [BLS85,Sel94]) indicates 
the class of NPMV functions such that for some polynomial q it holds that 
(Yx) [JJset-f(x)JJ ~ q(JxJ)]. Naik et al. [NRRS98] proved, for each k, that if 
all NP(k + l)V functions have NPkV refinements then the polynomial hier­
archy collapses. Taking an even broader view, Hemaspaandra, Ogihara, and 
Wechsung [HOWOO] prove a sufficient condition for when numbers of solu­
tions of NP functions can be reduced, and Kosub [KosOO] has shown that, for 
finite "solution types," their condition in fact describes every type of solu­
tion reduction that holds in all relativized worlds. Hemaspaandra, Ogihara, 
and Wechsung [HOWOO] also put these collapse results into an interesting 
perspective via proving general lowness results implying the collapses. 





4. The Isolation Technique 

Brother: And the Lord spake, saying, "First shalt thou take out the 
Holy Pin. Then, shalt thou count to three, no more, no less. Three 
shalt be the number thou shalt count, and the number of the counting 
shalt be three. Four shalt thou not count, nor either count thou two, 
excepting that thou then proceed to three. Five is right out. Once 
the number three, being the third number, be reached, then lobbest 
thou thy Holy Hand Grenade of Antioch towards thy foe, who being 
naughty in my sight, shall snuff it. " 
Maynard: Amen. 
All: Amen. 
Arthur: Right! One . .. two . .. five! 

-Monty Python and the Holy Gmil 

Counting is cumbersome and sometimes painful. Studying NP would in­
deed be far simpler if all NP languages were recognized by NP machines 
having at most one accepting computation path, that is, if NP =UP. The 
question of whether NP = UP is a nagging open issue in complexity theory. 
There is evidence that standard proof techniques can settle this question 
neither affirmatively nor negatively. However, surprisingly, with the aid of 
randomness we will relate NP to the problem of detecting unique solutions. 
In particular, we can reduce, with high probability, the entire collection of 
accepting computation paths of an NP machine to a single path, provided 
that initially there is at least one accepting computation path. We call such 
a reduction method an isolation technique. 

In this chapter we present one such technique. Based on this technique, 
we prove two surprising results relating NP and NL to counting complexity 
classes: PP is polynomial-time Thring hard for the polynomial hierarchy, and 
NL and UL are equal in the presence of polynomially length-bounded advice 
functions. 

The organization of this chapter is as follows. In Sect. 4.1, we present 
the isolation technique, and show that NP is "randomized reducible" to the 
problem of detecting unique solutions. More precisely, for each language L 
in NP, there exist a randomized polynomial-time algorithm F and an NP­
decision problem A, such that for every string x, if xis a member of L, then 
with high probability the output of F on input x is an instance of A with a 
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unique solution, and if xis not a member of L, then with probability ~ 
the output of :F on x is an instance of A with zero solutions or more than 
one solution. 

In Sect. 4.2, we apply the isolation technique for NP to prove Toda's 
Theorem, PH ~ pPP, and we also establish a well-known extension of Toda's 
Theorem. In Sect. 4.3, we prove that NL/poly = UL/poly. 

4.1 GEM: Isolating a Unique Solution 

The isolation technique we use in this chapter is often called the Isolation 
Lemma. 

4.1.1 The Isolation Lemma 

A weight function over a finite set U is a mapping from U to the set of positive 
integers. We naturally extend any weight function over U to one on the power 
set 2u as follows. For each S ~ U, the weight of S with respect to a weight 
function W, denoted by W(S), is ExeS W(x). Let :F be a nonempty family 
of nonempty subsets of U. Call a weight function W good for :F if there is 
exactly one minimum-weight set in :F with respect to W. Call W bad for :F 
otherwise. 

Lemma 4.1 (The Isolation Lemma) Let U be a finite set. Let 
:F1, ... ,:Fm be families of nonempty subsets over U, let D = IIUII, let 
R > mD, and let Z be the set of all weight functions whose weights are at 
most R. Let a, 0 <a< 1, be such that a> mf. Then more than (1-a)IIZII 
functions in Z are good for all of :F1, . . . , :F m. 

Proof Let :F be one family. For a weight function W E Z, let Min Weightw 
denote the minimum weight of :F with respect to W, i.e., MinWeightw = 
min{W(S) IS E :F}, and let MinWeightSetw denote the set of all minimum­
weight sets of :F with respect toW, i.e., Min WeightSetw = { S E :F I W(S) = 
Min Weightw}. For x E U, we say that the minimum-weight sets of :F with 
respect to W are unambiguous about inclusion of x if there exist some S, S' E 
Min WeightSetw such that x E ( S \ S') U ( S' \ S). 

Recall that a weight function WE Z is bad for :F if IIMinWeightSetwll ~ 
2. Suppose that W is bad for :F. Let S and S' be two distinct members of 
Min WeightSetw. Since S =/:- S' there exists some x E U such that x belongs 
to the symmetric difference of S and S', i.e., (S \ S') U (S' \ S). Thus, the 
minimum-weight sets of :F with respect to W are ambiguous about some 
x E U. Conversely, if the minimum-weight sets of :F with respect to W are 
ambiguous about some x E U, then there is more than one minimum-weight 
sets of :F with respect toW, soW is bad. Thus, W is bad if and only if there 
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is some x E U such that the minimum-weight sets of :F with respect to W 
are ambiguous about inclusion of x. 

Let x E U be fixed. We count the number of weight functions W E Z 
such that the minimum-weight sets of :F with respect to W are ambigu­
ous about inclusion of x. Let Yl, ... ,YD-1 be an enumeration of U- {x} 
and v1, ... , VD-1 E {1, ... , R}. Let A be the set of all weight functions 
W such that for all i, 1 :::; i :::; D - 1, W(yi) = vi. Suppose that there 
is a weight function W in A such that the minimum-weight sets of :F 
with respect to W are ambiguous about inclusion of x. Let W' be an ar­
bitrary element in A\ {W} and 8 = W'(x) - W(x). We claim that the 
minimum-weight sets of :F with respect to W' are unambiguous about in­
clusion of x. To see why, first suppose that 8 > 0. Then, for all S E :F, 
W'(S) = W(S) + 8 if x E S and W'(S) = W(S) otherwise. In par­
ticular, for all S E MinWeightSetw, W'(S) = W(S) + 8 if x E S and 
W'(S) = W(S) otherwise. This implies that MinWeightw' = MinWeightw 
and MinWeightSetw, = {S E MinWeightSetw I x f/. S}. Next suppose that 
8 < 0. Then, for all S E :F, W'(S) = W(S) -181 if xES and W'(S) = W(S) 
otherwise. In particular, for all S E MinWeightSetw, W'(S) = W(S) - 181 
if x E S and W'(S) = W(S) otherwise. This implies that MinWeightw, = 
MinWeightw -181 and MinWeightSetw' = {S E MinWeightSetw I xES}. 
Thus, if 8 > 0 then all minimum-weight sets of :F with respect to W' con­
tain s, and if 8 < 0 then no minimum-weight sets of :F with respect to W' 
contain s. Hence, for all W' E A\ {W} are the minimum-weight sets of :F 
with respect to W' are unambiguous about inclusion of x. This implies that 
there is at most one weight function WE A such that the minimum-weight 
sets of :F with respect to W are ambiguous about inclusion of x. For each i, 
1 .:5 i :::; D- 1, there are R choices for Vi· So, there are at most RD-l weight 
functions W E Z such that the minimum-weight sets of :F with respect to 
W are ambiguous about inclusion of x. There are RD weight functions in 
Z, there are m choices for :F, and there are D choices for x. Thus, the pro­
portion of {W E Z I for some i, 1 :5 i :5 m, W is bad for :Fi} is at most 

mv:;- 1 = mf <a. So, the proportion of {WE Z I for all i, 1:::; i .:5 m, W 
is good for :Fi} is more than 1 - a. 0 

4.1.2 NP Is Randomized Reducible to US 

US is the class of languages L for which there exists a nondeterministic 
polynomial-time Turing machine N such that, for every x E ~·, x E L if 
and only if N on input x has exactly one accepting computation path (see 
Sect. A.9). USAT is the set of all boolean formulas having exactly one satis­
fying assignment and that USAT is complete for US under polynomial-time 
many-one reductions (see Sect. A.9). 
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We say that a language A is randomized reducible to a language B, de­
noted by A~randomizedB, if there exist a probabilistic polynomial-time Turing 
machine M and a polynomial p such that, for every x E E*, 

• if x E A, then the probability that M on input x outputs a member of B 
is at least p(l~l), and 

• if x E A, then the probability that M on input x outputs a member of B 
is zero. 

Using the Isolation Lemma, one can show that every language in NP is ran­
domized reducible to USAT. 

Theorem 4.2 (VL E NP)[L~randomizedUSAT]. 

To prove this theorem and other results in this chapter, we will use a 
pairing function with a special property regarding the encoding length. For 
binary strings x, y, ... , z, we write x#y# · · · #z to denote the string con­
structed from this expression by replacing each occurrence of 0, 1, and # by 
00, 01, and 11, respectively. More precisely, the encoding is the binary string 
of the form 

Note that this pairing function satisfies the following conditions: 

• Ifx1,x2, ... ,xk andyl,Y2, ... ,Yk satisfy lxll+lx2l+ ··· +ixki = IY1I+ 
IY2I + · · · + iYki, then lx1#x2# · · · #xki = IY1#Y2# · · · #Yki· 

• For every x, y, ... , z E E*, we can recover x, y, ... , z from x#y# · · · #z 
in time polynomial in lx#y# · · · #zj. 

Proof of Theorem 4.2 Let L be a language in NP. Let p be a polynomial 
and A a language in P such that, for all x E E*, 

xEL {=::::} (3yEEP(IxD)[(x,y)EA]. 

We may assume that for all n 2: 0, p(n) ~ 1, and that for all x, (x, OP(Ixl)) rf. A. 
For each n ~ 1, let J.L(n) be the smallest power of 2 that is greater than or 
equal to p(n). Define 

A' = { (x, y) IIYI = J.L(ixi) 1\ 

(3u, v)[lul = p(jxi) 1\ uv = y 1\ (x, y) E A]}. 

Then A' E P and for every x E E*, 

x E L {=::::} (3y E E~t(lxl)) [(x,y) E A']. 

Since for all x, (x, OP(Ixl)) rf. A, for all x, (x, o~t(lxl)) rf. A'. 
For each n 2: 1, we can specify each string y E E~t(n) by bit positions at 

which y has a 1; i.e., y can be specified via the set {iII$. i ~ p(n) 1\ Yi = 1}. 
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For each n;::: 1, let U(n) = {1, ... , J.t(n)}. Then for every n ;::: 1 the power 
set of U(n) represents E~'(n); i.e., each element in E~'(n) can be viewed as 
a subset of U(n). For each x E E*, let :F(x) be the set of all y ~ U(ixi) 
such that (x, y) E A'. By our assumption, for every x E E*, the empty set 
(which corresponds to the string Ol'(lxl>) is not in :F(x). For each n ;::: 1, let 
Z(n) be the family of all the weight functions that assign to each number i, 
1 ~ i ~ p(n), a positive weight of at most 4~-t(lxl). 

Let x be an arbitrary string. Apply Lemma 4.1 with m = 1, U = U(ixi), 
Z = Z(ixi), :FI = :F(x), and R = 4~-t(lxl). Then, 

• if x E L, then the fraction of the weight functions in Z(lxl) with respect to 
which :F(x) has exactly one minimum-weight element is more than ~' and 

• if x f/. L, then the fraction of the weight functions in Z(lxl) with respect 
to which :F(x) has exactly one minimum-weight element is 0. 

For every x E E*, every W E Z(lxl), and every i, 1 ~ i ~ J.t(ixi), W(i) ~ 
4~-t(lxl). Thus, for every x E E*, every W E Z(lxl), and every y ~ U(lxi), 
W(y) ~ 4~-t2 (1xl). Define 

B = {(x, W,j) I WE Z(lxl) 1\ 1 ~ j ~ 4~-t2 (lxl) 1\ 

II{Y E :F(x) I W(y) = j 1\ (x,y) E A'}ll = 1}, 

where W is encoded as W(l)# · · · #W(~-t(ixi)). Then B E US, which 
can be witnessed by the nondeterministic Turing machine M that on 
input u behaves as follows: First, M checks whether u is of the form 
(x,wi#w2# · · · #wl'(lxl>•j) for some j, 1 ~ j ~ 4~-t2 (lxl), and some 
WI,·.·· ,wl'(lxl>• 1 ~WI,··· ,wl'(lxl) ~ 4~-t(lxl). If the check fails, M immedi­
ately rejects u. Otherwise, using precisely ~-t(lxl) nondeterministic moves, M 
selects y E El'(lxl>; then M accepts u if and only if W(y) = j and (x,y) E A, 
where W is the weight function expressed by the string WI #w2# · · · #wl'(ixl), 
i.e., for all i, 1 ~ i ~ J.t(ixi), W(i) = Wi· Since BE US, there is a polynomial­
time many-one reduction g from B to USAT. 

By the above probability analysis, for every x E E*, 

• if x E L, the proportion of W E Z(lxl) such that for some j, 1 ~ j ~ 
4~-t2 (1xl), (x, W,j) E B is at least ~. and 

• if x f/. L, the proportion of W E Z(lxl) such that for some j, 1 ~ j ~ 
4~-t2 (lxl), (x, W,j) E B is 0. 

Let N be a probabilistic Turing machine that, on input x E E*, behaves as 
follows: 

Step 1 N picks a weight function W as follows: For each i, 1 ~ i ~ 
~-t(ixi), N uniformly, randomly selects a binary string ui having length 
2+log ~-t(lxl), then sets the value of W(i) to the binary integer lui, where 
ui is the string ui with its leading Os omitted. 

Step 2 N picks j, 1 ~ j ~ 4~-t2 (1xl), as follows: N selects a binary string 
v having length 2 + 2log ~-t(lxl) uniformly at random. Then N sets j to 
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the integer whose binary encoding is 1v, where v is the string v with its 
leading Os omitted. 

Step 3 N asks its oracle whether g((x, W,j)) E USAT. If the query is 
answered positively, then N accepts x. Otherwise, it rejects x. 

Let x E E* be an input to NUSAT. Suppose x E L. In Step 1, NUSAT on input 
x selects with probability at least ~ a weight function W such that for some 
j, 1 $ j $ 4J.L2 (1xl), (x, W,j) E B. Furthermore, in Step 2, NUsAT on input x 
selects each j, 1 $ j $ 4J.L2 (1xl), with probability 4~•h.,J). So, the probability 

that NUSAT on input x generates a query (x, W, j) that belongs to B is at 
least 16i(ixl). Define q(n) = 22p2(n). Since for all n ~ 1, J.L(n) is the smallest 

power of 2 that is greater than or equal to p(n), for all n ~ 1, 2p(n) ~ J.L(n). 
So, 16i(lxl) ~ 64pl(lxl) ~ 22p,I(Ixl) = ~·Thus, the probability that NUsAT 

on input x accepts is at least q(I~D. On the other hand, suppose x fj. L. Then, 

NUSAT on x rejects with probability 1. Thus, L$randomized USAT. 
0 Theorem 4.2 

In the proof above, define 

B' = {(x, W,j) I x E E* 1\1 $ j $ 4J.L2 (Ixl) 1\ WE Z(lxl) 1\ 

II{Y E F(x) I W(y) = j 1\ (x, y) E A'} II is an odd number}. 

Then B' E $P. Also, in Step 3 of the program of machine N, replace the 
query string by (x, W,j). Call this new machine N. For every x E L, the 
same probability analysis holds because 1 is an odd number, so N B' on 
input x accepts with probability at least q(I~D. For every x E L, iVB' on 

input x rejects with probability 1 because F(x) is empty and 0 is an even 
number. This implies that L$randomizedB'. Furthermore, define T to be the 
probabilistic oracle Turing machine that on input x, sequentially execute 
independent simulation of N on X q(lxl) times, and then accepts if n in at 
least one of the q(lxl) simulations and rejects otherwise. For every x E L, 
the probability that TB' on input x rejects is at most (1 - q(I~D )9(lxl). Since 

q(n) = 22p2 (n) and for all n ~ 0, p(n) ~ 1, for all n ~ 0, q(n) ~ 22. So, the 
probability that TB' on input x rejects is at most (1 - i2)22 < !· On the 

other hand, for every x E L, the probability that TB' on input x accepts is 
0. Thus, we have proven the following theorem. 

Theorem 4.3 NP ~ RPaw ~ BPPEBP. 

4.2 Toda's Theorem: PH C pPP 

4.2.1 PH and BPP$P 

By Theorem 4.3, NP ~ BPPEBP. Since pBPPA = BPPA for every oracle A 
(see Proposition 4.6 below), it h<Ms that 6.~ ~ BPpEBP. 
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Pause to Ponder 4.4 Can we extend this inclusion in BppEilP to even 
higher levels of the polynomial hierarchy than 6.~? 

In this section we show that indeed we can. 

Theorem 4.5 For every k 2: 1, E~ ~ BppEBP. Hence, PH ~ BPPEBP. 

The proof of Theorem 4.5 is by induction on k. The base case is, of course, 
Theorem 4.3. For the induction step, we establish, for each k 2: 1, that 
E~+I ~ BPPEBP by combining Theorem 4.3 and our inductive hypothesis, 
E~ ~ BPPEBP, in the following three steps: 

1. (Apply Theorem 4.3 to the base machine) The proof of 
Theorem 4.3 is relativizable, so, for every oracle A, NPA ~ BPPEBPA. 
Noting that E~+I = NPr::, we have the following, where the first inclu­
sion is via the inductively true E~ ~ BPPEBP and the second is via using 
relativized Theorem 4.3 as the oracle ranges over all BPPEBP sets. 

mP pBPPmP 
EP c NPBPP c BPPEB 
k+l- -

2. (Swap BPP and EBP in the middle) By Lemma 4.9 below, 
E9pBPPA ~ BPPEBPA, for every oracle A. So, 

mPmP 
EP c BPPBPP 
k+I-

3. (Collapse BPPBPP to BPP, and EePEBP to EeP) By part 2 of 

Proposition 4.6 below, BPPBPPA = BPPA for every oracle A. By part 2 
of Proposition 4.8 below, E9pEBP = (BP. So, 

E~+I ~ BPPEBP. 

We will first prove the two collapse results in Step 3, together with character­
izations of BPP and (BP. The characterizations will be useful when we prove 
the "swapping" property in Step 2. 

The results we prove in the rest of the section hold relative to any oracle. 
For simplicity, we prove only their nonrelativized versions. 

Proposition 4.6 

1. (The error probability of BPP computation can be expo­
nentially reduced without sacrificing much computation time) 
For every L E BPP and every polynomial r, there exist a polynomial p 
and a language A E P such that, for every x E E*, 
a) if x E L, then the proportion of y E EP(Ixl) such that x#y belongs to 

A is at least 1 - 2-r(lxl), and 
b) if x ¢ L, then the proportion of y E Ep(lxl) such that x#y belongs to 

A is at most 2-r(lxl). 
2. The BPP hierarchy collapses; i.e., BPP = pBPP = BPPBPP = 

pBPPBPP = BPPBppBPP = 0 0 0 0 
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Proof We prove first part 1 of the proposition. Let L E BPP via prob­
abilistic Turing machine M. That is, for every x E E*, M accepts x with 
probability at least ~ if x E L and with probability at most ~ otherwise. Let 
r be any polynomial and let q(n) = 6r(n)+l. Let N be a probabilistic Turing 
machine that, on input x, simulates M on input x exactly q(lxl) times, and 
accepts then if and only if M accepts in a majority of the simulations. Let 
n 2::: 1 and x E En. Suppose that x E L. Let a be the probability that M on 
input x accepts and e =a-~· Note that e 2::: ~· The probability that Non 
input x rejects is at most 

~ 

= 2q(n) ( ~ - e2) 2 

= (1- 4e2)~. 

This is at most (~).i!;l :5 (~) 3r(n) < 2-r(n). Similarly, if x ft L, then the 
probability that N on x accepts is at most 2-r(jxJ). 

We view the randomized moves of N as being directed by tossing of coins. 
More precisely, at each randomized step of N, there are two possible choices 
and N selects one of the two by tossing a fair coin, the "head" for on move 
and the "tail" for the other. Then the coin tosses of N can be "normalized" 
in the sense that there is a polynomial p such that, for every x E E*, N on x 
tosses exactly p(lxl) coins. Namely, the machine keeps track of the number of 
coin tosses it makes and, at the end of computation, if the number is less than 
p(lxl), the machine makes dummy coin tosses to make the total number of 
coin tosses equal to p(lxl). Pick such a p and let A be the set of all x#y with 
y E EP(JxJ) and such that N on x with coin tosses y accepts. Clearly, A E P 
and, for every x E E*, the proportion of y E EP(JxJ) such that x#y E A is 
equal to the probability that Non x accepts. So, conditions 1a and 1b both 
hold. 

We now prove part 2 of the proposition. Let L E BPPA with A E BPP. 
The language L is defined in terms of two probabilistic polynomial-time Tur-
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ing machines, one for the base computation and the other for the oracle. 
Intuitively, we will show below that the two machines can be combined into 
a single probabilistic polynomial-time machine without creating much error. 

Note that Part 1 in the above holds relative to any oracle. Let r(n) be 
an arbitrary strictly increasing polynomial. Then there is a polynomial-time 
probabilistic oracle Thring machine D such that, for every x E E*, DA on 
input x decides the membership of x in L correctly with probability at least 
1 - 2-r(lxl). We may assume that there exists a polynomial p such that, for 
every x E E* and every oracle Z, DZ on input x makes at most p(lxl) queries. 
Also, we may assume that each query of D on x is at least as long as the 
input. We replace the oracle A by A = { x#y I y E A} and replace D by a new 
machine D that, on input x E E*, simulates D on input x by substituting for 
each query y to A the a query x#y to A. By part 1, there is a polynomial­
time probabilistic Thring machine N such that, for every u E E*, N on u 
correctly decides the membership of u in A with probability 1- 2-r(lul). Let 
M be a probabilistic Thring machine that, on input x E E*, simulates D on 
input x and when D makes a query, say u, to the oracle, simulates N on 
input u to decide the oracle answer. For every x E E*, Don input x makes 
at most p(lxl) queries, and for every query u of D on input x, N on input 
u makes an error with probability at most 2-r(lul) :5 2-r(lxl) since lui ~ lxl 
and r is an increasing polynomial. So, for every X E E*, the probability of 
the paths on which the computation of M differs from that of tJA. is at most 
p(lxl)2-r(lxl}. Since DA makes an error with probability at most 2-r(lxl), the 
probability that M makes an error is at most (p(lxl) + 1)2-r(lxl). Since r 
is an increasing polynomial, for x sufficiently large, the error probability of 
M on xis smaller than t· Hence L E BPP. Since BPPBPP = BPP, clearly 

BPP8 ppBPP = BPPBPP = BPP via the application of this fact and, more 
generally, the BPP hierarchy collapses to BPP by induction. D 

For a class C, Cjpoly is the class of all languages L for which there exist 
an A E C and a polynomially length-bounded function h : E* - E* such 
that, for every x E E*, x E L if and only if (x, h(Oixl)) E A (see Sect. A.6). 
We have the following corollary. 

Corollary 4.7 BPP ~ P/poly. 

Proof Let L E BPP. Let r(n) = n + 1. By part 1 of Proposition 4.6, there 
exist a polynomial p and A E P such that, for every x E E*, the proportion 
of y E Ep(lxl) for which the equivalence, 

x E L {:::::::} (x, y) E A, 

does not hold is at most 2-(lxi+I). Let n ~ 1. The proportion of y E Ep(n) 
such that II { x E En I X E L {:::::::} (x, y) E A does not hold } II ~ 1 is at most 
11Enll2-(n+I) = 2n2-(n+I) < 1. So, there is some y E EP(n) such that, for 
every X E En, X E L {:::::::} (x, y) EA. Let h(On) be the smallest such y. Then, 
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for every x E En, x E L if and only if (x,h(On)) EA. Since lh(On)l = p(n), 
this implies that L E P /poly. 0 

Proposition 4.8 

1. For every L E EBP, there exist a polynomial p and a language A E P such 
that, for every x E E*, x E L if and only if ll{y E EP(Ixl) I x#y E A}ll is 
odd. 

2. EBpEBP = pEBP = EBP. 

Proof To prove part 1, let L be in EBP via a nondeterministic polynomial­
time Turing machine M. That is, for every x E E*, 

x E L if and only if #accM(x) is odd. 

Let p be a polynomial bounding the runtime of M. Define A to be the set 
of all x#y, IYI = p(lxl), such that y is an accepting computation path of M 
on x (that is, a sequence z of bits representing nondeterministic moves for 
M(x) leading to acceptance, on the path it specifies, on or after the move 
specified by the lzlth bit of z but before any further nondeterministic move 
is attempted) followed by an appropriate number of zeros. Clearly, A E P 
and, for every x E E*, the number of y, IYI = p(lxl), such that x#y E A is 
#accM(x). 

To prove part 2, let L be an arbitrary language in EBPEBP. There exist a 
nondeterministic polynomial-time oracle Turing machine M and a language 
B E EBP such that, for all x, x E L if and only if the number of accepting 
computation paths of M 8 on input xis an odd number. We will construct 
a nondeterministic polynomial-time Turing machine M' witnessing that L E 
EBP. Let N 1 be a nondeterministic Turing machine witnessing that BE EBP. 
As we will see in Proposition 9.3, #Pis closed under addition. So, the function 
1 + #accN0 thus belongs to #P. Let N1 be such that #accN1 = 1 + #accN0 • 

The function #accN1 flips the parity of #accN0 , in the sense that for all x, 
#ace N1 ( x) is an odd number if and only if #ace No ( x) is an even number. 
Thus, N 1 witnesses that B E EBP. Let M' be the nondeterministic Turing 
machine that, on input x, simulates M on x but each time M makes a query 
to the oracle, instead of making a query M' does the following two steps. 
(1) M' guesses a bit, b E {0, 1}, about the oracle answer (where b = 0 is 
interpreted as 'Yes' and b = 1 as 'No') and a path of simulation of Nb (i.e., 
No or N1. depending on the choice of b) on input w, where w is the query 
string of M. (2) Then M' returns to its simulation of M on input x with the 
guessed oracle answer. The machine M' accepts along a given path if and 
only if all the simulations of the machines N0 , N1, and M along that path 
accepted. We claim that M' witnesses that L E EBP. 

For each accepting computation path 7l' of M' on x, let r(7r) be the part 
of 7l' corresponding to the computation of M on x and the guesses about 
the queries. That is, r(7r) is 7l' with all simulations of N0 and N1 removed. 
Only the guessed values of b remain encoded in 7!'. Let t = r(7r) for some 
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1r. How many accepting computation paths have t as their T-value? Let 
y1 , ... , Ym be the query strings along 7r and b1 , ... , bm E {0, 1} be the 
guessed values encoded in 1r. Then the number of such paths is the product 
of #accN&1 (yi), ... , #accN&.,. (Ym)· This number is odd if and only if all 'the 
guesses about the queries are correct. Thus, the parity of the number of ac­
cepting computation paths of M' on x equals that of the number of accepting 
computation paths of M on x relative to B. Hence, L E EBP. 0 

Lemma 4.9 EBPBPP ~ BPPEBP. 

Proof Let L E EBPBPP. We show that L E BPPEBP. By part 1 of Propo­
sition 4.8, there exist a polynomial p and A E pBPP such that, for every 
X E E*, 

X E L {===} II{Y E EP(Ixl) I x#y E A}ll is odd. 

Furthermore, by part 2 of Proposition 4.6, pBPP = BPP, so A E BPP. Then, 
by part 1 of Proposition 4.6, for every polynomial r, there exist a polynomial 
p and B E P such that, for every u E E*, 

the proportion of v E EP(Iul) such that u#v E B is at least 
1 - 2-r(lul) if u E A and at most 2-r(lul) otherwise. 

(4.1) 

Let r(n) = p(n) + 2. Lets be the polynomial such that, for every x E E* and 
y E EP(Ixl), s(lxl) = q(lx#yl). Define (recall that # is the specific function 
defined in Sect. 4.1.2) 

C = {x#v I v E Es(lxl) 1\ 

ll{y E EP(Ixl) I (x#y)#v E B}ll is an odd number}. 

Clearly, C E EBP. For each x E E*, let 

a(x) = ll{y E EP(Ixl) I x#y E A}ll 

and, for each x E E* and v E Es(lxl), let 

c(x#v) = ll{y E EP(Ixl) I (x#y)#v E C}ll· 

By equation 4.1, for every x E E*, the proportion of v E Es(lxl) satisfying the 
condition 

(Vy E EP(Ixl)) [x#y E A {===} (x#y)#v E B] 

is at least 1-2P(Ixl)2-r(s(lxl)) > 1-2P(Ixl)-p(s(lxl))-2 > 1-T 2 = ~ and thus 
- - 4' 

the proportion of v E Es(lxl) such that a(x) = c(x#v) is at least ~· Thus, for 
every x E E*, for at least ~ of v E Es(lxl), a(x) is odd if and only if c(x#v) 
is odd. Note that a(x) is odd if and only if x E L and that c(x#v) is odd if 
and only if x#v E C. So, for every x E E*, for at least ~ of v E Es(lxl), x E L 
if and only if x#v E C. Thus, L E BPpEBP. 

Intuitively, the above argument can be explained as follows: We are look­
ing at a table whose rows are y's and whose columns are v's, where the y's 
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correspond to the nondeterministic guesses for the "parity" computation and 
the v's correspond to the random guesses used in the "BPP" computation 
(for testing whether a given x#y belongs to A). For each y and z, we place a 
letter "X" in the (y, v) entry of the table exactly if the randomized guesses v 
for the BPP computation on input x#y lead to an error, i.e., either (x#y E A 
and (x#y)#v fl. B) or (x#y fl. A and (x#y)#v E B). For each column v 
with no "X" the number of y such that (x#y)#v E B is equal to the number 
of y such that x#y E A. So, for such column v, x E L if and only if the 
number of y such that (x#y)#v E B is odd. In each row, the fraction of 
the entries having an "X" is at most 2-r(s(lxl)). There are only 2P(Ixl) rows. 
Thus the fraction of the columns with an "X" is at most 2-r(s(lxl))+p(lxl). As 
equation 4.1 holds for any polynomial r, we can select r so that this amount 
is less than ±· So, transpose the table: We'll pick v first, then pick y. Then 
for more than ~ of v it holds that x E L if and only if the number of y such 
that (x#y)#v E B is odd. Hence we can switch the "BPP" part and the 
"parity" part. 0 

This concludes the proof of Theorem 4.5. We now show below some im­
mediate corollaries to Theorem 4.5. Since BPP ~ P /~oly by Corollary 4.7 
and pEilP = EBP by part 2 of Proposition 4.8, BPPEil ~ EBP /poly. Thus, 
PH~ ESP /poly. 

Corollary 4.10 PH~ EBP/poly. 

By Lemma 4.9, EBPBPP ~ BppEilP. By relativizing EBP by PH and then 
applying Theorem 4.5, we obtain the following result. 

Corollary 4.11 ESPPH ~ BppEilP ~ ESP /poly. 

4.2.2 PP Is Hard for the Polynomial Hierarchy 

We now prove Toda's Theorem. 

Theorem 4.12 (Toda's Theorem) PH ~ p#P[ll. 

Corollary 4.13 PH ~ p#P = pPP. 

Theorem 4.12, Toda's Theorem, follows immediately from Theorem 4.5 
in light of the following lemma. 

Lemma 4.14 ppEilP ~ p#P[ll. In particular, BPPEilP ~ p#P[ll. 

Proof of Lemma 4.14 Let L E ppE!lP. There exist a polynomial p, a 
function f E FP, and a language A E pE!lP = EBP (by Proposition 4.8) such 
that, for every x E E*, 

x E L-<===> II{Y E EP(Ixl) I x#y E A}ll;::::. f(x). (4.2) 
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Let M be a nondeterministic polynomial-time Turing machine witnessing 
that A E EBP. So, for every x E E*, x E A if and only if #accM(x) is odd. 
Define so(z) = z and, for each i;:::: 1, define polynomial si(z) with coefficients 
inN by 

si(z) = 3(si-t(z))4 + 4(si-t(z))3 . (4.3) 

Claim 4.15 For every i;:::: 0 and every zEN, if z is even, then si(z) is a 

multiple of 22', and if z is odd, then si(z) + 1 is a multiple of 22'. 

Proof of Claim 4.15 The proof is by induction on i. The claim trivially 
holds for the base case i = 0. For the induction step, let i = i 0 for some 
i 0 ;:::: 1 and suppose that the claim holds for values of i that are less than 
i 0 and greater than or equal to 0. Suppose that z is even. By the inductive 
hypothesis, si_ 1(z) is divisible by 22'- 1

• Since si(z) is divisible by (si-t(z))2 

and 22' = (22'-1)2, si(z) is divisible by 22'. Thus, the claim holds for even z. 

Suppose that z is odd. By the inductive hypothesis, si_ 1(z) = m22'- 1 -1 for 
some m E N. So, 

si(z) = 3(m22,_1 -1)4 + 4(m22,_1 -1)3 

= 3(m424(2'-1)- 4m323(2'-1) + 6m222(2'-1)- 4m22'-1 + 1) 

+ 4(m323(2'-1)- 3m222(2'-1) + 3m22'-1 -1) 

= 3m424(2'-1)- 8m323(2'-1) + 6m222(2'-1) -1 

= 22' (3m422'- 8m322,_1 +6m2) -1. 

Thus, the claim holds for odd z also. 0 Claim 4.15 
For each x E E*, let ix = flogp(lxl) + 11 and define rx(z) = (s2.,(z))2 

and g(x) = rx(#accM(x)). For every x E E*, rx(z) is a polynomial in z of 
degree 222=. The coefficients of the polynomial rx are all nonnegative and 
polynomial-time computable. We claim that the function g is in #P. This 
can be seen as follows. Let G be a nondeterministic Turing machine that, on 
input x, operates as follows: 

Step 1 G computes rx(z) = aoz0 + a1z1 + · · · + amzm., where m = 222=. 
Step 2 G computes the list I= {i I 0 ~ i ~ 222= I\ ai-=/= 0}. 
Step 3 G nondeterministically selects i E I. 
Step 4 G nondeterministically selects d, 1 ~ d ~ ai. 
Step 5 G simulates M on input x i times. 
Step 6 G accepts if and only if M accepts during each of the i simulations. 

Then G satisfies g = #acca. By Claim 4.15, the following conditions hold for 
every x E E*: 

(*) If x E A, then #accM(x) is odd, so g(x)- 1 is a multiple of 22t"', and 
thus, g(x) is of the form m2P(Ixl)+l + 1 for some m. 

(**) If x r/. A, then #accM(x) is even, so g(x) is a multiple of 22t"', and thus, 
g(x) is of the form m2P(Ixl)+l for some m. 



80 4. The Isolation Technique 

Define 
h(x) = L g(x#y). 

IYI=P(Ixll 

There is a nondeterministic 'lUring machine H such that h = #accH, so 
h E #P. In particular, H guesses y E EP(Ixll and simulates G on x#y. By 
equation 4.2, (*), and (**), the lowest p(\xl) + 1 bits of the binary repre­
sentation of h(x) represent the number of y E EP(Ixll such that x#y E A. 
So, for every x E E*, x E L {==::} the leftmost p(\x\) + 1 bits of h(x) is 
lexicographically at least 010P0xll-l. This implies that L is decidable by a 
polynomial-time 'lUring machine that makes one query to h. Since L was an 
arbitrary ppEBP set and h = hL E #P, it follows that ppEBP ~ p#P[ll, the 
class of languages decided by a polynomial-time algorithm with one question 
to a #P oracle. D Lemma 4.14 

So, Theorem 4.12 is established. Corollary 4.13 follows immediately from 
Theorem 4.12 in light of Proposition 4.16. 

Proposition 4.16 pPP = p#P. 

Proof First we show pPP ~ p#P. Let L E PP. There exist a polynomial p, 
a language A E P, and f E FP such that, for every x E E*, 

x E L {==::} \\{y 1\Y\ =p(\x\) 1\ (x,y) E A}\\?_ f(x). 

Let N be a nondeterministic 'lUring machine that, on input x, guesses y E 
Ep(lxl), and accepts x if and only if (x, y) E A. Clearly, N can be polynomial 
time-bounded. For every x E E*, #accN(x) = \\{y E EP(Ixl) I (x,y) E A}\\. 
Since f E FP the membership in L can be tested in p#P[ll. Thus, pPP ~ p#P. 

Next we show pPP 2 p#P. Let f be an arbitrary #P function. Let f = 
#accN for some polynomial-time nondeterministic 'lUring machine N and 
let p be a polynomial that strictly bounds the runtime of N. Then for all x 
#accN(x) < 2P(Ixl). Define L = { (x, y) I 0 '.5:. y '.5:. 2P(Ixl) -1/\ #accN(x) ?_ y }. 
Define N' to be the nondeterministic 'lUring machine that, on input x E E*, 
operates as follows: N' simulates N on input x while counting in a variable 
C the number of nondeterministic moves that N makes along the simulated 
path. When N halts, N' guesses a binary string z of length p(\x\)- C using 
exactly length p(\xl) - C bits. Then N' accepts if and only if the simulated 
the path of N on x is accepting and z E 0*. Then for all x #accN(x) = 
#accN'(x). Also, for all x E E* and all computation paths 1r of N' on input 
x, N' along path 1r makes exactly p(\xl) nondeterministic moves. Define D 
to the probabilistic 'lUring machine that, on input (x, y), 0 '.5:. y '.5:. 2P(Ixll- 1, 
operates as follows: D uniformly, randomly selects bE {0, 1}, and then does 
the following: 

• If b = 0, then D uniformly, randomly selects z E {0, 1}P(Ixll, and then 
accepts if the rank of z is at most 2P(Ixl) - y and rejects otherwise. 
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• If b = 1, then D simulates N' on input x by replacing each nondeterministic 
move of N' by a probabilistic move. More precisely, each time N' makes a 
nondeterministic move, deciding between two possible actions o: and (3, D 
selects uniformly, randomly c E {0, 1}, and then D selects o: if c = 0 and 
(3 otherwise. D accepts if N' on x along the simulated path accepts and 
rejects otherwise. 

Clearly, D can be polynomial time-bounded. For every x E E*, the probability 
that D on input x accepts is 

2P(Ixl)- y #aCCN'(x) 
2P<Ixl)+l + 2P(Ixl)+l . 

This is greater than or equal to~ if and only if #aCCN' (x) ~ y. Thus, L E PP. 
Hence, pPP 2 p#P. D 

We can strengthen Corollary 4.13 to show that not only the polynomial 
hierarchy but also ppPH is included in pPP. 

Corollary 4.17 ppPH ~ pPP. 

Proof By Theorem 4.5, PH~ BPPE!lP and by Lemma 4.14, ppEilP ~ pPP_ 

So, it suffices to prove that, for every oracle X, ppBPPx ~ PPx. It follows 
that 

ppPH ~ ppBpptBP ~ ppEilP ~ pPP. 

Again, we prove only the nonrelativized version. Let L E ppBPP. There exist 
a polynomial p, a function f E FP, and A E BPP such that, for every x E E*, 

if x E L, then II{Y E EP(Ixl) I x#y E A}ll ~ f(x), and 

if x f/. L, then II{Y E EP(Ixl) I x#y E A}ll ~ f(x)- 1. 

(4.4) 

(4.5) 

Let r(n) = p(n) + 2. By part 1 of Proposition 4.6, there exist a polynomial q 
and a language B E P such that, for every u E E*, 

if u E A, then II { v E Eq(lul) I u#v E B} II ~ 2q(lul) (1 - ( 4.6) 
2-r(luD), and 

ifu f/. A, then ll{v E Eq(lul) I u#v E B}ll ~ 2q(lul)2-r(lul). (4.7) 

Define s(n) = 2(n + 1 + p(n)). The length of x#y with y E EP(Ixl) is s(lxl). 
Define D to be the set of all strings x#yv, withy E EP(Ixl) and v E Eq(s(lxl)), 
such that x'#v E B, where x' = x#y. Then Dis in P. For each x E E*, 
let d(x) = ll{yv I x#yv E D}ll and define g by g(x) = f(x)2q(s(lxl))(l-
2-r(s(lxl))). Then g E FP. For every x E E*, if x E L, then by equations 4.4 
and 4.6, d(x) ~ /(x)2Q(1- 2-R) = g(x), where P, Q, and R respectively 
denote p(lxl), q(s(lxl)), and r(s(lxl)). On the other hand, if x f/. L, then by 
equations 4.5 and 4. 7 
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d(x) ~ (f(x) - 1)2Q + (2P- f(x) + 1)2Q2-R 
= f(x)2Q - 2Q + 2P+Q-R- j(x)2Q-R + 2Q-R 

= f(x)2Q(1- 2-R)- 2Q(1- 2P-R- 2-R) 

= g(x)- 2Q(1- 2P-R- TR). 

Since r(n) = p(n) + 2 and s(n) > n, 1-2P-R- 2-R is at least 1--!--! > 0. 
So, d(x) < g(x_}· Hence, for every x E E*, x E L if and only if d(x) 2': g(x). 
Thus, L E PP . 0 

4.3 NL/poly = UL/poly 

In the previous sections we saw a number of results that connect the poly­
nomial hierarchy to polynomial-time counting complexity classes. Do the 
analogs of those results hold for logspace classes? In particular, do the 
logspace analogs of PH ~ EBP /poly (Corollary 4.10) and PH ~ pPP (Corol­
lary 4.13) hold? Since the NL hierarchy (under the Ruzzo-Simon-Tompa 
relativization, see Chap. 9) collapses to NL since NL = coNL (see Sect. A.7), 
we can simplify the question of whether the logspace analog of the former 
inclusion holds to the question of whether NL ~ EBL/poly and the question 
of whether the logspace analog of the latter inclusion holds to the question of 
whether NL ~ LPL_ Here the latter inclusion, NL ~ LPL, trivially holds be­
cause NL ~ PL. Can we use the isolation technique to prove NL ~ EBL/poly? 

Pause to Ponder 4.18 Does NL <:;;:; EBL/poly hold? 

The answer to this question is in the affirmative. In fact, we can prove 
something stronger: NL/poly = UL/poly. In other words, if all nondetermin­
istic logspace machines are given access to advice functions having polynomial 
length, then NL and UL are equivalent. 

4.3.1 An NL-Complete Set 

The Graph Accessibility Problem is the problem of deciding, for a given di­
rected graph G and two nodes sand t of G, whether tis reachable from sin G. 
We consider a restricted version of the problem in which G has no self-loops, 
and s is the first node and t is the last node, where we order the nodes in G ac­
cording to the adjacency matrix representation of G. More precisely, we con-
sider the set, GAP, of all aual2 ... alna2la22 ... a2n ...... ' anlan2 ... ann• 

n 2': 2, such that the diagonal elements a 11 , ... , ann are each 0, and n is 
reachable from 1 in G, where G is the directed graph whose adjacency ma­
trix's (i,j)th element is aij· Since GAP, the Graph Accessibility Problem 
(without constraints on the numbering of the start and finish nodes, and 
without prohibiting self-loops), is well-known to be NL-complete, and since a 
logspace machine, given G, s, and t, can swap the names of the source node 
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s and 1, can swap the names of the sink node t and n, and can eliminate all 
self-loops, GAP~~ GAP. GAP is clearly in NL. Hence, our problem GAP is 
NL-complete too. 

4.3.2 NL/poly = ULjpoly 

We show how to apply the Isolation Lemma (Lemma 4.1) to prove NL ~ 
UL/poly. Suppose we wish to decide the membership in GAP of an arbitrary 
n-node directed graph without self-loops. Let our universe U(n) be the set of 
all potential edges in such a graph. Then IIU(n)ll = n(n -1). Let our weight 
functions map each edge in U(n) to an integer between 1 and 2n3 • For a given 
n-node directed graph G without self-loops, and for each i, 1 ~ i ~ n, define 
:F( n, G)i to be the set of all simple paths in G from 1 to i. We view each 
element of :F(n, G)i as a subset ofU(n). Since :F(n, G)i is a collection of simple 
paths from 1 to i, no two elements in :F(n, G)i specify identical paths. Then 
a weight function W is good for :F(n, G)i if and only if the minimum-weight 
path in G from 1 to i with respect to W is unique. Now apply Lemma 4.1 
with m = n, U = U(n), Z = Z(n), :F1 = :F(n, G)!, ... , :Fn = :F(n, G)n, 
D = n(n -1), R = 2n3 > 2mD, and a=!· Let Z(n) be the set of all weight 
functions whose values are at most 2n3 . Then we have the following lemma. 

Lemma 4.19 Let n ~ 2 and let G be ann-node directed graph. Let U(n), 
Z ( n), and :F( n, G)t, ... , :F( n, G)n be as stated above. Then more than half 
of the edge-weight functions in Z are good for :F(n, G)!, ... , :F(n, G)n· 

Suppose we wish to select, for each n ~ 2, a sequence of some m( n) 
weight functions, Wt. ... , Wm(n) E Z(n), such that for all n-node directed 
graphs G, there is some i, 1 ~ i ~ m(n), such that Wi is good for 
:F(n, G)I, ... , :F(n, G)n· How large m(n) should be? The following lemma 
states that m ( n) can be as small as n 2 • 

Lemma 4.20 Let n ~ 2. Let U(n), Z(n), and :F(n,G)I, ... ,:F(n,G)n be 
as stated above. There is a collection of edge-weight functions Wt. ... , Wn2 
in Z(n) such that, for every n-node directed graph without self-loops, G, there 
is some k, 1 ~ k ~ n 2, such that Wk is goodfor:F(n,G) 1, ... ,:F(n,G)n· 

Proof of Lemma 4.20 Let n ~ 2. By Lemma 4.19, for every n-node di­
rected graph without self-loops, G, the proportion of edge-weight functions in 
Z ( n) that are good for :F( n, G) 1 , ... , :F( n, G)n is more than a half. So, for all 
n-node directed graphs without self-loops, the proportion of (Wt. ... , Wn2) 
such that for all k, 1 ~ k ~ n 2 , Wk is bad for :F(n,G) 1, ... ,:F(n,G)n 
is less than 2-n2. There are 2n(n-l) directed n-node directed graphs with­
out self-loops. So, the proportion of (Wt. ... , Wn2) such that, for some n­
node directed graph without self-loop G, for all i, 1 ~ i ~ n2 , Wi is bad 
for :F(n,G) 1, ... ,:F(n,G)n is less than 2n(n-l)2-n2 < 1. This implies that 
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there is some (W1 , ... , ~Vn2) such that for all directed n-node directed graph 
without self-loop G, there is some i, 1 :::; i :::; n 2 , such that Wi is good for 
F(n,G) 1 , ..• ,F(n,G)n· 0 Lemma 4.20 

We define our advice function has follows. For every n 2': 2, h maps each 
string oflength n to a fixed collection (W1 , ... , Wn2) ofn2 legitimate weight 
functions possessing the property in Lemma 4.20. For n = 1, h maps each 
string of length n to the empty string. The domain size D is n( n- 1) and the 
largest weight R is 2n3 . So, by encoding each weight in binary, the encoding 
length of h(n) will be O(n4 logn). 

Now we prove the following theorem. 

Theorem 4.21 NL ~ UL/poly, and thus, NL/poly = UL/poly. 

In fact, we will prove the following result, from which Theorem 4.21 im­
mediately follows. 

Theorem 4.22 There is a UL machine that solves GAP using a polynomi­
ally length-bounded advice function. 

Proof For simplicity, in the following, let n 2': 2 be fixed and let W1 · · · Wn2 
be the advice for length n (i.e., what the advice function gives, call it h). Also, 

let G be an n-node graph G whose membership in GAP we are testing. 
We need to define some notions and notation. For each i, 1 :::; i :::; n 2 , 

and j, 1 :::; j:::; n, define MinWeight(i,j) to be the weight of the minimum­
weight paths from 1 to j with respect to the weight function Wi; if j is 
not reachable from 1 in G, then MinWeight(i,j) = oo. For each i, 1 :::; i :::; 
n 2 , and d 2': 0, define Reach( i, d) to be the set of all nodes j, 1 :::; j :::; 
n, that are reachable from 1 via paths of weight at most d with respect 
to the weight function wi, define Count(i,d) = IIReach(i,d)ll, and define 
WeightSum(i, d) = ~j MinWeight(i,j), where j ranges over all elements in 
Reach(i, d); also, we say that Wi is d-nice if, for every j E Reach(i, d), there 
is a unique minimum-weight path from 1 to j in G with respect to Wi. 

Due to our construction of h, every minimum-weight path has weight at 
most n(2n3 ) = 2n4 • So, for every i, 1 :::; i :::; n 2 , and for every d, d 2': 2n4 , 

it holds that Reach(i, d) = Reach(i, d + 1), Count(i, d) = Count(i, d + 1), 
and WeightSum(i, d) = WeightSum(i, d + 1). Note that 1 is the only node 
that can be reached from 1 without traversing edges. So, for all i, 1 :::; i :::; 
n 2 , it holds that MinWeight(i,1) = 0, Reach(i,O) = {1}, Count(i,O) = 1, 
WeightSum(i, 0) = 0, and Wi is 0-nice. 

We prove that if Wi is d-nice and if we know Count(i, d) and 
WeightSum(i, d), then for any j, 1 :::; j :::; n, we can test, via unambigu­
ous logspace computation, whether j belongs to Reach(i, d). Recall that in 
the previous section we presented a nondeterministic logspace procedure for 
guessing a path, 7rj, from 1 to a given node j. Let us modify this procedure 
as follows: 

• For each node j, 1 :::; j :::; n, attempt to guess a path from 1 to j having 
weight at most d (with respect to Wi) and having length at most n- 1. 
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Count the number of j for which the guess is successful (call this number 
C) and compute the sum of Wi ( 1r i) for all successful j (call this number S). 

• Output "successful" if C = Count(i, d) and S = WeightSum(i, d). Output 
"failure" otherwise. 

Note that if Wi is d-nice and both Count(i, d) and WeightSum(i, d) are cor­
rectly computed, then there is only one computation path in the above along 
which it holds that C = Count( i, d) and S = WeightSum( i, d). Furthermore, 
the space requirement for this procedure is 0 (log n), since the guessing part 
can be sequential, C ~ n, and S ~ n(2n4 ) = 2n5 • 

Now modify this procedure further, so that (i) it takes a number j, 
1 ~ j ~ n, as an additional input, (ii) it memorizes whether the guess is 
successful for j, and if so, it memorizes the weight of the path it guesses, 
and (iii) if the computation is successful (namely, when C = Count(i, d) 
and S = WeightSum( i, d)) it outputs the information that it has memo­
rized in (ii). We call this modified version ReachTest. For ad-nice Wi, given 
Count(i, d) and WeightSum(i, d), ReachTest(j) behaves as an unambiguous 
logspace procedure. Since the modification does not change the space require­
ment, if Wi is 2n4-nice, then ReachTest(n) will discover, via unambiguous 

logspace computation, whether G E GAP. 
Now we have only to develop a UL procedure for finding an i, 1 ~ 

i ~ n2 , such that Wi is 2n4-nice, and for computing Count(i, 2n4 ) and 
WeightSum(i, 2n4 ) for that i. We design an inductive method for accom­
plishing this task. We vary i from 1 to n 2 and, for each i, we vary d from 0 to 
2n4 . For each combination of i and d, we test whether Wi is d-nice, and if the 
test is passed, we compute Count(i, d) and WeightSum(i, d). Note for every 
i, 1 ~ i ~ n2 ' and for every d, 0 ~ d < 2n4 ' that if wi is not d-nice, then 
Wi is not (d + 1)-nice. Thus, if we discover that Wi is not d-nice for some 
d, then we will skip to the next value of i without investigating larger values 
of d. Recall that for every i, 1 ~ i ~ n2 , Wi is 0-nice, Reach(i,O) = {1}, 
Count(i, 0) = 1, and WeightSum(i, 0) = 0. Iterating the variables i and d 
requires only O(log n) space. So, it suffices to prove that there is a UL pro­
cedure that given i, 1 ~ i ~ n 2 , and d, 0 ~ d ~ 2n4 - 1, such that wi is 
d-nice, Count(i, d), and WeightSum(i, d), tests whether Wi is (d + 1)-nice, 
and if so computes Count(i, d + 1) and WeightSum(i, d + 1). To obtain such 
an algorithm, the following fact is useful. 

Fact 4.23 Let 1 ~ i ~ n2 and 0 ~ d ~ 2n4 - 1. Suppose that Wi is d-nice. 
Then the following conditions hold: 

1. For every u, 1 ~ u ~ n, the condition u E Reach(i, d + 1)- Reach(i, d) 
is equivalent to: u ¢ Reach(i,d) and there is some v E Reach(i,d) such 
that (v, u) is an edge of G and MinWeight(i, v) + Wi(v, u) = d + 1. 

2. Wi is (d+ 1)-nice if and only if for every u E Reach(i, d+ 1)- Reach(i, d) 
there is a unique node v such that MinWeight(i,v) + Wi(v,u) = d + 1. 
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Proof of Fact 4.23 Part 1 as well as the left to right direction of part 2 
is straightforward. To prove the right to left direction of part 2, suppose Wi 
is not ( d + 1 )-nice but is d-nice. Then there exists some u E Reach( i, d + 1) -
Reach(i, d) such that there are two distinct paths from 1 to u, with respect 
to Wi. Since u E Reach(i, d + 1) - Reach(i, d), the weight of the two paths 
should be d + 1. So, they are minimum-weight paths. 0 Fact 4.23 

Now we build a UL algorithm for the incremental steps. Let 1 ~ i ~ n 2 

and 1 ~ d ~ 2n4 . Suppose that Wi is (d -1)-nice and that Count(i,d- 1) 
and WeightSum( i, d - 1) are known. 

Step 1 Set counters c and s to 0. 
Step 2 For each node u, 1 ~ u ~ n, do the following: 

(a) Call ReachTest to test whether u E Reach(i,d -1). Then 
• if the ReachTest outputs "failure," then output "failure" and halt, 

else 
• if ReachTest asserts that u E Reach( i, d -1), then skip to the next 

u, else 
• if ReachTest asserts that u ¢ Reach(i, d -1), then proceed to (b). 

(b) Set the counter t to 0, then for each node v such that (v,u) is an 
edge in G call ReachTest to test whether v E Reach( i, d - 1) and 
• if ReachTest returns "failure," then output "failure" and halt, else 
• ifReachTest asserts that v E Reach(i, d-1) and MinWeight(i, v)+ 

Wi(v,u) = d, then increment t. 
Next, 
• if t = 0, then move on to the next u without touching c or s, else 
• if t = 1, then increment c and add d to s, else 
• if t > 1, then assert that wi is not d-nice and halt. 

Step 3 Set Count(i,d) to Count(i,d- 1) + c, set WeightSum(i,d) to 
WeightSum(i, d -1) + s, and halt. 

The correctness of the algorithm follows from Fact 4.23. It is clear that the 
space requirement is O(log n). Note that Wi being d-nice guarantees that 
ReachTest(i, d) produces exactly one successful computation path. So, there 
is a unique successful computation path of this algorithm, along which exactly 
one of the following two events occurs: 

• We observe that Wi is (d + I)-nice and obtain Count(i, d + 1) and 
WeightSum(i, d + 1). 

• We observe that Wi is not (d +I)-nice. 

Thus, we can execute the induction step by a UL algorithm. Putting 
all together, we have a UL machine that decides GAP with h (i.e., 
W1 W2 · · · Wn2 on inputs of length n) as the advice. This completes the proof 
of Theorem 4.22. 0 Theorem 4.22 
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4.4 OPEN ISSUE: Do Ambiguous and Unambiguous 
N ondeterminism Coincide? 

In Sect. 4.3 we showed that the classes NL and UL are equal under 
polynomial-size advice. Can we get rid of the polynomial-size advice, i.e., 
is NL equal to UL? One tempting approach would be to derandomize the 
Isolation Lemma, however no one has yet succeeded along that path. It is 
now known that the equivalence holds if there is a set in DSPACE[n] that 
requires circuits of size at least 2cn for some c > 0. In particular, NL = UL 
if SAT requires circuits of size at least 2cn for some c > 0. 

Also, what can we say about the question of whether NP = UP? 
There is an oracle relative to which NP =f:. UP. Since there is also an 
oracle relative to which NP = UP (e.g., any PSPACE-complete set, as 
NPPSPACE = upPSPACE = PSPACE), relativizable proof techniques can­
not settle the NP = UP question. In fact, it even remains an open question 
whether the assumption NP = UP implies a collapse of the polynomial hier­
archy. 
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berships are determined by the "middle bit" of #P functions. 
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one applies a sequence of filters. Each filter can be written as b · x = 0, 
where · is the inner product modulo 2 of n dimensional vectors and only 
vectors satisfying b · x = 0 are passed through the filter. Valiant and Vazirani 
show that, for any nonempty S ~ {0, l}n- {On}, if a sequence of n random 
filters b1 , • • • , bn E {0, l}n is chosen, the probability that at some point i, 
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up to bi is at least ~. Thus with this technique, one needs quadratically 
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constant success probability. 
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arithmic bottom-fan-in, size 210&0

(1) n circuits consisting of unbounded fan-in 
ANDs, unbounded fan-in ORs, and unbounded fan-in MODULO p gates; (b) 
the class of languages recognized by depth-3, polylogarithmic bottom-fan­
in, size 210&0

(
1

) n circuits consisting solely of MAJORITY gates (computing 
whether the majority of the inputs are ls); and (c) the class of languages rec­

ognized by depth-2, polylogarithmic bottom-fan-in, size 210&0
(1) n probabilis­

tic circuits with a MODULO p gate at the top and AND gates at the bottom. 
They also showed that if the ACCp class is uniform, then the classes (a), (b), 
and (c) can be all uniform. Kannan et al. [KVVY93] independently proved 
the uniformity result regarding the inclusion involving class (c). Yao [Ya.o90] 
showed that the inclusion involving class (b) holds for nonprime modulo p 
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recognized by depth-2, polylogarithmic bottom-fan-in, size 2logo(l) n proba-



4.5 Bibliographic Notes 89 

bilistic circuits with a MAJORITY gate at the top and AND gates at the 
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NL ~ EBL/poly. In an expanded version of that paper, Gal. and Wigder­
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answer to that question by proving Theorem 4.22. Chari, Rohatgi, and Srini­
vasan [CRS95] developed an isolation method that uses fewer random bits 
than that of Mulmuley, Vazirani, and Vazirani. The results that relate the 
NL = UL question to the circuit complexity of SAT and that of DSPACE(n), 
mentioned in Sect. 4.4 are by Allender, Reinhardt, and Zhou [ARZ99]. For the 
fact that "standard" graph accessibility problem is NL-complete, see [Sav70]. 





5. The Witness Reduction Technique 

Pause to Ponder 5.1 Is SAT in P? 

Don't you feel cheated when someone tells you the answer to a question 
before you've had a chance to ponder the issue for yourself? Sure you do, 
but this happens all the time. For example, if you are reading this book, you 
probably already know the beautiful theory of NP-completeness that was 
built by Cook, Levin, and Karp a few decades ago. So you already know the 
standard, striking, subtle answer the field has built to Pause to Ponder 5.1, 
namely, "We don't know whether or not SAT is in P, but we do know that 
SAT is in P if and only if all of the following thousand problems are in P, 
and we also know that SAT is in P if and only if at least one of the following 
(same) thousand problems is in P." (For reasons of space, we omit the list 
of one thousand NP-complete problems.) Basically, your ability to consider 
Pause to Ponder 5.1 as a fresh problem has been pretty thoroughly tainted. 

We cannot give you back your intellectual virginity regarding NP­
completeness. However, in this chapter, we will try to do the next best thing. 
In particular, in Sect. 5.1 we pose a seemingly simple question, Pause to Pon­
der 5.5, that you perhaps have not seen before. Of course, the question is not 
as important as "P = NP"-after all, what question is?-but the question 
turns out to raise some quite subtle and interesting issues. In answering it, 
one might happen to build a theory of one's own that, at least in its general 
flavor, is not too dissimilar to the theory of NP-completeness. So, we urge 
you to take some time to pause, ponder, and-as an intellectual challenge 
and exercise-investigate Pause to Ponder 5.5, which is framed in the fol­
lowing section. Section 5.2 presents a theory that was built as an attempt to 
understand what the answer to Pause to Ponder 5.5 might be. 

5.1 Framing the Question: Is #P Closed Under Proper 
Subtraction? 

For the purpose of the rest of this chapter, we will use natural numbers and 
binary strings interchangeably, via the standard natural bijection that asso­
ciates the natural number n with the lexicographically n + 1st string. That 
is, the number 0 corresponds to the empty string, the number 1 corresponds 
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to the string 0, the number 2 corresponds to the string 1, the number 3 cor­
responds to the string 00, and so on. In light of this bijection, we will usually, 
in this chapter, speak of integers rather than strings. Since actual Turing ma­
chines operate only on strings, when we say that f(n) is a polynomial-time 
computable operation, we mean the runtime is polynomial in the length of 
the string corresponding to n, and in fact the actual input to the Turing ma­
chine is the string corresponding to n-since in this chapter integers are just 
alternate interpretations of binary strings via the already-mentioned bijec­
tion. For example, there certainly is a Turing machine that takes two strings 
and, in polynomial-time, outputs the string corresponding to the sum of the 
integers corresponding to its two input strings, and so addition can be said 
to be a polynomial-time computable operation. 

For the rest of this chapter, we use the term operation to describe any 
mapping from N X N toN. 

Definition 5.2 Let a be an operation and let :F be a class of functions from 
N toN. We say that :F is closed under (the operation) a if 

(Vf1 E :F)(Vh E :F)[hh,h E :F], 

where hh,h(n) = a(f1(n), h(n)). 

This definition merely captures one's natural intuition about what it 
means to be closed under an operation. In the definition we have used the 
operation a as a 2-argument function, but when the operation is a "tradi­
tional" one, such as addition or proper subtraction, we will feel free to write 
expressions such as f 1(n) + h(n) rather than addition(b(n), h(n)). 

Let us consider two examples. 

Example 5. 3 #P is closed under addition. This can be seen as follows. Let 
f1 and h be #P functions. By the definition of #P, this means there are 
nondeterministic machines N1 and N2 such that, on each input x, f 1(x) 
equals the number of accepting paths of N 1(x) and h(x) equals the number 
of accepting paths of N2(x). To prove that #P is closed under addition, 
consider the nondeterministic machine N that, on input x, makes one initial 
nondeterministic choice, namely, whether it will simulate N 1 or N 2 • Then the 
machine simulates the machine it chose. Note that, in effect, the computation 
tree of N(x) is a tree that has a root with two children, one child being the 
computation tree of N 1 ( x) a':nd the other child being the computation tree of 
N2(x). So it is clear that the number of accepting paths of N(x) is exactly 
b(x) + h(x). 

Example 5.4 #Pis also closed under multiplication. The proof is similar to 
that for addition. Let ft and h again be #P functions. As in the previous 
example, by the definition of #P this means that there are nondeterministic 
machines N1 and N2 such that, on each input x, ft(x) equals the number of 
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accepting paths of N 1(x) and h(x) equals the number of accepting paths of 
N2(x). Consider a nondeterministic machine N that on input x nondetermin­
istically guesses one computation path of N1 (x) and one computation path 
of N2(x) and then accepts if both guessed paths are accepting paths. Clearly 
the number of accepting paths of N(x) is exactly fl(x)h(x), thus showing 
that #P is closed under multiplication. 

It is not hard to see that #P has a variety of other closure properties 
involving binomial and multinomial coefficients. However, our interest is not 
in properties that are easy to show that #P has. Rather, we are interested 
in properties that it might have, and yet for which it currently seems hard 
(or impossible) to prove that #P has them. If this seems strange, consider 
as motivation the question of whether SAT is in P. It might be the case that 
SATE P. However, it probably is hard or impossible to prove that SATE P; 
certainly, no one has yet proven SAT E P. Nonetheless, the theory of NP­
completeness does imply interesting things about whether SAT E P, namely, 
that among all NP problems, SAT is a problem that is, logically speaking, 
least likely to be in P: If SAT is in P, then all NP problems are in P. 

This brings us to our problem. Of course, an NPTM (nondeterministic 
polynomial-time Turing machine) cannot have a negative number of accepting 
paths. So if we are interested in closure under subtraction, we must restrict 
our attention to proper subtraction, i.e., the operation, from N X N toN, that 
is defined by a e b = max{O, a- b}. 

Pause to Ponder 5.5 Is #P closed under proper subtraction? 

Section 5.2 provides a theory that explores this question, but we urge the 
reader to ponder the question first, as an interesting exercise. In case one gets 
stuck, the footnote to the present sentence gives some very strong hints as to 
how one can go about this. 1 

5.2 GEM: A Complexity Theory for Feasible Closure 
Properties of #P 

This is a good point at which to explain the meaning of this chapter's title, 
the Witness Reduction Technique. To us, the term ''witness reduction" ac­
tually encapsulates both an intuition and a technique. The intuition is that 

1 There are two promising approaches. One approach is that one can attempt 
to find a complexity class collapse that completely characterizes whether #P 
is closed under e. (Hint: Such a characterization can be obtained). Another 
approach is to show that, in a sense very similar to that in which SAT is an NP 
problem that is "logically least likely" to be in P (i.e., if it is, then all problems 
are), e is a polynomial-time computable operation under which #Pis "logically 
least likely" to be closed (i.e., if #Pis closed under e, then #P is closed under 
every polynomial-time computable operation). The following section will follow 
both these approaches. 
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reducing the number of accepting paths (i.e., "witnesses") of nondetermin­
istic machines is difficult, and often has severe consequences. It is true that 
Example 5.3 makes it clear that adding, on each input, one accepting path to 
the number of accepting paths of a machine is possible (and indeed, is easy). 
The intuition of witness reduction says that removing one accepting path on 
every input on which the machine had a nonzero number of accepting paths 
will not be so easy, and may not be possible. Indeed, we'll eventually see, in 
Sect. 5.3, that if one could do this-which after all is not general subtraction 
but is just decrementation-some surprising complexity class collapses would 
follow. 

By witness reduction we are also referring to a very informal and loose 
technique, which will be used often in this chapter. The goal of the technique 
is to show that if a class, often #P, has some closure property that reduces 
the number of witnesses, then some complexity class collapse occurs. The 
idea of the technique, for the case of #P, is to jump back and forth between 
#P functions and nondeterministic machines accepting languages. This is 
possible because every nondeterministic polynomial-time machine not only 
defines a #P function but also defines an NP language. However, beyond that, 
if one can make one's #P function of a special form, then the function may 
define a language in a more restrictive class. For example, if a #P function on 
each input either computes the integer 0 or the integer 1, then each machine 
constructing that function implicitly defines a UP language (and indeed the 
same UP language for each such machine). The general scheme of the witness 
reduction technique is that given the assumption that some particular closure 
property holds, we wish to prove that some collapse occurs, e.g., UP= PP, 
as follows: 

1. We take some set in the larger class, e.g., PP, and take the machine for 
that set and (perhaps after some normalization/manipulation) coerce the 
machine into a #P function. 

2. Then we use the assumed closure to create a new #"'f function. 
3. Then we take that new #P function and coerce it back into a machine, 

in particular into a machine defining a language in the smaller class, 
e.g., UP. 

Of course, the scheme just described is an abstracted and idealized tem­
plate. Though in some cases one can see it used in exactly the form described 
above-e.g., the proof of Theorem 5.9-often the template has to be used 
in more creative ways. For example, in the main theorem of this section­
our proof regarding proper subtraction-a large complexity class collapse is 
pieced together by linking two smaller collapses each of which is individually 
obtained via separate uses of the above template. 

This concludes our comments about the flavor of the witness reduction 
technique. Now let us turn to discussing how we will approach a particular 
problem, namely, Pause to Ponder 5.5. As mentioned in footnote 1, we will 
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pursue in parallel two different approaches to studying whether #P is closed 
under proper subtraction. 

One approach is to build a theory much like the theory of NP­
completeness. We do not know whether SAT is in P, but one consequence 
of the fact that SAT is NP-complete is that SAT is not in P unless all NP 
sets are in P. Similarly, we will show that, though we do not know whether 
#P is closed under proper subtraction, it holds that #P is not closed under 
proper subtraction unless it is closed under all polynomial-time computable 
operations. 

The other approach is to seek to completely characterize, in terms of 
complexity class collapses, the issue of whether #P is closed under proper 
subtraction. In particular, we will see that #P is closed under proper sub­
traction if and only if every probabilistic polynomial-time set is in fact in 
unambiguous polynomial time (i.e., UP = PP). This is a very dramatic col­
lapse, and easily implies NP = coNP, as will be made explicit later in this 
section as Theorem 5.7. 

The following theorem, which is proved via the witness reduction tech­
nique, simultaneously realizes the goals of both the approaches discussed 
above. 

Theorem 5.6 The following statements are equivalent: 

1. #P is closed under proper subtraction. 
2. #P is closed under every polynomial-time computable operation. 
3. UP= PP. 

Proof That part 2 implies part 1 is immediate. We will also show that 
part 1 implies part 3, and that part 3 implies part 2, thereby establishing the 
theorem. 

Let us show that part 1 implies part 3. So assume that #P is closed under 
proper subtraction. It certainly suffices to show that this implies both PP ~ 
coNP and coNP ~ UP, as these together yield PP ~ UP. Since UP ~ PP 
holds without any assumption, we may then conclude UP = PP. 

Let L be an arbitrary PP language. So, from the alternate definition of 
PP in Fig. A.19, there is a polynomial q and a polynomial-time predicate R 
such that 

L = {x lll{y IIYI = q(ixi) 1\ R(x,y)}ll ~ 2q(lxl)-l}. (5.1) 

Letting, if needed, qnew(n) = qorig(n)+1 and, forb E {0, 1}, Rnew(x, yb) = 
Rorig(x, y), it is clear that in equation 5.1, we may without loss of generality 
require that, for all n, it holds that q(n) ~ 1, and we do so. (The case 
q(ixi) = 0 is what we are sidestepping here.) 

There is an NPTM that on input x guesses each y such that IYI = q(ixi), 
and then tests R(x, y). Thus there is a #P function f such that x rf. L ==> 
f(x) < 2q(lxl)-l and x E L ==> f(x) ~ 2q(lxl)-l. The function g(x) = 
2q(lxl)-l -1 is also a #P function, as q is a fixed polynomial and q(n) ~ 1. 
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Since #P is by our assumption closed under proper subtraction, and as 
f and g are both #P functions, we have that h E #P, where 

h(x) = f(x) e g(x). 

Since h is a #P function, there is an NPTM N such that, on each x, h(x) 
equals the number of accepting paths of N(x). However, note that f(x) 8 
g(x) = 0 if x ~ L, and f(x) e g(x) ~ 1 if x E L. Thus, viewed as an NP 
machine, L(N) = L. So our arbitrary PP language is in NP. Thus PP f;: NP. 
Since PP = coPP, this implies PP f;: coNP. 

Still under the assumption that #P is closed under proper subtraction, 
we now seek to prove that coNP f;: UP. Let L be an arbitrary coNP language. 
Let N be an NPTM accepting L. Viewing N as a machine defining a #P 
function /, note that x E L ===? f(x) = 0 and x ~ L ===? f(x) ~ 1. The 
constant function g(x) = 1 is a #P function. Since #P is by assumption 
closed under proper subtraction, h(x) = g(x) 8 f(x) must also be a #P 
function. However, 

x E L ===? h(x) = 1 

and 
x ~ L ===? h(x) = 0. 

So the NP machine corresponding to h proves that L E UP. Since L was an 
arbitrary coNP language, coNP f;: UP. 

Summing up, we have shown that if #P is closed under proper subtraction 
then 

PP f;: coNP and coNP f;: UP, 

and thus, as discussed earlier in the proof, we have shown that part 1 implies 
part 3. 

We now show that part 3 implies part 2. So, assume that UP= PP. Let 
op: N X N---+ N be any polynomial-time computable operation. Let f and g 
be arbitrary #P functions. We will show that h(x) = op(f(x),g(x)) is itself 
a #P function. 

It is not hard to see-and we suggest as an easy exercise that the reader 
verify these-that 

B1 = {(x,n) I f(x) ~ n} E PP 

and 
Bg = {(x,n) I g(x) ~ n} E PP. 

So the language 

V = {(x,n1,n2) I (x,n1) E B1 A (x,n1 + 1) ~ B1 A 

(x,n2) E Bg A (x,n2 + 1) ~ Bg} 

must also be in PP, as V 4-truth-table reduces to the PP language B 1 ffi Bg 
(with ffi denoting disjoint union: Y ffi Z = {Ox I x E Y} U {1x I x E Z} ). How­
ever, PP is closed under bounded-truth-table reductions by Theorem 9.17. 
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UP = PP by assumption, so V E UP. (If one wants to see this without having 
to employ Theorem 9.17, one can do so by noting-in fact we will prove this 
and more as Theorem 5.7-that UP= PP implies that UP= pPP, and so 
we are done as pPP easily contains all sets that bounded-truth-table reduce 
to sets in PP.) 

Since f and g are #P functions, there is a polynomial q such that, for all 
x, max{!(x),g(x)} ~ 2q(lxD. Consider the NP machine, N, that on input x 
does the following: 

1. Nondeterministically choose an integer i, 0 ~ i ~ 2q(lxl). 
2. Nondeterministically choose an integer j, 0 ~ j:::::; 2q(lxll. 
3. Nondeterministically guess a computation path of the UP machine for V 

on input (x, i, j). If the guessed path rejects then our simulation's current 
path rejects. If the guessed path accepts then nondeterministically guess 
an integer k, 1 ~ k ~ op(i,j), and accept. (Note: If op(i,j) = 0 then 
we will in this step generate no accepting paths, as no such k can be 
generated.) 

So h(x) = op(f(x),g(x)) must be a #P function, since for each x, N(x) is 
an NPTM having exactly op(f(x),g(x)) accepting paths. This is so as the V 
test in step 3 above succeeds only when i = f(x) and j = g(x), and even that 
case succeeds on exactly one path of the machine for V, as that machine itself 
is a UP machine. Thus, since op was an arbitrary polynomial-time operation 
and f and g were arbitrary #P functions, we have shown that part 3 implies 
part 2. 0 

To help get an intuition as to how strong the collapse "UP = PP" of 
Theorem 5.6 is, we state the following result that shows that it implies a 
huge number of collapses of more familiar complexity classes. 

Theorem 5. 7 The following statements are equivalent: 

1. UP= PP. 
2. UP = NP = coNP = PH = EBP = PP = PP U ppPP U ppPPPP U .... 

Proof UP ~ NP ~ PP. So, since PP is closed under complementation, 
coNP ~ PP. Also, if NP = coNP then PH= NP. Thus, if UP= PP then 
UP = NP = PP = coNP = PH. Since pUP ~ PH, under our assumption 
it holds that pUP =UP. Consider ppE9P. By Lemma 4.14, this is contained 
in pPP, so by our assumption that UP = PP it is contained in pUP, which 
as just noted under our assumption equals UP. So under our assumption 
ppE9P = UP, and so ppE9P = PP = EBP = UP. We are now done by easy 
induction, via repeated use of Lemma 4.14, e.g., taking the case of a "stack" 
of three PP's, PPppPP ~ PPppEDP ~ PPpPP ~ ppPP ~ ppE9P =UP. (Note: 

by drawing on facts that are not hard but that we have not proven, such 
as that ppUP = PP, one could give an alternate proof that does not invoke 
Lemma 4.14.) 0 
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Theorem 5.6 shows that proper subtraction is, among all polynomial-time 
computable operations, the one most resistant to being a closure property of 
#P. Is it the only operation to have this distinction? In fact, it is not. Just 
as there are many sets that are NP-complete, so also are there a variety of 
polynomial-time computable operations that, like proper subtraction, seem 
deeply resistant to being closure properties of #P. If the notion of "deeply 
resistant to being closure properties" seems overly informal (since either they 
are or they are not closure properties-though we note that NP sets either 
are in P or are not in P, yet most people feel comfortable informally thinking 
of SAT as an NP set that is most unlikely to be in P), then in light of 
Theorem 5.6, we can simply seek polynomial-time operations u for which one 
can prove that u is a closure property of #P if and only if all polynomial-time 
computable operations are closure properties of #P. Here, we look at just 
one other such property, namely, integer division, i.e., the operation, from 
N x N toN, that is defined by a 0 b = la/bJ. 

Of course, an NPTM cannot have a fractional number of accepting paths, 
and thus studying division itself would be difficult. However, by studying 
integer division, we need not address that problem. Yet there is still a problem 
left, namely, division by zero. Throughout this chapter, closure will in general 
be defined via Definition 5.2. However, integer division is an exception. To 
avoid problems with division by zero, we formalize this exceptional case not 
by Definition 5.2, but rather by Definition 5.8, which explicitly contains a 
clause regarding that case. 

Definition 5.8 Let F be a class of functions from N toN. We say that F 
is closed under integer division ( 0) if 

(V!l E F)(Vf2 E F : (Vn)[h(n) > 0])[!10 hE F], 

where the 0 above is the integer zero (i.e., the integer represented by the empty 
string). 

Theorem 5. 9 The following statements are equivalent: 

1. #P is closed under integer division. 
2. #P is closed under every polynomial-time computable operation. 
3. UP=PP. 

Proof Of course, part 2 trivially implies part 1. By Theorem 5.6, parts 2 
and 3 are equivalent. Thus, we need only prove that part 1 implies part 3 
and we are done. 

Suppose that #P is closed under integer division. Let L be any PP set. 
We seek to prove that L E UP. It is not hard to see that if L E PP, then 
there is an NPTM N and an integer k ~ 1 such that 

1. on each input x, N(x) has exactly 21x1k computation paths, each contain­
ing exactly ixik binary choices, 
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2. on each input x, x E L if and only if N(x) has at least 21x1k-I accepting 
paths, and 

3. on each input x, N(x) has at least one rejecting path. 

The number of accepting paths of N defines a #P function, call it f(x). 
Consider the function g(x) = 21x1k-I, which clearly is a #P function. So, 
by our hypothesis, the function h defined by h(x) = f(x) 0 g(x) must also 
be a #P function. Note that if x E L then h(x) = 1, and if x fl. L then 
h(x) = 0. Thus, the nondeterministic machine corresponding to h is itself a 
UP machine for L. So L is in UP. 0 

Finally, note that we have in fact proven more in this section than was 
explicitly claimed. In particular, note that in the proof of Theorem 5.9, the 
function that we divided by, g(x) = 21x1k-I, though certainly a #P function, 
is also a polynomial-time computable function. Thus, the proof actually es­
tablishes that #P is closed under integer division (i.e., iff and g are in #P 
and g is strictly positive then f(x) 0 g(x) is in #P) if and only if #P is 
closed under integer division by natural-valued polynomial-time computable 
functions (i.e., iff is a #P function and g is a polynomial-time computable 
function whose output is always a natural number greater than zero, then 
f(x) 0 g(x) is in #P), and both these conditions are themselves equivalent 
to UP= PP. Similarly, it also holds that #Pis closed under proper subtrac­
tion if and only if #P is closed under proper subtraction by natural-valued 
polynomial-time computable functions, and both these conditions are them­
selves equivalent to UP = PP. 

5.3 Intermediate Potential Closure Properties 

In the previous section, we saw that some operations, such as addition, are 
closure properties of #P. We also saw that if #Pis closed under either proper 
subtraction or integer division, then #P is closed under all polynomial-time 
computable operations and UP= PP. 

In this section, we study a different collection of operations-operations 
that #P is not known to possess, but that also are not known to have the 
property that #P is closed under them if and only if #P is closed under all 
polynomial-time operations. Thus, for these operations, it remains possible 
that #P is closed under them, yet is not closed under proper subtraction. 
Again returning to the analogy with NP-completeness theory, these opera­
tions are in some sense analogous to potentially "intermediate" sets-sets, 
such as the set of all primes, that are in NP yet are neither known to be NP­
complete nor known to be in P. Among the closure properties that, as far 
as is currently known, fall into this strange intermediate territory, are taking 
minimums, taking maximums, proper decrement, and integer division by two. 
To be rigorous-both about what we mean by these operations and because 
the latter two of these operations stretch our notion of operation from 2-ary 
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operations to 1-ary operations-let us explicitly define these operations. The 
first two parts are just an application of Definition 5.2 to the particular two 
argument operators. 

Definition 5.10 

1. We say that #P is closed under minimum if, for each f,g E #P, the 
function h(x) = min{f(x),g(x)} is in #P. 

2. We say that #P is closed under maximum if, for each f, g E #P, the 
function h(x) = max{f(x),g(x)} is in #P. 

3. We say that #P is closed under proper decrement if, for each f E #P, 
the function h(x) = f(x) e 1 is in #P. 

4. We say that #P is closed under integer division by two if, for each f E 
#P, the function h(x) = lf(x)/2J is in #P. 

Regarding closure under proper decrement, the following partial results 
are the best known. The two parts of the theorem do not match perfectly, 
yet they are not too far apart: SPP is the "gap analog" of UP. 

Theorem 5.11 

1. If #P is closed under proper decrement, then coNP ~ SPP (equivalently, 
NP ~ SPP). 

2. If UP = NP, then #P is closed under proper decrement. 

Proof We will first prove part 1. Assume that #P is closed under proper 
decrement. Let L be an arbitrary NP language. Let N be an NPTM for L, 
and let f be the #P function defined by the cardinality of N's accepting 
paths. Since #P is closed under proper decrement, g(x) = f(x) e 1 is a 
#P function. So there is an NPTM, N', and a polynomial, p, such that 
on each input x it holds that N'(x) has exactly 2P(Ixl) paths, and exactly 
g(x) of those are accepting paths. It follows, by reversing the accepting and 
rejecting path behavior of each path of N', that the function 2P(Ixl)- g(x) is 
a #P function. Since #P is closed under addition, it follows that the function 
f(x)+(2p(lxl) -g(x)) is a #P function. However, as this function equals 2p(lxl) 
if f(x) = 0 and equals 2P(Ixl) + 1 otherwise, the NPTM whose accepting path 
cardinalities define this #P function is itself a machine showing that L E SPP. 
Thus NP ~ SPP. Since SPP = coSPP, NP ~ SPP and coNP ~ SPP are 
equivalent statements. 

We turn to part 2 of the theorem. Assume that UP = NP. Let f be 
an arbitrary #P function. Let N be an NPTM such that f(x) expresses 
the number of accepting paths of N on input x. Let B be the set of all 
strings (x, ¢) such that ¢ is an accepting path of N(x) and there exists an 
accepting path of N(x) that is lexicographically larger than ¢. B E NP, so 
since UP= NP by assumption, B is in UP. Let N' be an NPTM accepting 
B such that on each input x it holds that N'(x) has at most one accepting 
computation path. We describe an NPTM, N", such that on each input x 
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the number of accepting paths of N"(x) is f(x) e 1. On any input x, N" 
nondeterministically guesses a computation path c/J of N(x) and then on its 
current path simulates N'((x,c/J)). So, all N(x)'s accepting paths except the 
lexicographically largest one will contribute one of the accepting paths of 
N"(x), and the lexicographically largest accepting path of N(x) will generate 
zero accepting paths. Thus, we indeed have proper-decremented f. D 

Regarding closure of #P under integer division by two, it is known to have 
seemingly unlikely consequences, but no "if and only if" characterization is 
known. 

Theorem 5.12 If #P is closed under integer division by two, then EBP = 
SPP (and thus PH ~ PP ). 

Proof This proof is similar in spirit to part 1 of Theorem 5.11. Assume 
that #P is closed under integer division by two. Let L be an arbitrary EBP 
language. Let N be an NPTM and p be a polynomial such that (i) on each 
input x it holds that N(x) has exactly 2P(Ixl) computation paths, and (ii) on 
each input x it holds that N(x) has an odd number of accepting paths if 
and only if x E L. Let f be the #P function defined by the cardinality of 
N's accepting paths. Since #Pis by assumption closed under integer division 
by two, and is unconditionally closed under multiplication multiplication by 
fixed constants, 

g(x) = 2(f(x) 0 2) 

is a #P function. 
Also, the number of rejecting paths of N(x), namely, f'(x) = 2P(Ixl)_ f(x), 

is clearly a #P function. Since #P is closed under addition, we have that 

f'(x) + g(x) = (2P(Ixl)- f(x)) + 2(f(x) 0 2) 

is a #P function. However, f'(x)+g(x) equals 2P(Ixl) if f(x) is even and equals 
2p(lxl)- 1 if f(x) is odd. So the NPTM whose accepting path cardinalities 
define this #P function is its~f a machine showing that L E coSPP. Thus 
EBP <; coSPP. Since SPP = coSPP, we conclude that EBP <; SPP. Thus, since 
SPP ~ EBP holds unconditionally, EBP = SPP. 

So if #P is closed under integer division by two, then EBP = SPP. Note 
that Corollary 4.11 certainly implies that PH <; ppEilP. So if #P is closed 
under integer division by two, then PH <; ppSPP. However, ppSPP = PP 
(see Fig. A.20), so PH<; PP. D 

Regarding closure of #P by minimum or maximum, no "if and only if" 
characterization is known, though some necessary conditions are known. Of 
course, since both minimum and maximum are polynomial-time computable 
operations, it goes without saying, via Theorem 5.6, that UP = PP is a 
sufficient condition. 
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Theorem 5.13 

1. If #P is closed under minimum then NP = UP. 
2. If #P is closed under maximum or under minimum then C=P = SPP. 

Proof We first prove part 1. Let L be any NP language, fix an NPTM 
accepting L, and let f be the #P function defined by the machine's num­
ber of accepting paths. Assume that #P is closed under minimum. Then 
min{f(x), 1} is a #P function, but the NPTM with this number of accepting 
paths on each input x in fact is a machine proving that L E UP. 

We now prove part 2. Following the alternate definition in Sect. A.l2, a 
language L is in C=P if there exists a polynomial q and a polynomial-time 
predicate R such that, for each x, 

X E L ~ II{Y JIYI = q(lxl) 1\ R(x, y)}ll = 2q(lxJ)-l. 

Note that for strings x that do not belong to L, all this says is that the 
number of strings y of length q(lxl) for which R(x, y) holds is not 2q(lxD-l. 
However, those numbers could be either greater than or less than 2q(lxl)-l_ 
indeed, perhaps greater than 2q(lxl)-l on some inputs and less than 2q(lxl)-l 
on other inputs. This makes it hard to exploit maximization or minimization 
to get useful conclusions. What we first need is a new characterization of C=P 
in which all rejection cardinalities fall "on the same side" of the acceptance 
cardinality. We state this in the following lemma. This lemma is somewhat 
related to some propositions in Chap. 9. In particular, Proposition 9.7 and 
(via a "multiplying a GapP function by negative one" tweak) Proposition 9.8 
can alternatively be seen as following from the lemma. 

Lemma 5.14 A language L is in C=P if and only if there exists a polyno­
mial r and a polynomial-time predicate S such that, for each x, 

1. if x E L then II{Y IIYI = r(lxl) 1\ S(x, y)}ll = 2r(lxD-2 , and 
2. ifx ¢ L then II{Y IYI = r(lxl) 1\ S(x,y)}ll < 2r(lxD-2 • 

Proof of Lemma 5.14 Recall that a language L is in C=P exactly if 
there exists a polynomial q and a polynomial-time predicate R such that, for 
each x, x E L ~ II{Y JIYI = q(lxl) 1\ R(x, y)}ll = 2q(ixJ)-l, Let L be an 
arbitrary C=P language, and let q and R satisfy the definition just given. Let 
r(n) = 2q(n). Let S(x, z) be the predicate that accepts exactly if 

where "·" denotes concatenation of strings. Let f(x) denote II{Y JIYI 
q(lxl) 1\ R(x, y)}ll· The number of strings z of length r(lxl) for which S(x, z) 
accepts is exactly 

h(x) = f(x)(2q(lxl)- f(x)). 
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Note, crucially, that this function peaks when f(x) = 2q(lxD-l, at which 
point h(x) takes on the value 2q(lxl)-l2q(lxl)-l = 2r(lxD-2. For all val­
ues of f(x), 0 :::; f(x) :::; 2q(lxl), other than f(x) = 2q(lxl)-l, h(x) < 
2q(lxl)-l2q(lxl)-l = 2r(lxD-2 • Thus, r and S have exactly the property we 
were seeking. 0 Lemma 5.14 

We continue with the proof of part 2 of Theorem 5.13. We will prove 
separately the claim for maximum and for minimum. 

Assume that #P is closed under maximum. Let L be an arbitrary C=P 
language. Let randS be as in Lemma 5.14. So clearly there is a #P function 
f such that, for each x, 

1. X E L ==> f(x) = 2r(lxD-2 , and 
2. X fj. L ==> f(x) < 2r(lxD-2 • 

The function g(x) = 2r(lxl)-2 -1 clearly belongs to #P. By our assumption of 
closure under maximum, h(x) = max{f(x),g(x)} is a #P function. However, 
if x E L then h(x) = 2r(lxD-2 , and if x fj. L then h(x) = 2r(lxD-2 - 1. Thus, 
L E SPP. As L was an arbitrary C=P language, C=P ~ SPP, and thus 
C=P = SPP as SPP ~ C=P holds unconditionally. 

We turn to the case in which we assume that #P is closed under minimum. 
Let L be an arbitrary C=P language. Let randS be as in Lemma 5.14. Let 
(polynomial-time) predicate S'(x,y) be defined such that it holds exactly 
when -.S(x, y) holds. So, via the NPTM that guesses strings y of length 
r(lxl) and then checks S'(x, y), clearly there is a #P function f such that, 
for each x, 

1. X E L ==> f(x) = (3/4)2r(lxl), and 
2. X fj. L ==> f(x) > (3/4)2r(lxl). 

The function g(x) = 1 + (3/4)2r(lxl) clearly belongs to #P. By our as­
sumption of closure under minimum, h(x) = min{!(x), g(x)} is a #P func­
tion. However, if x E L then h(x) = (3/4)2r(lxl), and if x fl. L then 
h(x) = 1 + (3/4)2r(lxD. Thus, L E coSPP. However, SPP = coSPP, thus 
L E SPP. So, again, we may conclude that C=P = SPP. 0 

5.4 A Complexity Theory for Feasible Closure 
Properties of OptP 

#P, which captures the cardinality of the accepting path sets of NPTMs, is 
not the only computationally central class of functions. Another important 
class of functions is OptP, which captures the notion of maximizing over the 
outputs of an NPTM. This can be formalized as follows. Consider special 
NPTMs for which each path outputs some nonnegative integer-paths that 
do not explicitly do so are by convention viewed as implicitly having output 
the integer 0. A function f is an OptP function if there is some such machine, 
N, for which, on each x, 
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f(x) = max{i EN I some path of N(x) has i as its output}. 

Just as we say that proper subtraction is, among all polynomial-time com­
putable operations, in some sense the "least likely" closure property of #P, 
can we also find a polynomial-time operation that is a "least likely" closure 
property of, for example, OptP? And if so, is there also some complexity class 
collapse that characterizes whether OptP has all polynomial-time computable 
closure properties? 

The answer is somewhat surprising. For OptP proper subtraction again 
is a "least likely" closure property. The same also holds for the well-studied 
function class SpanP. For both OptP and SpanP, there is a complexity class 
collapse that completely characterizes whether the class is closed under all 
polynomial-time computable operations. However, in all three cases-#P, 
OptP, and SpanP-the characterizations differ, notwithstanding the fact that 
proper subtraction in each case is a least likely closure property. 

Theorem 5.15 The following statements are equivalent: 

1. OptP is closed under proper subtraction. 
2. OptP is closed under every polynomial-time computable operation. 
3. NP = coNP. 

Proof Part 2 immediately implies part 1. 
We now argue that part 3 implies part 2. Assume NP = coNP. Let f and g 

be arbitrary OptP functions. Let Nt and N9 be NPTMs that prove that these 
are OptP functions. That is, on each input x, the maximum value output 
among all paths of Nt(x) will be f(x), and on each input x, the maximum 
value output among all paths of N9 (x) will be g(x). Let op: N x N--+ N be 
any polynomial-time computable operation. Define 

Lt = {(x,i) I f(x) > i} 

and 
L9 = {(x,i) I g(x) > i}. 

Clearly, Lt E NP and L9 E NP. Since NP = coNP, Lt E NP and L9 E NP, 
say via, respectively, NPTMs N1 and N2. 

We now describe an NPTM that, viewed as a machine defining an OptP 
function, computes op(f(x),g(x)). On input x our machine will guess a com­
putation path of Nt(x) and will guess a computation path of N9 (x), and it 
will find the output of each of these computation paths. Let us call those 
outputs WJ and w9 , respectively. Our machine then guesses a path p1 of 
Nl((x,wt)) and guesses a path p2 of N 2 ((x,w9 )). The current path of our 
machine then outputs op(w1,w9 ) if 

(Pl is an accepting path of N1((x,wt))) 1\ 
(P2 is an accepting path of N2( (x, w 9 ) )), 
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and outputs 0 otherwise. 
This machine will output 0 on each of its paths that does not guess paths 

having f(x) as Wf and having g(x) as w9 , or that does guess such paths but 
makes a bad guess for Pl or P2· It will correctly output op(f(x),g(x)) on each 
path that does guess paths achieving as their outputs f(x) and g(x) and that 
also guesses accepting paths of N 1 and N2. Note that some path indeed will 
make the correct guesses. 

We now argue that part 1 implies part 3. Assume that OptP is closed 
under proper subtraction. Let L be an arbitrary NP language. Consider an 
NPTM that simulates a standard NPTM for L but that on each rejecting path 
outputs 0 and on each accepting path outputs 1. This machine proves that 
the characteristic function of L is an OptP function. The function g(x) = 1 
is also an OptP function. 

Since OptP is by assumption closed under proper subtraction, h(x) = 
g(x) e f(x) is an OptP function. Let N be an NPTM that computes h in the 
sense of an OptP machine, i.e., on each input x, the largest value output by 
N(x) is always h(x). Note that h(x) = 0 if x E L and h(x) = 1 if x fj. L. So 
consider the NPTM, N', that on each input x guesses a path of N(x) and 
accepts (on the current path) if the guessed path outputs 1. L(N') = L, so 
our arbitrary NP language in fact belongs to coNP. Thus NP = coNP. D 

We leave as an exercise for the reader to prove for the function class SpanP 
(see Sect. A.16) the analog of Theorems 5.6 and 5.15. 

Theorem 5.16 The following statements are equivalent: 

1. SpanP is closed under proper subtraction. 
2. SpanP is closed under every polynomial-time computable operation. 
3. ppNP =PH= NP. 

5.5 OPEN ISSUE: Characterizing Closure Under 
Proper Decrement 

The open issue we would most like to bring to the reader's attention is a very 
natural one, yet it has long resisted solution. In Sect. 5.3, we saw a necessary 
condition-NP ~ SPP-for #P to be closed under proper decrement, and 
we also saw a sufficient condition-UP = NP-for #P to be closed under 
proper decrement. Can one find a complete characterization? 

Open Question 5.17 Proper decrement is the (unary) operation a( n) 
n 91, i.e., a(n) = max{n -1, 0}. Find standard complexity classes C and V 
such that: 

#P is closed under proper decrement if and only if C = V. 
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5.6 Bibliographic Notes 

The closure of #P under addition and multiplication, Examples 5.3 and 5.4, 
was known to researchers, and appeared in notes, as far back as the early 
1980s [Reg85,Reg01]. A variety of other closure properties of #P were ob­
tained (see the discussion in [H093]) by Cai et al. [CGH+89] and Beigel and 
Gill [BG92]. 

Section 5.2 is due to Ogiwara and Hemachandra [OH93], except that 
the term ''witness reduction" and the discussion of the general "philoso­
phy" of witness reduction at the start of the section reflect the viewpoint 
of Gupta [Gup95]. The text before Theorem 5.9 mentions in passing that, 
in addition to proper subtraction and integer division, other operations are 
known to be closure properties of #P if and only if UP = PP. Such operations 
include various operations having to do with the span and plurality tests on 
sets of functions, and can be found in Ogiwara and Hemachandra [OH93]. 

Section 5.3 is due to Ogiwara and Hemachandra [OH93], except that 
part 1 of Theorem 5.11 is due to Toran (see [OH93]). Also, part 2 of 
Theorem 5.11 here extends the following result of Ogiwara and Hemachan­
dra [OH93]: If coNP ~UP, then #P is closed under proper decrement. To 
see the relationship between that result and part 2 of Theorem 5.11, note 
that coNP ~ UP ===} UP = coUP = NP = coNP. Thus coNP ~ UP ===} 

UP= NP. However, the converse is not known to hold. 
Part 1 of Theorem 5.11 shows that if #Pis closed under proper decrement, 

then NP ~ SPP. We note here a different conclusion that also follows from 
the same hypothesis, and in doing so we will introduce a new, flexible class 
for dealing with modulo-based computation. For each k 2:: 2, define the class 
FTMkP ("finely tuned mod k") to be the collection of all L satisfying: For 
every polynomial-time computable function f : E* ---+ {0, 1, ... , k- 1 }, there 
is an NPTM N such that, for each x, 

1. if x rj_ L then N(x) has no accepting paths, and 
2. if x E L then the number of accepting paths is congruent, mod k, to 

f(x). 

It is not hard to see that, for each k 2:: 2, FTMkP ~ ModZkP, where the 
ModZkP are the "ModZ" classes defined by Beigel [Bei91b]. We can now 
state the additional claim that holds regarding proper decrement. 

Theorem 5.18 If #P is closed under proper decrement then, for each k 2:: 
2, it holds that NP ~ FTMkP. 

The proof is simple. Given an NP language L, consider the machine that 
computes it. That defines a #P function g. Since by assumption #Pis closed 
under proper decrement, each of the following k functions is a #P function: 
kg(x) eo, kg(x) e 1, ... kg(x) e (k-1). Now note that, for each polynomial­
time function f : E* ---+ {0, 1, ... , k- 1}, there thus will be a #P function 
that on each input x evaluates f(x), sees what it is congruent to modulo k, 
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and then simulates the machine whose number of accepting paths define 
the appropriate one of the k functions mentioned above. So L indeed is in 
FTMkP. 

Section 5.4 is due to Ogiwara and Hemachandra [OH93]. For SpanP 
and OptP, Ogiwara and Hemachandra in fact prove that a variety of other 
operations-including proper division, spans, and, in the case of SpanP, 
pluralities-are also "least likely" polynomial-time computable closure prop­
erties. 

Regarding Sect. 5.5, we mention that for the case of integer division by 
two (rather than proper subtraction by one), and even some more general 
division patterns, Gupta [Gup92] has obtained a complete characterization, 
in terms of complexity class collapses, regarding whether GapP has such a 
closure property. However, for #P the issue remains open. 

Though this chapter is concerned, except in parts of Sect. 5.3, with oper­
ations that operate on two arguments, one can also study operations on one 
argument. For this case, Cai et al. ([CGH+89], see the discussion in [H093]) 
showed that #P is closed under any finite sum of multiples of binomial coeffi­
cients whose upper element is the input and whose lower element is a constant, 
and Hertrampf, Vollmer, and Wagner ([HVW95], see also [Bei97]) showed 
that every one-argument operation other than those fails, in at least one rel­
ativized world, to be a closure property of relativized #P. They also achieve 
a similar characterization for multi-argument operations. This approach­
seeking which operations fail in at least one relativized world to be closure 
properties-differs from both the approaches (namely, characterizing closures 
in terms of complexity class collapses, and linking the relative likelihood of 
closure properties) pursued in Sect. 5.2. In some sense, it gives a somewhat 
less refined resolution than the approach of Sect. 5.2. For example, consider 
an operator under which #Pis closed if and only if UP= PP (equivalently, 
UP= coUP= PP) and consider another operator under which #Pis closed if 
and only if UP = coUP. Having such characterizations gives perhaps greater 
insight into the relative likelihood that #P has these closure properties than 
does merely knowing that for each of the two operations there is some rela­
tivized world in which #P is not closed under the operation. On the other 
hand, obtaining "if and only if" characterizations linking the collapses of com­
plexity classes to whether #P has a given operation is relatively difficult, and 
no such complete characterizations have yet been obtained for many natural 
operations, e.g., those discussed in Sect. 5.3-though, even in those cases, 
the partial results that are known are sufficient to yield, via standard oracle 
results, the fact that there are relativized worlds in which the operations are 
not closure properties of #P. 

Gupta ([Gup95], see also [Gup92]) has suggested a very interesting al­
ternate approach to closure properties. Given that it seems unlikely that 
UP= PP, and thus unlikely that #Pis closed under proper subtraction, he 
frames a different question: Is the proper subtraction of two #P functions 
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such that it can be "approximated with high probability" by a function that 
is in a certain probabilistic version of #P? In his study, Gupta includes a fas­
cinating essay linking whether functions fail to be closure properties to the 
fact that they reduce the number of witnesses (this should be contrasted with 
the later work of Hemaspaandra, Ogihara, and Wechsung on the reduction 
of numbers of solutions [HOWOO] and of Durand, Hermann, and Kolaitis on 
the reduction of numbers of witnesses [DHKOO]). In this book, the Isolation 
Technique chapter is also about witness reduction, and Gupta links the work 
underlying that chapter with the theory of closure properties. In addition, 
Gupta introduced, independently of Fenner, Fortnow, and Kurtz [FFK94], 
the class GapP. Fenner, Fortnow, and Kurtz studied some closure properties 
that GapP possesses, and Gupta ([Gup95,Gup92], see also [Bei97] regarding 
one-argument properties of GapP that fail in some relativized world) built, 
analogously to Sect. 5.2, a rich complexity theory for those properties that 
GapP seems not to possess. Beyond that, he also built a subtle and cohe­
sive complexity theory for the class of functions that are quotients of GapP 
functions [Gup95,Gup92]. 

Yet another alternative approach to closure properties involves asking 
whether a class is "almost" closed under an operation, in the sense that 
some amount of extra pre- or post-processing brings the operation within 
the reach of the class. This approach has been investigated by Ogihara et 
al. [OTTW96], and there also, the consequences of the Isolation Technique 
(Chap. 4) play an important role. 

Reduction not of the cardinality of accepting paths but rather of the 
cardinality of the acceptance type of NPMV functions has been studied by 
Hemaspaandra, Ogihara, and Wechsung [HOWOO]. Their results contrast 
sharply with the theme of this chapter, as they show that in that setting 
cardinality reduction is possible in many cases. In fact, Hemaspaandra, Ogi­
hara, and Wechsung [HOWOO] give a sufficient condition for such cardinality 
reduction. They also show that for many cases not meeting the sufficient con­
dition cardinality reduction is not possible unless the polynomial hierarchy 
collapses toE~, and Kosub [KosOO] has shown that for each finite-cardinality­
type case not meeting the sufficient condition there is at least one relativized 
world in which cardinality reduction for that case is not possible. 

Finally, throughout this chapter, we have discussed and characterized 
whether classes ( #P, OptP, and SpanP) are closed under all polynomial-time 
computable operations. However, for each of these three function classes C, it 
is reasonable to ask whether Cis closed under all C-computable operations. In 
fact, Ogiwara and Hemachandra [OH93] have shown that, for each of these 
three classes, it holds that: C is closed under all polynomial-time computable 
operations if and only if C is closed under all C-computable operations. 



6. The Polynomial Interpolation Technique 

A standard view of mathematical statements is that they should be accom­
panied by succinctly written, easily verifiable certificates. To wit, open one of 
your favorite mathematics or theoretical computer science textbooks (if you 
have one; if not, perhaps the present text will become your favorite). You'll 
see that all the formal statements there are accompanied by strings of text 
called proofs, which the author believes to be easily verifiable by anyone with 
enough background. 

Pushing a little harder on that "easily verifiable" property of certificates, 
one arrives at the concept of algorithmic verification of mathematical state­
ments. It is this concept that led Alan Turing to invent his "computation" 
model: the Turing machine. 

Thus when we talk about standard Turing machine computation, mathe­
matical statements are thought of as deterministically verifiable. For example, 
we often view NP as the class of languages with the property that every mem­
ber has short, deterministically verifiable certificates but no nonmember has 
such certificates. 

The interactive proof system, the focus of this chapter, reflects a new 
approach to verification. Two features are added to proof systems: the use 
of randomness and interactions with a machine (or a set of machines) that 
provides information. We no longer require that mathematical statements 
possess deterministically verifiable proofs. The mathematical correctness of 
statements is verified through interactions between two machines, called the 
verifier and the prover. While the computational power of the verifier is lim­
ited to polynomial time endowed with the ability to use randomness, the 
power of the prover is unlimited. The objective of the verifier is to determine 
with a high level of confidence whether the input is a valid statement, while 
the objective of the prover is to make the verifier believe that the statement 
is valid with as high confidence as possible, regardless of what probabilistic 
choices the verifier makes. A language has an interactive proof system if there 
is a protocol that has the following two properties: (1) for every member, a 
prover is able to make the verifier believe with very high probability (close to 
one) that it is a valid member, and (2) for every nonmember, the possibility 
that the verifier believes that the nonmember is a valid member is close to 
zero no matter what the prover does. 
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What kinds of languages can be verified by interactive proof systems? 
What are the relationships between this new system of proofs and the tra­
ditional system of succinct proof verification? Would there be any difference 
if more provers were added to the system? Precise answers to these ques­
tions have been given, through remarkable developments in the technique of 
constructing protocols between the verifier and the provers. The technique 
consists of two parts: (1) converting membership questions into arithmetic 
formulas and then (2) verifying evaluation of such formulas with gradual, 
random instantiation of the variables in the formula (polynomial interpola­
tion). 

In this chapter we swim through the progress in this area by outlining 
the development of the technique. In Sect. 6.1 we prove that p#P has inter­
active proof systems. In Sect. 6.3, improving upon the technique for p#P, we 
prove that the class of languages with interactive proof systems is precisely 
PSPACE. In Sect. 6.4 we prove that the class of languages with multiple­
prover interactive proof systems is precisely NEXP. Section 6.2 presents an 
application of the polynomial interpolation technique to the problem of enu­
merating candidates for the permanent function. 

6.1 GEM: Interactive Protocols for the Permanent 

6.1.1 Interactive Proof Systems 

Let us formally define interactive proof systems (see Fig. 6.1). An interactive 
proof system has two components, a verifier and a set of provers. A verifier is 
a polynomial time-bounded probabilistic oracle Turing machine with k query 
tapes and k query states for some k ~ 1. For each i, 1 ::::; i ::::; k, the ith query 
tape and the ith query state are associated with a unique machine, called 
a prover. For each k ~ 1, when the verifier enters the kth query state, the 
contents of the kth query tape are read by the kth prover and its answer to 
the query replaces the query; all these actions take place in one step. The 
provers can use unlimited computational resources and randomness, and can 
remember previous interactions with the verifier. However, when there is more 
than one prover, they cannot communicate with each other. 

Definition 6.1 For any k ~ 1, a language L has a k-prover interactive 
proof system if there exists a polynomial time verifier V interacting with k 
provers such that, for every x E E*, the following conditions hold: 

1. (Completeness) If x E L, then there is a set of k machines 
P1, ... , Pk, such that that V accepts x with probability greater than ~ 
with P1, . . . , Pk as provers. 

2. (Soundness) If x fj L, then through interactions with any set of 
provers, V on input x rejects with probability greater than ~. 
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Work Tapes 

Fig. 6.1 A two-prover interactive proof system 

IP (respectively, MIP) is the class of all languages L that have one-prover 
interactive proof systems {respectively, k-prover interactive proof systems for 
some k). 

We'll drop the "one-prover" whenever it is clear from the context that there 
is only one prover. 

6.1.2 Low-Degree Polynomials and Arithmetization 

One of the two basic ingredients of the polynomial interpolation technique is 
arithmetization-transforming computational problems to those of evaluating 
(algebraic) formulas involving polynomials. Two properties of polynomials 
are crucial: 

• Low-degree, nonzero polynomials have a small number of zeros. 
- (Univariate Polynomials) Iff is a polynomial of degree dover a field F, 

then the number ofroots off is at most d. (See the proof of Lemma 6.2.) 
- (Multivariate Polynomials) If f is an s-variate polynomial of total 

degree at most dover a field F, then the number of elements of ps that 
are roots off is at most dJIFJJd-l. (See Lemma 6.32). 

• Low-degree polynomials have a robust characterization, in the following 
sense: 

- (Univariate Polynomials) Iff is a polynomial of degree d over a field 
F, then f can be specified uniquely either by the d + 1 coefficients off 
or by a list of d + 1 points that f passes through. (See Lemma 6.28.) 
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- (Multivariate Polynomials) If f is an s-variate polynomial of total 
degree at most d over a field F, then for every y, z E ps, it holds that 
L:o<i<d+l -rd(y + iz) = 0, where for every i, 0 ::=; i ::=; d + 1, 'Yi = 
(df1)(-1)i. (See Lemma 6.31.) 

To develop interactive proof systems for p#P(= pPP), PSPACE, and NEXP, 
we use some some specific properties of these traditional complexity classes. 

• p#P: We show that the permanent function, which is complete for #P, 
has an interactive proof system, i.e., the permanent can be verified in­
teractively. The basic property we use is that the permanent of a matrix 
can be uniquely recovered from the permanent of its minors (see part 3 of 
Proposition 6.3). 

• PSPACE: We arithmetize the reachability problem on the computation 
tree of a deterministic polynomial-space Turing machine. There are no 
branches in the computation tree of a deterministic Turing machine, so 
for every k 2: 1, if there is a length 2k path from a configuration u to 
a configuration v, then there is a unique "middle point" configuration w 
such that there is a length 2k-l path from u tow as well as a length 2k-l 
path from w to v. We will transform this observation into a sequence of 
verification. 

• For NEXP, we arithmetize the computation of an exponential-time nonde­
terministic Turing machine by applying the tableau method. We obtain a 
characterization of each NEXP language L: For every x, there is a 3CNF 
formula IPx having exponentially many clauses over exponentially many 
variables, and x E L if and only if the formula IPx is satisfiable. We develop 
a protocol for verifying that IPx is satisfiable. 

6.1.3 A Robust Characterization of Low-Degree Univariate 
Polynomials 

As stated in the following lemma, low-degree polynomials that are different 
from each other cannot agree at many points. For a ring R and a set of 
variables X1, ... ,Xm, R[Xr, ... ,Xm] denotes the set of all polynomials in 
Xr, ... ,Xm with coefficients in R. 

Lemma 6.2 (The number of roots of a polynomial) Let R be a ring 
without zero divisors. Let d 2: 1 be an integer such that if the multiplicative 
group of R is finite, then its order is greater than d. Let f and g be polynomials 
in R[X] of degree at most d that are different from each other. Then f(r) = 
g(r) for at most d values of r. 

Multivariate polynomials have a similar property (see in Lemma 6.32 in 
Sect. 6.4). 

Proof Let h(X) = f(X)- g(X). Then his a nonzero polynomial of degree 
e, 0 :::; e ::::; d. Let a be the coefficient of xe in h(X). Since there is no zero­
divisor in R, h'(X) = h(X)/a is defined. Then, for every r E R, f(r) = 
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g(r) {::::::::} h'(r) = 0. Since the coefficient of xe in h'(X) is 1, there are at 
most d roots of h'. So, f(r) = g(r) for at most d values of r. 0 

6.1.4 The Permanent Function 

Let n ~ 1 be an integer. By Mn(Z) we denote the set of all n x n matrices 
over Z. For A= (aij) E Mn(Z), the permanent of A, denoted by perm(A), is 
L:.,.Til<i<nai.,.(i)• where 7r ranges over all permutations of {1, ... ,n}. The 
dimenszon of A, denoted by dim(A), is n. If n ~ 2, for each i, j, 1 ~ i,j ~ n, 
the (i,j)th minor of A, denoted by Ailj• is the matrix constructed from A 
by striking out the ith row and the jth column simultaneously. 

Proposition 6.3 

1. For each f E #P, there exist two polynomial-time computable functions 
R1 and R2 such that, for every x E :r;*, the following two conditions hold: 
• R1 ( x) is a square matrix all of whose entries are nonnegative integers. 
• f(x) = R2((x,perm(R1(x)))). 

2. The problem of computing the permanent of matrices whose entries are 
nonnegative integers belongs to #P. 

3. Let A E Mn(Z), for some n ~ 2. Then 

perm(A) = L perm(Alli)ali· 
l~i~n 

4. Let A E Mn(Z), for some n ~ 1. Let m be an integer such that each 
entry of A is in the interval [-2m, 2m]. Then 

perm( A) E [-2n(m+logn), 2n(m+logn)]. 

5. Let A = (aij),B = (bij) E Mn(Z), for some n ~ 1. Define E(y) 
yA + (1 - y)B = (aijY + bij(1 - y)) and f(y) = perm(E(y)). Then 
perm(A) = f(1) and perm(B) = f(O). Also, f E Z[y], the degree off is 
at most n, and for every m E Z, 

perm(E(m)) = f(m). 

6. Let n ~ 1 and let E(y) E Mn(Z[y]) be such that each entry of E(y) is a 
linear function in y. Let m be such that the coefficients of each entry of 
E(y) are in the interval [-2m, 2m]. Then each coefficient ofperm(E(y)) 
is in the interval [-2n(m+2logn),2n(m+2logn)]. 

Proof For part 1, see the Bibliographic Notes. To prove part 2, let N be 
the nondeterministic Turing machine that, on input A= (aij) E Nnxn, for 
some n ~ 1, behaves as follows: 

Step 1 For each i, 1 ~ ... ~ n, N guesses a number ji, 1 ~ ji ~ n. 
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Step 2 Let 1r be the function that maps each i, 1 ~ i ~ n, to k N tests 
whether 1r is a permutation of {1, ... , n}. If 1r does not pass the test, N 
rejects A. Otherwise, N proceeds to Step 3. 

Step 3 N sets P to the product P = TI 1<i<n ai.,.(i)· N computes t = 
flog(P + 1)l --

Step 4 N nondeterministically guesses a string y of length t. If the rank of 
yin Et is less than or equal toP, then P accepts A. Otherwise, P rejects 
A. 

Let A be an input to N. Let n be the dimension of A. Note that, for every 
permutation a of { 1, . . . , n}, there is exactly one set of guesses j 1 , . . . , jn 
in Step 1 such that the mapping 1r defined by j 1, .•. ,jn is a. Let a be a 
permutation of { 1, ... , n}. Suppose that N selects a as 1r in Step 1. Then 1r 

passes the test in Step 2, so N enters Step 3. The number of accepting paths 
N produces for a in Step 3 is P, which is equal to TI1<i<n aia(i). So, the total 
number of accepting computation paths of Non input -A is perm( A). Let H 
be the largest entry of A. Then H < 2IAI. So, the product P in Step 3, if N 
arrives at Step 3, is less than 2niAI, sot~ niAI. Since n ~ IAI, t ~ 1AI2. This 
implies that N can be made to run in polynomial time. 

Part 3 can be proven by routine calculation. 
Part 4 holds because the absolute value of the permanent is bounded by 

n!(2m)n ~ nn2mn ~ 2n(m+logn). 

To prove part 5, let n, A, and B be as in the hypothesis. Define E(y) = 
yA + (1- y)B and f(y) = perm(E(y)). For all mE Z, f(m) = perm(E(m)). 
In particular, f(O) = perm(B) and !(1) = perm(A). Note that 

f(y) = L rr (ai.,.(i)Y + bi.,.(i)(1- y)), 
.,. l~i~n 

where 1r ranges over all permutations of { 1, ... , n}. For all permutations 1r 

and all integers i, 1 ~ i ~ n, ai.,.(i)Y + bi.,.(i)(1- y) is a linear function in y. 
So, TI1<i<n(ai.,.(i)Y + bi.,.(i)(1- y)) is a polynomial in y of degree at most n. 
This implies that f(y) is a polynomial in y of degree at most n. 

Part 6 holds because for each d, 0 ~ d ~ n, the absolute value of the 
coefficient of yd in perm( E(y)) is bounded by 

n!(2m)n(~) ~ (n!)2(2m)n ~ 2n(m+2logn)_ 

0 

6.1.5 An Interactive Proof System for the Permanent 

In the rest of the section we prove that p#P has an interactive proof system. 

Theorem 6.4 p#P ~ IP. 
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Combining Theorem 6.4 and Toda's Theorem, PH ~ p#P (see 
Theorem 4.12), we learn that every language in the polynomial hierarchy 
has an interactive proof system. 

Corollary 6.5 PH~ IP. 

To prove Theorem 6.4, we'll develop an interactive protocol for the per­
manent function of integer matrices. 

Let L E p#P. By parts 1 and 2 of Proposition 6.3, it is #P-complete to 
compute the permanent of matrices whose entries are nonnegative integers. 
So, we may assume that there is a polynomial time-bounded Turing machine 
M that decides L with perm as an oracle. Since M is polynomial time­
bounded, there is a polynomial p such that for every x E E* M satisfies the 
following two conditions: 

• Regardless of its oracle, M on input x makes at most p(lxi) queries. 
• For each potential query A of M on input x, dim(A) ~ p(ixi) and every 

entry of A is in the interval [-2p(lxi),2P(Ixl)]. 

We will construct an interactive proof system (P, V) for L. Let x E E* be 
a string whose membership in L we are testing and n = lxl. The verifier V 
simulates M on input x deterministically, and accepts or rejects accordingly. 
When M is about to make a query A to its oracle perm, instead of making that 
query toP, V executes the protocol presented in Fig. 6.2. During the protocol, 
V maintains a list of matrix-integer pairs, A= [(BI, VI), ... , (Bm, vm)], such 
that P has promised that for all i, 1 ~ i ~ m, perm(Bi) =Vi, where for some 
d;::: m;::: 1, BI, ... ,Bm E Md(Z) and VI, ... ,vm E Z. At the start of the 
protocol V obtains from the prover P a value u that P claims is perm(A) and 
sets A to [(A, u)]. Then V interacts with P to reduce the dimension of the 
matrix entries in A to 1. At that point, since the number of pairs in A will 
not exceed the dimension of the matrices, there is only one pair (B, v) in the 
list and the prover has promised that perm(B), which is the unique entry of 
B by definition, is v. So, V checks whether what the prover has promised is 
correct. If so, V returns to the simulation of M assuming that perm(A) = u. 
Otherwise, V terminates its computation by rejecting the input x. 

We claim that this protocol witnesses that L E IP. To prove our claim we 
need to show the following: 

1. The protocol is complete, i.e., for every x E L, there exists a prover P 
such that V accepts x with probability at least ~ through interactions 
with P. 

2. The protocol is sound, i.e., for every x E L, and every prover P, V accepts 
x with probability at most ~. 

3. V can be polynomial time-bounded. 
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Step 1 Send AtoP and obtain from P a value u. Set A to [(A,u)]. 
Step 2 (a) Let (B,v) the unique element of A. Remove (B,v) from A. 

(b) Set d to dim(B). If d = 1, then goto Step 4. 
(c) For each i, 1 :5 i :5 d, send B11i toP and obtain from P a value Vi that 

P claims is perm(Blli)· 
(d) Test whether v = L:;1:5i:5dbljVj; if the test fails, reject x. 
(e) Set A to [(Blll•v1), ··· ,(Blld,vd)] and proceed to Step 3. 

Step 3 Repeat (a)-(f) untiliiAII = 1: 
(a) Remove the first two elements (B,v) and (C,w) from A. 
(b) Let y be a variable and m = dim(B)(= dim(C)). Compute the matrix 

E(y) = (eii(Y)) E Mm(Z[y]) defined for all i, j, 1 :5 i,j :5 m, by 

eij (y) = biiY + (1 - y)Cij, 

where B = (bij) and C = (Cii)· 
(c) Send E(y) to P and obtain a polynomial f(y) E Z[y] that P claims is 

perm(E(y)). 
(d) Test whether v = /(1) and w = f(O); if the test fails, then reject x. 
(e) Pick r E {0, ... , 2p(n) -1} under discrete uniform distribution and com­

puteD= E(r) = (eii(r)) and z = f(r). 
(f) Append (D,z) into A. 
Return to Step 2. 

Step 3 Test whether v is the unique entry in B. If the test succeeds, return to 
the simulation with u and if the test fails, reject x. 

Fig. 6.2 Interactive protocol for the permanent function 

6.1.5.1 Completeness of the Protocol. In order to see why the protocol 
is complete, let x be an arbitrary member of L. Let P be the prover that 
always provides correct answers to the queries of V. Since P will always 
provide correct answers, regardless of the probabilistic choices of V, all tests 
in Fig. 6.2 will succeed. This implies that V on x through interactions with P 
will follow the computation path that M on input x would with perm as the 
oracle, and thus, will accept x. So, the probability that V on input x accepts 
with P as the prover is 1. Thus, the protocol is complete. 

6.1.5.2 Soundness of the Protocol. In order to prove that the protocol is 
sound, let x be an arbitrary element in L. Let p be the maximum probability 
of acceptance that V on input x has through interactions with any prover. 
We claim that p < .!. We prove the claim by contradiction. Assume, to the 
contrary, that p ;::: t. Let P be a prover that achieves p as the acceptance 
probability of V on input x. 

Note that, to achieve a nonzero probability of acceptance, P has to provide 
an incorrect answer in Step 1 of the protocol to at least one query that V 
produces on input x. To see why, assume that P provides a correct answer 
in Step 1 of the protocol to each query that V produces on input x. Take 
an arbitrary computation path, 7r, of Von input x through interaction with 
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P. Suppose that V on input x along path 1r terminates before V completes 
its simulation of M on x. Since V never accepts during the execution of the 
protocol, this implies that V rejects x along path 1r, and thus, 1r does not 
contribute to the probability of acceptance of Von input x. So, suppose that 
V on input x along path 1r completes its simulation of M on input x. By 
assumption, P provides the correct answer in Step 1 to each query that V on 
input x makes. So, the answers that V obtains from P along path 7r are those 
M on input x would receive with perm as the oracle. This implies that the 
computation of M on input x that is simulated by V on input x along path 1r 

is precisely that M on input x with oracle perm. Since M is deterministic and 
x E L, this implies that V on input x along path 1C' rejects. Hence, regardless 
of whether V finishes its simulation of M on input x, V on input x along 
path 1C' rejects. This implies p = 0, a contradiction. 

By the above discussion, suppose that V has made a query A having 
dimension greater than 1 to P and P has provided a value u f. perm{A) to 
the query A in Step 1 of the protocol. Then V sets the value of A to [{A, u)]. 
We will examine the subsequent execution of Steps 2 and 3. To simplify our 
discussion, call a matrix-integer pair {B, v) in A correct if v = perm{ B); 
otherwise, call the pair incorrect. Call A correct if every matrix-integer pair 
in it is correct; otherwise, call A incorrect. Note that the following three 
conditions hold: 

• Immediately after Step 1, A is incorrect because its unique element (A, u) 
is incorrect by our supposition. 

• In V halts before reaching Step 4, then V does so by rejecting x. 
• In Step 4, V returns to its simulation of the machine M on input if A is 

correct and rejects x otherwise. 

We will show that the probability that V reaches Step 4 and A becomes 
correct before V reaches Step 4 is less than ~. 

First suppose that A is incorrect at the beginning of Step 2. Let (B, v) 
be the unique matrix-integer pair in A and d be the dimension of B. We 
can assume that d > 1. Otherwise, V will immediately jump to Step 4 and 
the incorrectness of A will be preserved. Suppose that V has obtained from 
P in the subsequent Step 2{ c) v1 , ..• , Vd as the permanents of the minors 
Bql! · · · , B 11d• respectively. In the subsequent Step 2{d), V tests whether 
V = El<i<d b1iVi· Suppose that this test succeeds. Then, since perm{ B) = 
El<i<d oljperm{Blll) and v f. perm{B), it must be the case that for at least 
one -i,-1 ~ i ~ d, perm{Bqi) f. Vi· Thus, A at the beginning of subsequent 
Step 3 is incorrect. In other words, if V does not reject x in Step 2, then 
the property that A is incorrect should be preserved during Step 2, and A 
remains incorrect at the beginning of Step 3. 

So, suppose that the list A is incorrect at the beginning of Step 3. If A 
has only one element, V immediately returns to Step 2 without modifying 
A, so the incorrectness of A is preserved. So suppose that A has at least 
two elements. Let { B, v) and { C, w) be the pairs that V pops from A in 
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Step 3(a). Suppose that there remains at least one incorrect pair in A. If 
so, since the incorrect pair will not be removed from A in the subsequent 
Steps 3(b) through 3(f), the incorrectness of A will be preserved in the sub­
sequent Steps 3(b) through 3(f). So, suppose that there remains no incorrect 
pair in A after popping (B,v) and (C,w). Since A is incorrect, it must be the 
case that at least one of (B, v) and ( C, w) is incorrect. Let f be the polyno­
mial that P provides for the permanent of E(y) = yB + (1 - y)C. Suppose 
that f survives the test in Step 3(d). Then /(1) = v and /(0) = w. Since E 
satisfies perm(B) = perm(E(1)) and perm( C)= perm(E(O)) and, by our as­
sumption, either v =f:. perm(B) or w =f:. perm( C), we have f(y) =f:. perm(E(y)). 
Since dim(B) =dim( C)~ dim(A) ~ p(n), perm(E(y)) is a polynomial of de­
gree at most p(n). So, by the Polynomial Interpolation Lemma (Lemma 6.2), 
there are at most p(n) many r for which perm(E(r)) = f(r). Thus, the prob­
ability that the pair (D,z) that V produces from (B,v) and (C,w) is correct 
is at most :~~) . This implies. that the probability that the incorrectness of 

A is preserved during a single run of the loop body is at least 1 - :J[!.), . The 
number of times that the loop body of Step 3 is executed is 

L (i- 1) ~ p(n)(p~n) -1), 

l:::=;i:::=;dim(A)-1 

so the probability that the unique pair in A in Step 4 is incorrect is at least 

p(n)(p~n)-1) 

( 1- p(n)) > 1- p3(n) 
2P(n) - 2P(n) · 

So, P fails with probability at least 1- ~:~~f. This is greater than ~ provided 
p(n) ~ 14, so p < ~- This is a contradiction. Thus, the protocol is sound. 

6.1.5.3 Running-Time Analysis. To prove that V is polynomial time­
bounded, we may assume that in Step 3(c), the prover returns the polynomial 
f to V by providing integers no, ... ,ad, such that f(r) = adrd+ · · · +a1r+ 
no, where d = dim(E(r)). Let A be a query of M and d = dim(A). Assuming 
that V reaches Step 4, V executes Step 3(e) m = L::2<i<d(i- 1) = d{d2l) 
times. For each i, 0 ~ i ~ m, let ti be the smallest-integer f such that 
the interval (-2t, 2t] contains all the integers that have been seen either as 
coefficients of polynomial entries in E(y) or entries of matrices in the list A 
by the end of the ith execution of Step 3(c). Then t0 ~ p(n). For every i, 
1 ~ i ~ m, each entry of E(y) in the ith execution of Step 3(c) takes the 
form of b + (1 - y)c such that lbl, lei ~ 2t;_ 1 and a random value assigned 
to y is selected from (0, 2P(n) - 1]. This implies that for every i, 1 ~ i ~ m, 
ti ~ti-l +p(n). Thus, tm ~ (m+1)p(n) ~ (d(d21) +1)p(n) ~ d2p(n) ~ p3(n). 
Then, by part 4 of Proposition 6.3, for every integer matrix B that appears 
during the protocol, log iperm(B)I is at most 
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p(n)(p3 (n) + logp(n)). 

This is less than p5 ( n) for p( n) ~ 2. Also, by part 6 of Proposition 6.3, for each 
polynomial f(y) appearing during the protocol, the log of each coefficient of 
f is at most 

p(n)(p3 (n) + 2logp(n)). 

This is less than p5 (n) for p(n) ~ 2. Thus, all the integers that appear during 
the execution of the protocol are at most p5 (n) bits long. Modify V so that it 
will spend at most p5 (n) steps for reading a number supplied by the prover. 
Then V will be polynomial time-bounded and able successfully to execute 
the protocol for every input x E L while interacting with P. This concludes 
the proof of Theorem 6.4. 

6.2 Enumerators for the Permanent 

PH ~ p#P (by Theorem 4.12) and perm is complete for #P (by part 4 of 
Proposition 6.3), so we may not hope to be able to compute the permanent 
function in polynomial time unless PH = P. Then we ask: Is there an easy 
way to generate, given an integer matrix A, a short list of candidates for 
perm(A) so that one of the candidates is the correct value of perm(A)? We 
combine the polynomial interpolation technique and the self-reducibility of 
the permanent (i.e., the permanent of ann x n matrix with n ~ 2 can be 
reduced to the problem of computing the permanents of all its minors), we 
show that we cannot hope to have such an enumeration algorithm either, 
unless P = PP. 

We first formalize the concept of candidate generation. 

Definition 6.6 Let f : E* ~ N be a function. A function E is an enumera­
tor for f if for every x E E* there exist some m ~ 1 and some a1, ... , am E N 
such that 

1. E(x) = (m, a 1 , ... , am) and 
2. f(x) E {at, ... , am}· 

Theorem 6. 7 If there is a polynomial-time computable enumerator for 
perm, then perm E FP. 

Proof Suppose that there is a polynomial-time enumerator E for the per­
manent function. Let n ~ 1. Let A = (a;j) be ann x n matrix whose per­
manent we want to compute. Let m be the smallest integer such that each 
entry of A has absolute value at most 2m. Then, IAI, the encoding length of 
A, is at least n2 + m. By part 4 of Proposition 6.3, jperm(A)I ~ 2n(m+logn). 
l<or all n, m ~ 1, (n2 + m) 2 > n(m + logn). So, jperm(A)I < jAj2 . Let 
s = 2rlog !All + 1. Then 28 > 2jperm(A)j. We reduce the problem of com­
puting perm(A) to the problem of computing perm(A) mod Q; for some s 
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distinct primes Q1, ... , Q8 • Once these values have been computed, since 
Q 1 · · · Q8 ~ 28 > 2lperm(A)I, using the Chinese Remainder Theorem, we 
can recover the exact value of perm(A). 

To compute perm(A) mod Q for a prime number Q, we execute the fol­
lowing algorithm that uses a subroutine :F. 

Step 1 Set An to the n x n matrix such that for all integers i and j, 
1 ~ i, j ~ n, its ( i, j)th entry is aij mod Q. 

Step 2 Set An to the n X n matrix such that for Execute the following for 
i =n-1, ... ,1. 

(a) Construct from Ai+l ani xi matrix Bi(X), defined as 

L 8k(X)alkAllk· 
l~k~i+l 

Here for every k, 1 ~ k ~ i + 1, a1k is the (1, k)th entry of Ai+l, A11k 
denotes the (1, k)th minor of Ai+1, and 

II (X- j)(i- j)-1, 
jE{l, ... ,i+l}-{k} 

where for all j E {1, ... , i + 1}- {k }, (i- j)-1 is the multiplicative 
inverse of i - j in ZQ . 

(b) Present Bi(X) to the subroutine :F to obtain candidate polynomials 
91, ... ,9t for perm(Bi(X)), where t2n 2 :5 Q and these polynomials 
are pairwise distinct modulo Q. Set ri to the smallest r E {0, ... , Q-
1} such that for all j, k, 1 ~ j < k ~ t, 9;(r) ¢. 9k(r) (mod Q). 

(c) Set Ai to Bi(ri) mod Q. 
Step 3 Compute v1 = perm(Al), where v1 is the only entry of A1. 
Step 4 Execute the following for i = 1, . . . , n - 1. 

(a) Let 91, ... ,9t be the candidates generated for perm(Bi(X)) in 
Step 2(b). Find the unique k, 1 ~ k ~ t, such that 9k(ri) mod Q =Vi. 

(b) Compute Vi+l as (L: 1~j~i+l 9k(j)) mod Q. 
Step 5 Output Vn as perm(A) mod Q. 

Note that for every i, 1 :5 i :5 n- 1, in Step 2(a), each entry of Bi(X) is 
an element of ZQ[X] of degree at most i, so perm(Bi(X)) is a polynomial 
in ZQ[X] and has degree at most i2 ~ n 2 . Note also that for every i, 1 ~ 
i :5 n- 1, it holds that perm(AiH) = L:l<t<i+l perm(Bi(t)) (mod Q). 
In Step 2(b) above, since perm(Bi(X)) is a pOlynomial of degree at most 
i2 :5 n 2 , by Lemma 6.32, for each pair (j, k), 1 :5 j < k ~ i, there are at most 
n 2 many values of r in {0, ... ,Q -1} such that 9;(r) = 9k(r) (mod Q). 
Since there are (~) < t 2 combinations of j and k, 

ll{rlrE {0, ... ,Q-1}/\ 

(3j,k)[1 :5 j < k :5 t 1\ 9;(r) = 9k(r) (mod Q)]}ll < t2n 2 . 
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So, if t 2n2 ::::; Q, then there is at least one r E {0, ... , Q -1} such that for all 
j, k, 1::::; j < k::::; t, gj(r) ¢. gk(r) (mod Q). Thus, for all i, 1 ::::; i::::; n- 1, 

the value Ti is defined as long as the number t of candidates that :F generates 
satisfies t2n 2 ::::; Q. 

To describe how :F works we need to introduce a new function h. The 
domain of h, domain(h), is the set of all square matrices N such that each 
entry of N is a polynomial belonging to N[X] having degree at most dim(N). 
For all N E domain(h) perm(N) is a polynomial belonging to N[X] having 
degree at most (dim(N))2. The value of h(N) is an integer that encodes the 
coefficients of perm(N). For each matrix N E domain( h), let i(N) denote the 
smallest integer t such that every coefficient of every entry of N is less than 
2t. Then there exists some integer constant c > 0 such that, for all matrices 
N E domain(h) and all i, 0 ::::; i ::::; (dim(N))2, the coefficient Ci of Xi in 
perm ( N) is less than 

m!(m + 1)m(2l(N))m < 2c(m+l(N)). (6.1) 

Then we define the value of h(N) to be 

L (2c(m+l(N)))iCi. 

O~i~m2 

Then by equation 6.1, the coefficients 0 0 , ... ,Cm2 can be recovered from 
h(N). Furthermore, we claim that his a #P function. To see why, consider 
a nondeterministic Turing machine U that, on input N, does the following: 

• U tests whether N E domain( h). If the test fails, U immediately rejects N. 
• U guesses i E {0, ... , (dim(N))2} and for each j, 1 ::::; j ::::; dim(N), an 

integer dj E {0, ... , dim(N)}. U tests whether i = 2: 1~j~dim(N) dj. If the 
test fails, U immediately rejects N. 

• For each j, 1 ::::; j ::::; dim(N), U guesses an integer PJ E {1, ... , dim(N)}. 
Let 7r be the mapping from {1, ... , dim(N)} to itself defined for all i, 
1 ::::; i ::::; dim(N), by 1r(i) =Pi· U tests whether 7r is a permutation. If the 
test fails, U immediate rejects N. 

• U computes the product P for all j, 1 ::::; j ::::; dim(N), of the coefficient of 
Xd; in the (j, 1r(j))th entry of N. 

• U guesses an integer k, 1 ::::; k ::::; 2c(dim(N)+l(N))i P, and then accepts N 
otherwise. 

It is easy to see that U can be polynomial time-bounded and, for all N E 
domain(h), #accu(N) = h(N). Thus, hE #P. 

Since h is a member of #P, by part 1 of Proposition 6.3, there is a 
polynomial time reduction to (Rt.R2 ) such that for every N E domain(h) 
h(N) = R2(N,perm(R1(N))). Define the action of the oracle :F as follows: 
On input N E domain(h), :F does the following: 

• :F computes W = R1(N) and evaluates E(W) to obtain candidates 
v1, ... , Vp for perm(W). 
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• For each i, 1 ::::; i :$ p, :F computes the ith polynomial 9i from R2(W, vi) 
by taking modulo Q. 

• Trash all the candidate polynomials of degree greater than m 2 , where m is 
the dimension of N. Also, if a polynomial is repeated in the list, eliminate 
duplicates. 

• Return the list of remaining polynomials. 

Since R1, R 2 , and E are all polynomial time computable, the procedure :F 
runs in polynomial time. So, there is some o: > 0 such that, for all N E 
domain( h), the number of candidates that :F produces on input N is bounded 
by (dim(N) + l(N)y)l .. 

During the execution of the procedure for computing perm(A) mod Q, 
for each query N made to :F, dim(N) ::::; n::::; IAI and l(N) ::::; logQ::::; IAI. 
Suppose that the prime numbers Q1, ... , Q8 lie in the interval [IAI.B, IAI'"~] 
for some (3, 'Y ~ 1. Then the number of candidates t that :F outputs at each 
query during the computation is at most 

for all but finitely many A. The requirement for Q is that t 2n2 ::::; Q. So, 
IAI 2"'+4 :$ IAI.B has to be met. Let (3 = 2o: + 4 and 'Y = 2{3. The number 
of primes we need is IAI 2 . The following theorem, which we state without a 
proof, is well known and useful. 

Theorem 6.8 (The Prime Number Theorem) For every integer l ~ 1 
there are at least 21 primes in the interval [21, 221]. 

Since (3 ~ 1 and 'Y = 2(3, by Theorem 6.8, there are at least IAI 2 primes 
in the interval [IAI.B, I AI'"~]. Since the largest prime we deal with is at most 
I AI'"~, by a trivial division procedure we can find in time polynomial in IAI 
the primes we need. This implies that the permanent is polynomial time 
computable. This proves the theorem. 0 

6.3 IP = PSPACE 

In this section we prove the following result. 

Theorem 6.9 IP = PSPACE. 

We divide the proof into two parts: IP s,:;; PSPACE and PSPACE s;;; IP. 

6.3.1 IP ~ PSPACE 

Lemma 6.10 IP s;;; PSPACE. 
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Proof Let L E IP. Take an interactive proof system for L. Let V be the 
verifier and p be a polynomial bounding the runtime of V. Without loss of 
generality, we may assume that the prover provides a single-bit answer to 
each query of V. We may also assume that there exist polynomials m, q, and 
r such that, for every input x, the verifier makes exactly q(ixi) queries to the 
prover, each having length m(lxl), and tosses exactly r(lxl) coins before the 
first query, after the last query, and between every two consecutive queries. 

We can assume that the objective of P is to maximize the probability that 
V accepts, regardless of whether the input belongs to L or not. To see why, 
suppose that the input belongs to L. The completeness condition requires 
that there is a prover that makes V accept with probability more than ~, 
and this is the same as requiring that the highest acceptance probability that 
is achieved by any prover is more than ~-Next suppose that the input does 
not belong to L. Then the soundness condition requires that regardless of the 
protocol of the prover, the acceptance probability of V is less than {-. This 
is the same as requiring that the highest probability that is achievable is less 
than i· 

We claim that the highest acceptance probability can be achieved by a 
prover that works deterministically. Here the reader should be cautioned that 
deterministic provers are not necessarily oracles, for provers can select their 
answers based on the history of communication. 

To prove the claim, first note that we can assume that there is a recursive 
function f : E* --t N such that, for every x E E*, V on input x asks exactly 
f(x) queries to the prover, regardless of its coin tosses and of the prover. 
Suppose there is no such f exists. Since V witnesses that L E IP, there is a 
prover P such that, for every x E L, V on input x runs for at most p(ixi) 
regardless of its coin tosses and of the prover. Define V to be the machine 
that, on input x, simulates Von input x for at most p(ixi) steps, i.e., if Von 
input x along the simulated path attempts to make the (p(lxl) + l)st step, V' 
aborts the simulation. While executing the simulation V' counts the number 
of queries that V on input x makes to the prover along the simulated path of 
V on input x. When the simulation is either completed or aborted, V adds 
dummy queries (e.g., about the empty string) to make the total number of 
queries equal to p(ixi) and then accepts if Von input x along the simulated 
path accepts. For all x E E*, the number of queries that V' on input x 
makes is p(ixi). For all x E L, the probability that V' on input x accepts 
through interactions with P is equal to the probability that V on input x 
accepts through interactions with P. For all x ELand for all prover P', the 
probability that V' on input x accepts through interactions with P' is not 
greater than the probability that Von input x accepts through interactions 
with P'. So, V' is an interactive proof system for L. 

Now, suppose that V has just made its last query to the prover. Since 
it can compute the function f using its unlimited computational power, the 
prover knows that this is the last query of V. Let p and a respectively be 
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the highest probability of acceptance that can be achieved beyond this point 
provided that the prover answers with a 0 and provided that the prover 
answers with a 1. These two probabilities are well-defined, since the runtime 
of V is bounded, so using its unlimited computational power, the prover can 
calculate them. Parameterize the strategy of the prover at this very point 
with o:, 0 ~ o: ~ 1, in such a way that it provides a 0 as the answer with 
probability o:. Then the overall probability that V accepts beyond this point 
is 

o:p + (1 - o:)a =a+ (p- a)o:. 

This is maximized at o: = 1 if p ~ a and at o: = 0 if p < a. So, in order to 
maximize this amount, the prover has only deterministically to answer with 
a 0 if p ~ a and with a 1 otherwise. Thus, the strategy of the prover at 
this point could be deterministic. Since the same argument could be made 
for any "query" point, working up from the last query to the first query, we 
can argue that the entire strategy of the prover could be made deterministic 
without decreasing the probability that V accepts. 

For each X E E*, let Hx denote the set of all possible communication 
histories between V and some prover. Here a communication history between 
V and a prover is the record of all the queries and answers exchanged between 
them before some computational step. More precisely, for each x E E*, the 
following strings constitute Hx: 

• The empty string .>.. 
• All strings of the form Y1#b1$ · · · $yk#bk for some k, 1 ~ k ~ p(Jxi), 

Y1, ... ,yk E Em(lxl), b1, ... ,bk E {0,1}. Here for each i, 1 ~ i ~ k, Yi is 
the ith query of V to the prover and bi is the prover's answer to Yi· 

• The strings of the form Y1 #b1 $ · · · $yk-1 #bk-1 $yk for some k, 1 ~ k ~ 
p(Jxi), Y1, ... ,yk E Em<lxl), b1, ... ,bk-1 E {0,1}. Here for each i, 1 ~ i ~ 
k, Yi is the ith query of V to the prover, for each i, 1 ~ i ~ k -1, bi is the 
prover's answer to Yi, and the answer to Yk is yet to be given. 

For all x E E* and w E Hx, define R(x, w) to be the maximum probability 
that V on input x accepts when the history of communication has w as a 
prefix. Then R(x, >.) is the highest acceptance probability that Von input x 
through interactions with any prover. So, for all x E E*, 

3 
x E L {::::::::} R(x, >.) ~ 4. 

To prove that L E PSPACE it now suffices to show that R is polynomial-space 
computable. 

Consider the procedure RCOMP, described in Fig. 6.3, for computing 
R(x,w) given x E E* and wE Hx. 

It is easy to see that the procedure works correctly. Let us analyze the 
space requirement of this procedure. For all x E E*, RCOMP(x, .>.) has recursion 
depth 2q(jxi). When a recursive call is made in either Step 2 or Step 3(b), 
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Step 1 If w is of the form Y1#b1$ · · · $yq(lzl)#bq(lxl), then do the following: 
(a) SetS to 0. 
(b) For each binary string 1r of length (q(lxl) + 2)r(lxl), do the following: 

(i) Simulate the computation of V on input x along path 1r assuming 
that for each i, 1 ~ i ~ q(lxl), the prover's answer to the ith query 
is bi, 

(ii) Check whether V accepted in the simulation and whether for every 
i, 1 ~ i ~ q(lxl), the ith query of V in the simulation was Yi· 

(iii) If both tests succeed, increment S by 1. 
(c) Return S/2(q(lzl)+2)r(lzl). 

Step 2 If w is of the form Y1#b1$ · · · $yk, then return 
max{RCOMP(x, w#O), RCOMP(x, w#1)}. 

Step 3 If either w = A or w is of the form Y1#b1$ · · · $yk#bk for some k < 
q(lxl), then do the following: 
(a) Set S to 0. 
(b) For each string z of length m(lxl), compute p = RCOMP(x, w$z) and add 

p to S. 
(c) ReturnS. 

Fig. 6.3 Algorithm RCOMP for computing R 

some pieces of information need to be stored: the current location in the 
RCOMP program, the sum S (Step 3 only), the current value of p (Step 3 
only), which of the two recursive calls is being executed (Step 2 only), and 
the output of the first recursive call in the case when the second recursive 
call is about to be made in Step 2. Since the total number of coin tosses 
of V is (q(lxl) + 2)r(lxl), R has precision of (q(lxl) + 2)r(lxl) bits. So, the 
amount of information to be stored is O((q(lxl)+2)r(lxl)) = O(q(ixi)r(ixi)). 
Thus, the entire procedure requires O(q(lxi)2r(lxl)) space. Hence, RCOMP is a 
polynomial-space algorithm, and thus, L E PSPACE. 0 

6.3.2 PSPACE ~ IP 

Now we prove the other inclusion of Theorem 6.9. 

Lemma 6.11 PSPACE ~ IP. 

We first provide a brief overview of the proof of Lemma 6.11. Let L be an 
arbitrary language in PSPACE. Let D be a polynomial space-bounded Turing 
machine witnessing that L E PSPACE. We develop a protocol for verifying 
computation of D. The idea behind the protocol is Savitch's Theorem, which 
states that for all space-constructible function S(n) = n(log n), nondetermin­
istic S(n)-space-bounded computation can be deterministically simulated in 
space S 2 (n). To describe the theorem we use the concept of configurations. A 
configuration of the machine D describes the contents of its tapes, the posi­
tions of its head, and its state. Here we assume that D is a one-tape machine 
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and that there exists a polynomial s such that, for all x E E*, the config­
uration at each step of D on input x can be encoded as a string in Es(lxl). 
Also, we assume that, for each x E E*, if D on input x accepts then D does 
so by erasing all the tape squares it has ever visited and moving its head to 
position 1. This implies that for every x E E", there is a unique accepting 
configuration of D on input x. Finally, assume that there is a polynomial r 
such that, for all x E E*, D on input x halts at step 2r(lxl). Then, for all 
x E E*, x E L if and only if the unique accepting configuration of D on input 
x is reached in exactly 2r(lxl) steps. 

Suppose we are testing the membership of x E E* in L. We define a 
family of polynomials Rj, 0 ~ j ~ r(lxl), with the following property: For all 
j, 0 ~ j ~ r(lxl), and all configurations C and C' of D on input x, 

1 
{ 1 if C' is reachabl~ from C by D 

Rj(w, w) = in exactly 21 steps, 
0 otherwise. 

Here w and w' are respectively the encoding of C in Es(lxl) and the encoding 
of C' in Es(lxl) 0 Let Co be the initial configuration of Don input X. Let cl be 
the accepting configuration of Don input x, in which the tape head of Dis at 
position 1 and each tape square has a blank. Let wo and w1 be respectively the 
encoding of Co and the encoding of C1. Then x E L {::::::::} Rr(lxl)(wo, w1) = 1. 
We develop a protocol for testing whether Rr(lxl)(wo,wl) = 1. The basis of 
the protocol is an arithmetic characterization (called arithmetization) of the 
predicate R. 

Two properties of R play a crucial role here. First, for every k ~ 1, and 
every pair of configurations C and C' of Don input x, 

Rk(w,w') = 1 {::::::::} 

(3z E Es(lxll)[(Rk-l(w,z) = 1) 1\ (Rk-l(z,w") = 1)], 

where w is the encoding of C and w' is the encoding of C'. Second, the 
predicate Ro(w, w') can be written as a polynomial of 2s(n) variables (cor­
responding to the bits of w and w') having a small total degree. 

Proof of Lemma 6.11 Let L be an arbitrary language in PSPACE. Let D 
be a machine witnessing that L E PSPACE. We first make a few assumptions 
about the machine D: 

1. D has only one tape and the tape is one-way infinite. 
2. The state set of D is Q = { q1. ... , qM} and the alphabet of D is r = 

{al.···,aN}· 
3. There is a polynomial p having the following two properties: 

• For every x E E*, D on input x uses at most p(lxl) tape squares. 
• For every n ~ 0, p(n) ~ max{M, N}. 

4. For each n ~ 1, there is a unique accepting configuration of D for any 
input of length n. For example, for all input y E E*, we can assume that 
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when it is about to accept or reject y, D writes a blank on tape squares 
1, ... ,p(lyl), moves the head to the leftmost position, and then enters a 
unique accept state. 

Let !:1 ~ ( Q X r) X ( Q X r X { + 1, 0, -1}) be the transition function of D, where 
( ( q, a), ( q', a', d)) E !:1 signifies that if the current state is q and the symbol 
currently scanned is a, then in one step D overwrites the currently scanned 
a by an a', enters state q', and changes the head position by d squares on the 
tape. 

Let x E E* be a string whose membership in L we are testing. As in the 
tableau method, we encode each configuration of D on input x using a set of 
boolean variables. We will use the following boolean variables: 

• stt[i], i = 1, ... , M. 
For every i, 1 :::;; i :::;; M, stt[i] = 1 if and only if the current state is qi. 

• pos[i], i = 1, ... ,p(lxl). 
For every i, 1 :::;; i :::;; p(lxl), pos[i] = 1 if and only if the head is located on 
the ith tape square. 

• sym[i,j], i = 1, ... ,p(lxl), j = 1, ... , N. 
For all i, 1 :::;; i :::;; p(lxl), and j, 1 :::;; j :::;; N, sym[i, j] = 1 if and only if aj 

is stored in the ith tape square. 

Let s(n) = M + (N + 1)p(n). Then s is a polynomial in n and the total 
number of variables used is s(lxl). Fix an enumeration of the s(lxl) variables. 
Let a be an assignment to the s(lxl) variables. We say that a is legitimate if 
the following conditions hold: 

• There is exactly one i, 1 :::;; i :::;; M, such that stt[i] = 1. 
• There is exactly one i, 1 :::;; i :::;; p(lxl), such that pos[i] = 1. 
• For every i, 1 :::;; i :::;; p(lxl), there is exactly one j, 1 :::;; j :::;; N, such that 

sym[i, j] = 1. 

Then, there is a one-to-one correspondence between the set of all potential 
configurations of D on input x and the set of all legitimate assignments. 

Proposition 6.12 There exists a polynomial Ro E Z[6, ... , ~s(lxl), 01, ... , 
Os(lxl)] that satisfies the following conditions: 

1. An expression of Ro can be computed in polynomial time. Furthermore, 
for any integer Q 2:: 2 and a,{3 E (ZQ)s(lxll, R 0 (a,{3) mod Q can be 
evaluated in time polynomial in lxl + logQ. 

2. Ro is a polynomial in degree at most p(lxl) + 2 in each variable. 
3. For all a, {3 E {0, 1 }s(lxl), R 0 (a, {3) = 1 if both a and {3 are legitimate and 

D on input x reaches {3 from a in one step and R 0 (a, {3) = 0 otherwise. 

Proof of Proposition 6.12 For simplicity we attach the subscripts~ and 
0 to the above s(lxl) variables to indicate that they are appearing in the ~ 
part and in the 0 part, respectively. 
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Define 
Equal(b, c) = 2bc- b- c + 1. 

Then, for all b,c E {0, 1}, Equal(b,c) = 1 if b = c and Equal(b,c) = 0 
otherwise. For each integer k ~ 2, and k boolean variables Yl, ... , Yk, define 

Uniq[k](Yt, ... , Yk) = (1- II (1- Yi)) II (1- YiYJ)· 
l~i~k l~i<j~k-1 

Then, for every k ~ 2, Uniq[k](YI, ... ,yk) is a polynomial of degree kin 
each variable. Also, for all k ~ 2 and Yl, ... ,yk E {0, 1}, Uniq[k](Yl, ... ,yk) 
is equal to 1 if exactly one of Yl, ... , Yk is 1 and is equal to 0 otherwise. Let 
S be the set of all possible transitions of D; i.e., 

S = {(i,j,k,l,m,d) II :5 i $p(jxl) 1\1 $j $ M 1\1$ k $ N 1\ 

1 $ l $ M 1\ 1 $ m $ N 1\ dE { +1, 0, -1} 1\ 1 $ i + d $ p(jxl) 1\ 

((qj, ak), (q1, am, d)) E ~}. 

Define 
Ro(e, 8) = A(e)>.(8) L p(e, 8, r), 

rES 

Here 

A( e)= 
Uniq[p(jxl)](pose[l], ... , pose[p(ixl)]) Uniq[M](stte[l], ... , stte[M]) 

II Uniq[N](syme[i, 1], ... , syme[i, N]), 

).(8) = 
Uniq[p(ixl)](pos9 [l], ... , pos9 [p(lxl)]) Uniq[M](stto[l], ... , stto[M]) 

II Uniq[N]( sym9 [i, 1], ... , sym9 [i, N]), 
l~i~p(lxl) 

and, for each 1" = (inJr, knlr, mn dr) E S, 

p(e, 8, r) = 
pose[ir]poso[ir + dr]stte[jr]stto[kr]syme[in lr]symo[ir + dn mr] 

II II Equal(syme[t, u], sym9 [t, u]). 
tE{l, ... ,p(lxl)}\{i.,.} l~u~N 

Since Uniq checks that exactly one of the input variables is 1, A(e) = 1 
if and only if e is legitimate. Similarly, A(8) = 1 if and only if 8 is legiti­
mate. Also, for all6-tuple r = (i,j,k,l,'m,d) E S, and a.,(3 E {o,l}s(lxl), 

A(a.)A((3)p(a.,(3,r) = 1 if 

(i) both a. and (3 are legitimate and 
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(ii) the changes corresponding to the transition ((qj, ak), (qz, am, d)) are made 
to the variables posi, posi+d• sttj, sttz, symi,k> and symi,m> and for other 
places a and (3 are equal to each other; 

otherwise, A.(a)A.(f3)p(a, (3, T) = 0. Thus, for all a, (3 E {0, 1 }s(lxl), 
A.(a)A.(f3)p(a,(3,T) = 1 if both a and (3 are legitimate and (3 is the con­
figuration that results from a in one step of D and A.( a )A.(f3)p( a, (3, T) = 0 
otherwise. For each variable y that is present in A., the degree of y in A. is 
at most p(lxl) if y is a pos variable, at most M if it is a stt variable, and 
at most N if it is a sym variable. On the other hand, the degree of each 
variable in p is at most 1. So, the degree of each variable in R0 is at most 
max{p(lxl), M, N} + 1. Since for every n ~ 0, p(n) ~ max{M, N}, the degree 
of each variable in R0 is at most p(lxl) + 1. The set S has only polynomially 
many elements. Thus, the expression for Ro can be computed in time poly­
nomial in lxl. Now given Q ~ 2 and a,(3 E (ZQ)s(lxD, Ro(a,(3) mod Q can 
be evaluated in time polynomial in lxl +log Q. This proves the proposition. 

D Proposition 6.12 
For each k E {1, ... , r(lxl)}, define the polynomial Rk(e, B) to be 

E 
1'tE{0,1} 

Then it is easy to see that the following proposition holds. 

Proposition 6.13 

1. For every k E {0, ... , r(lxl)}, Rk has degree at most p(lxl) + 1 in each 
variable. 

2. For all k, 0 ~ k ~ r(lxl), and a,(3 E {0, 1}s(lxl>, Rk(a,(3) = 1 if both 
a and (3 are legitimate and (3 is reachable from a by D on input x in 
exactly 2k steps and Rk(a, (3) = 0 otherwise. 

Now, let Cini E {0, 1 }s(lxl) be the initial configuration of D on input x 
and Cfin E {0, 1 }s(lxl) be the unique accepting configuration of D on any 
input of length lxl. Then 

x E L <==:::} Rr(lxi)(Cini,Cfin) = 1. 

We develop an interactive protocol for verifying that Rr(lxi)(Cini,Cfin) 
1. To explain the protocol we need to define some notation. For each k E 

{1, ... ,r(lxl)}, l E {1, ... ,s(lxl)}, a,(3 E zs(lxl), and 'Y = ("11, ... ,"fz-1) E 
z!- 1 ' define 

G[k,l,a,f3,"f](Y) = L 
ez+tE{0,1} e•(lzi)E{0,1} 

Rk-1(a,('Y1, ... ,"fl-1,y,el+1, ··· ,es(lxl))) 

Rk-1(("11, · ·· ,"fl-1,y,el+1, ··· ,es(ixi)),(3), 
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and for each k E {1, ... , r(lxl)}, l E {0, ... , s(lxl)}, a, (3 E z•<lxll, and 
'Y = ('Y1, ... , 'Yz) E Z1, define 

G'[k, l, a, (3, 'Y] = L L 
el+l E{0,1} e•(l:oll E{0,1} 

Rk-1(a, ('Y1, ... ,'""fz, e1+1, · · · , e•(lxl))) 

Rk-1(('Y1, ··· ,'""fz.el+l! ··· ,es(lxl)),(3). 

Then, by Proposition 6.13, we have the following result. 

Proposition 6.14 

1. For all k E {1, ... , r(lxl)}, l E {1, ... , s(lxl)}, a, (3 E z•<lxll, and 'Y E 
z1- 1 , G[k, l, a, (3, 'Y](y) is a polynomial in y of degree at most 2p(lxl) + 2. 

2. For all k E {1, ... ,r(lxl)}, l E {0, ... ,s(ixl) -1}, a,(3 E z•<lxll, and 
'Y E Z1, G'[k, l, a, (3, 'Y] = G[k, l + 1, a, (3, 'Y](O) + G[k, l + 1, a, (3, 'Y](1). 

3. For all k E {1, ... , r(lxl)}, l E {1, ... , s(lxl)}, a, (3 E z•<lxll, 'Y = 
('Y1, ... ,'""fl-1) E Z1- 1, and 'YI E Z, G'[k,l,a,f3,'Y'] = G[k,l,a,f3,'Y]('Yz), 
where 'Y1 = b1 , . . . , 'YI) . 

4. For all k E {1, ... , r(lxl)} and a, (3 E z•<lxll, G'[k, 0, a, (3, t:] = Rk(a, (3), 
where E denotes the empty string. 

5. For every k E {1, ... , r(lxl)} and a, (3, 'Y E z•<lxll, G'[k, s(ixl), a, (3, 'Y] = 
Rk-1(a, 'Y)Rk-1('Y, (3). 

For each k, 1 $ k $ r(lxl), and a, (3, 'Y E z•<lxll, define 

H[k, a, (3, 'Y](Y) = Rk-1(('Y- a)y +a, ((3- 'Y)Y + 'Y)). 

Here ( 'Y - a )y + a is shorthand for 

(('Y1- at)y + a1, · · · , bs(lxll- a•(lxi))Y + a•(lxl)) 

and ((3- 'Y)Y + 'Y is shorthand for 

(({31- 'Y1)Y + 'Y1, .'. · 1 (f3s(lxl)- 'Ys(lxi))Y + 'Ys(lxl)), 

where for each i, 1 $ i $ s(lxl), ai, f3i, and 'Yi are respectively the ith 
component of a, the ith component of (3, and the ith component of 'Y· Then 
we have the following result. 

Proposition 6.15 For all k E {1, ... , r(lxl)}, and a, (3, 'Y E z•<lxll, 

1. H[k, a, (3, 'Y](Y) is a polynomial in y of degree at most p(lxl) + 2, 
2. H[k,a,{3,'""f](O) = Rk-1(a,'""f), and 
3. H[k,a,f3,'Y](1) = Rk-1('Y,(3). 
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This routine takes as input two integers M ~ 2 and t ~ 1 and outputs a number 
in {0, ... , M - 1} under uniform distribution with a sampling error occurring 
with probability less than or equal to 2-t. 
Let f. be the smallest integer such that 2t ~ M. Repeat the following at most t 
times. 

(*) Use f. fair coin tosses to select an integer Y between 0 and 2t - 1. If Y ::; M, 
then quit the loop and return Y. 

If none of the trials are successful, then accept x. 

Fig. 6.4 The sampling algorithm 

Define the polynomial m by m(n) = r(n)(2p(n) + 2)(s(n) + 1) + 3. The 
protocol uses the following sampling algorithm that, on input M and t, out­
puts an integer between 0 and M -1 uniformly at random, where a sampling 
error occurs with probability less than or equal to 2-t (the equality holds if 
and only if M is a power of two). 

It is not hard to see that the sampling algorithm works as desired. The 
number l satisfies 2l-l < M ::; 2t. So, in a single execution of the loop body, 
the probability that the number Y is greater than or equal to M is 0 if M 
is a power of two and less than ~ otherwise. Since at most t rounds will be 
executed to find an appropriate Y, the error probability is precisely 0 if M 
is a power of two and less than 2-t otherwise. For each execution of the loop 
body, and for each i, 0 ::; i ::; M - 1, the chances that the selection Y is equal 
to i is precisely 2-l. So, the resulting distribution is uniform. 

We can assume that the prover has a binary encoding of an integer Q E 
[2m(lxl), 22m(lxl>] which is supposedly a prime number and a certificate of its 
primality that can be verified in polynomial time. This assumption is valid. 
By the Prime Number Theorem (Theorem 6.8), such a prime exists and the 
following theorem, which we state without a proof, shows that every prime 
has a polynomial-time verifiable certificate having polynomial length. 

Theorem 6.16 The set of all prime numbers written in binary belongs 
to NP. 

Now we are ready to present the protocol in Fig. 6.5. 
We claim that this protocol witnesses that L E IP. By definition m, r, 

and s are all polynomials. So, the entire computation requires polynomially 
many steps. The probability that the sampling algorithm fails is less than 
2-m(lxl) since the parameter t is set to m(lxl). The total number of samples 

generated is r(lxl)(s(lxl)+1). Since m(lxl) = r(lxl)(2p(lxl)+2)(s(lxl)+1)+3, 
the probability that a sampling error occurs during the execution of the entire 
protocol, regardless of whether x E L or not, is less than k· 
Claim 6.17 The protocol is complete. 
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Step 1 Obtain from the prover a prime number Q in the interval 
(2m(lzl), 22m(lzll] and a short certificate of its primality. Set Vr(lzi),O = 1, 
a= C,,..,, and f3 = Cjin· 

Step 2 Repeat the following fork= r(lxl), ... , 1: 
(a) Repeat the following for l = 1, ... , s(lxl): 

(i) Obtain from the oracle a polynomial g E ZQ(Y] of degree at most 
2p(lxl) + 2, which the oracle claims is G(k, l, a, {3, ')'1 · · · ')'1-I](y). 

(ii) Test whether Vk,l-1 = g(O) + g(1) (mod Q). If the test fails, imme­
diately reject x. Otherwise, proceed to the part (iii) of Step 2(a). 

(iii) Randomly sample a number ')'I E ZQ by running the Sampling 
Algorithm in Fig. 6.4 with M = Q and t = m(lxl). Set Vk,l = 
g(-yz) mod Q. 

(b) Let')'= -y1 • · · 'Ys(lzl)· Obtain from the oracle a polynomial hE ZQ(y] of 
degree at most p(lxl) + 1, which the oracle claims is H[k, a, /3, -y](y) mod 
Q. Test whether vk,s(lzl) = h(O)h(1) (mod Q). If the test fails, imme­
diately reject x. 

(c) Randomly sample a number p E ZQ by running the Sampling Algorithm 
in Fig. 6.4 with M = Q and t = m(lxl). Set Vk-I,o = h(p) mod Q. Set a 

to ('Y- a)p +a mod Q and f3 to ({3- -y)p +')'mod Q. 
Step 3 Test whether vo,o = Ro (a, {3) (mod Q). If the test succeeds, accept x. 

Otherwise, reject x. 

Fig. 6.5 Interactive protocol for PSPACE 

Proof of Claim 6.17 Suppose that x E L. Then Vr(lxl),o = 
G'[r(lxl), 0, Cini, Cfin, €] = 1. By Proposition 6.14, for all k E {1, ... , r(lxl) }, 
l E {0, ... ,s(lxl) -1}, a.,(3 E (ZQ)s(lxll, and 'Y = ("11 , ... ,"(!) E (ZQ) 1, if 
Vk,l = G'[k, l, a., (3, 'Y] (mod Q), the prover can provide a polynomial g E 
ZQ[Y] such that Vk,l = g(O)+g(1) (mod Q) and such that, for all 'Y!+I E ZQ, 
g('Yz+d = G'[k,l + 1,a.,f3,"f'] (mod Q), where "(1 = ("11 , •• • ,"fl+I)· 

Furthermore, by Proposition 6.15, for all k E {1, ... , r(lxl) }, and a., (3, 'Y E 
(ZQ)s(lxl), if Vk,s(lxl) = G'[k, s(lxl), a., (3, 'Y] (mod Q), then the prover can 
provide a polynomial h E ZQ[Y] such that Vk,s(lxl) = h(O)h(1) (mod Q) 
and such that, for all r E ZQ, h(r) = G'[k -1,0,a.',(3',€] (mod Q), where 
a.'= ('Y- a.)r +a. mod Q and (3' = ((3- 'Y)r + 'Y mod Q. 

By the above observations, there is a prover P such that the verifier 
accepts x with probability one through interactions with P assuming that a 
sampling error never occurs. Since the verifier accepts when a sampling error 
occurs, the probability that the verifier accepts through interactions with P 
is 1. Thus, the protocol is complete. 0 Claim 6.17 

Claim 6.18 The protocol is sound. 

Proof of Claim 6.18 Suppose that x fl. L. Then G'[r(lxl), 0, Cini, 

C fin, €] = Rr(lxl) ( Cini, C fin) = 0. So, Vr(lxi),O =/:- G'[r(lxl), 0, Cini, C fin, €]. 
By Proposition 6.14, for all k E {1, ... ,r(lxl)}, l E {0, ... ,s(lxl)- 1}, 
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a.,/3 E (ZQ)s(lxll, 'Y = ('YI. ... ,'Y!) E (ZQ)1, and all polynomials g(y) E 
Z[y] of degree at most 2p(lxl) + 2, if vk,l ¢. G'[k, l, a., /3, 'Y] (mod Q) and 
Vk,l = g(O) + g(1) (mod Q), then g(y) ¢. G[k, l, a., /3, "(](y) (mod Q), and 
thus, by Lemma 6.2, there are at most 2p(lxl) + 2 values of 'YI+l such that 
Vk,!+l = G'[k, l, a., /3, 7'] (mod Q), where "(1 = ("11 , · · · , 'YI+d· This implies 
that for all k E {1, ... , r(lxl)}, l E {0, ... , s(lxl) - 1 }, a., f3 E (ZQ )s(lxl), 
'Y = ("11, ... ,"fl) E (ZQ)1, and all polynomials g(y) E ZQ[Y] of degree 
at most 2p(lxl) + 2, if vk,l ¢. G'[k, l, a., /3, 'Y] (mod Q) and g passes the 
part (ii) of Step 2(a), then, for 'YI+l chosen uniformly at random in ZQ, 
with probability at most 2P(I~)+4, Vk,l+l = G'[k, l, a., /3, 'Y'] (mod Q), where 

'Y' = ('Yb ... ''YI+I)· 
Furthermore, by Proposition 6.15, for all k E {1, ... , r(lxl)}, a., /3, 'Y E 

(ZQ)s(lxl), and all polynomials h E ZQ[Y] of degree at most p(lxl) + 1, if 
vk,s(lxl) ¢. G'[k, s(lxl), a., /3, 'Y] (mod Q) and vk,s(lxl) = h(O)h(1) (mod Q), 
then h ¢. H[k, a., /3, "f]. Thus, for all k E {1, ... , r(lxl)}, a., /3, 'Y E (ZQ)s(lxl), 
and all polynomials h E ZQ[Y] of degree at most p(lxl) + 1, if vk,s(lxl) ¢. 
G'[k, s(lxl), a., /3, 'Y] (mod Q) and h passes the test in Step 2(b), then, for p 
chosen uniformly at random in ZQ, with probability at most p(lxJ+2 , Vk-l,O = 
G'[k - 1, 0, a.', /3', f] (mod Q), where a.' = ('Y - a.)p +a. mod Q and /3' = 
(/3- 'Y)P + 'Y mod Q. 

Finally, if v0 ,0 ¢. G'[O, 0, a., /3, f] (mod Q), then the verifier deterministi­
cally rejects x in Step 3. 

By the above observations, the probability that the verifier accepts x is at 
most <2P(Ixl)+2)r~xl)(s(lxl)+l). Since m(n) = r(n)(2p(n) + 2)(s(n) + 1) + 3 and 

Q ;:::: 2m(lxl), this is at most k. Thus, the probability that the verifier accepts 
xis at most k + k = ~·Hence, the protocol is sound. 

6.4 MIP = NEXP 

D Claim 6.18 
D Lemma 6.11 

In this section we study the power of multiprover interactive proof systems. 
We stipulate that the provers here do not talk among themselves; otherwise, 
one prover could simulate all the other provers, and thus, the computational 
power of the system is the same as that of PSPACE. We will show that there 
is a big jump in the computational power when one extra prover is added to 
the system. Namely, we will show in this section that the two-prover inter­
active proof systems recognize precisely those languages in nondeterministic 
exponential time. We also show that with more than two provers the verifier 
can recognize all languages in nondeterministic exponential time. 

Theorem 6.19 MIP = NEXP. 
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6.4.1 Probabilistic Oracle Protocols and MIP ~ NEXP 

In order to prove Theorem 6.19 we introduce the concept of probabilistic 
oracle protocols. 

Definition 6.20 A language L has a probabilistic oracle protocol if there 
exists a probabilistic polynomial time-bounded omcle Turing machine M such 
that, for every x E E*, the following conditions hold: 

1. (Completeness) If x E L, then there exists some omcle H such that 
M on input x relative to H accepts with probability greater than ~. 

2. (Soundness) If x fl. L, then for every omcle H M on input x relative 
to H accepts with probability less than ~. 

The difference between the above definition and Definition 6.1 is that here 
only one prover is involved and the unique prover behaves as an oracle. 

Theorem 6.21 For every language L, L is in MIP if and only if L has a 
probabilistic omcle protocol. 

Proof For the "only-if" part, suppose that L is a language in MIP. Take a 
verifier V witnessing L E MIP. Let k ~ 1 be the number of provers that V 
communicates with. Without loss of generality, we may assume that provers 
provide single-bit answers. By following an argument similar to the one we 
had in the proof of Lemma 6.10 on page 123, we can assume that these provers 
are deterministic. 

We modify the queries of V. Let x be an input to the system. Suppose that 
Vis about to make a query, say y. Let i, 1 :$ i :$ k, and j ~ 1 be such that the 
query y that Vis about to make is to a query to Pi and Von input x has made 
j -1 queries to H so far. Then we replace this query by (x, i,j, y, W), where x 
is the input to the system and W is the history of communication between V 
and Pi. More precisely, W = Y1#b1$Y2#b2$ · · · $y3-1#bj-l• where for each 
i, 1 :$ i :$ j- 1, Yt is the fourth component (the y part) of the ith query of V 
to Pi and bt is the answer that Pi provided to that query. This modification 
makes the queries of V unique, in the sense that no queries are made twice. 
This modification does not change the probability of acceptance since the 
additional four pieces of information, i.e., x, i, j, and W, are already known 
to the prover. 

As the provers are deterministic and the queries are unique, we can turn 
V into an oracle Turing machine N by replacing the provers with a single 
oracle. Then for every x E E*, the largest probability that N on input x 
accepts with any oracle is equal to the largest probability that Von input x 
accepts with any set of k provers. So, the two conditions in Definition 6.20 
hold. Thus, L has a probabilistic oracle protocol. This proves the "only-if" 
part. 

For the "if" part, suppose that there is a polynomial time-bounded prob­
abilistic oracle Turing machine N witnessing that L has a probabilistic oracle 
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Step 1 V executes the following lOp(lxl) times: 
(a) V simulates Non input x using P1 as the oracle. 
(b) V calls the Sampling Algorithm (in Fig. 6.4) with M = p(lxl) and t = 

p(lxl) and uses it to select one query Yi that is made during this round 
of simulation and asks Yi to P2. 

Step 2 V accepts x if for all i, 1 ~ i::; lOp(lxl), the answer of P2 to Yi is equal 
to that of P1 and the number of simulations of N on input x that accepted 
is at least 5p(lxl). Otherwise, V rejects x. 

Fig. 6.6 The two-prover protocol 

protocol. We may assume that there is a polynomial p such that, for every 
x E E*, N on input x always makes exactly p(lxl) queries. We may also 
assume that the oracle provides single-bit answers. Let V be a verifier with 
two provers, P 1 and P2, that, on input x, executes the algorithm in Fig. 6.6 

6.4.1.1 Completeness of the Protocol. We claim that this is a complete 
two-prover interactive proof system for L. Obviously, V is polynomial time­
bounded. We need to show that the protocol is complete. and sound. We first 
show that the protocol is complete. Let x be any member of L. The following 
lemma, called Chebyshev's Inequality, which we state without a proof, is well 
known and useful for our analysis. 

Lemma 6.22 (Chebyshev's Inequality) Let X be a random variable 
with expectation a: and variance a. Then for all 8 > 0 

a 
Pr[IX - a: I 2:: 8] ~ 82 . 

Since x E L, there exists an oracle H relative to which N on input x 
accepts with probability p > ~·Suppose that both P1 and P2 provide answers 
as if they were H. Then the consistency tests between P1 and P2 all succeed. 
So, the probability that V accepts is equal to the probability that more 
than half of the simulations in Step 1 accept. Since the coin flips of V are 
independent, the expectation a: of the number of accepting computations that 
V finds is p(lOp) > ~ and the variance a of this number is p(l- p)(lOp) < 
~.where pis shorthand for p(lxl). Then, by Lemma 6.22), the probability 
that the number of accepting paths is less than or equal to 5p is less than or 
equal to 

This quantity is less than 230 < i for p(n) 2:: 2. As we can make the polynomial 
p arbitrarily large, the probability of acceptance is greater than ~ for x. 
Hence, the protocol is complete. 
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6.4.1.2 Soundness of the Protocol. Next we prove that the protocol is 
sound. Let x be an arbitrary member of L. Let n = lxl and m = 10p(n). We 
need to show that, for every pair of provers (P1, P2), the probability that V 
on input x accepts through interactions with P1 and P2 is strictly less than 
~-The number of times that the sampling algorithm is executed is lOp(lxl). 
The probability that the sampling algorithm fails is less than 2-P(Ixl). So, the 
probability that a sampling error occurs during the execution of the entire 
protocol is 1~;{~~jjl. This is at most 110 for p(n) 2::: 10. 

We claim that a pair of deterministic provers (P1, P2) can achieve the 
highest acceptance probability . To see why, note that we can assume that 
the goal of (PI. P2) is to maximize the acceptance probability of V on input 
x through interactions with them. Also, note that an additional role of P2 
is correctly to guess the answer that P1 provided. Upon receiving a query, 
P2 can use its unlimited computational power to calculate the probability 
that P1 provided a 0 as an answer. Then P2 can maximize the probability 
by answering with a 0 if the calculated probability is greater than or equal 
to ~ and with a 1 otherwise. So, the strategy of P2 can be deterministic. 
On the other hand, suppose that the very last query of V on input x is 
given to P1. Having unlimited computational power and knowing the protocol 
of P2, P1 can calculate the probability of acceptance of V on input x in 
the case when it a,nswers with a 0 and the probability of acceptance of V 
on input x when it answers with a 1. Call these probabilities, a 0 and a1. 
respectively. To maximize the acceptance probability of V on input x, P1 can 
deterministically select its answer as follows: answer with a 0 if a 0 ,2::: a 1 and 
with a 1 otherwise. Thus, P 1 can answer the very last query deterministically 
without decreasing the probability of acceptance of V. By repeating this 
argument for the penultimate query, we can argue that P1 can answer that 
query deterministically without decreasing the acceptance probability of V. 
By repeating this argument over and over again, we can argue that P2 can 
answer every query deterministically, without making it less likely that V 
will accept. 

Since P2 is deterministic and V makes only one query to P2 at each round, 
for every i, 1 ~ i ~ m, the function of P2 at round i can be viewed as that 
of an oracle. We can assume that at the beginning of each round, P1 decides 
its strategy for that round. This selection determines the probability that P1 
provides an answer that is different from that which P2 would provide. So, 
the overall strategy of P1 can be parameterized using m real numbers in the 
interval [0, 1]. For each a= (a1, · · · , am) E [0, 1]m, we say that P1 takes an 
a-strategy if for all i, 1 ~ i ~ m, the strategy of P1 in round i is to provide 
an answer different from what P2 would provide with probability ai. We will 
show below that there exists some n0 > 0 such that, for all n 2::: no, and for 
all a E [0, 1]m, the probability that V accepts x in the case when P1 takes 
an a-strategy is strictly less than ~-
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Let a 1, · · · , am E [0, 1] m. Assume that P1 takes an a-strategy. Since 
x ¢ L, for every oracle Q, the probability that N accepts x with Q as the 
oracle is less than i· Thus, for every i, 1 :::; i :::; m, the probability that 
the simulation of N on input x in round i through interactions with P1 is 
accepting is strictly less than 

mm 1 -+a· <-+a·. . { 1 } 1 
'4 • -4 • 

Thus, the expected number of accepting simulations that are generated is 
less than !;f + L::1 <i<m ai. Also, the variance of the number of accepting 

simulations that ar~ generated is less than L::l<i<m(i + ai)(~- ai) :::; !;f + 
L::l<i<m ai. Now we claim that under the assumption(*), the probability that 
V a~c~pts xis at most i· To prove the claim, first suppose that L::l<i<m ai :::; 
94';;. Then, by Chebyshev's Inequality (Lemma 6.22), the probability that the 
number of accepting simulations that are generated is at least ~ is less than 

!;f + ~ - 7600 - 760 
(~-!;f--94';;)2- m - p. 

This is less than ~ for p(n) ;:::: 6081. Thus, the probability that V accepts x 
when there is no sampling error is less than ~-

Next suppose that L::l<i<m ai > ~';;. Then, under the assumption (*), 
the expected number of simufations in which P1 disagrees with P2 on at least 
one query is 94';; while the variance of the number is less than 94';;. Then, 
by Chebyshev's Inequality (Lemma 6.22), the probability that there are no 
more than ~ = 2p(jxl) simulation rounds in which P1 disagrees with P2 is 
less than 

~ 3600 360 

( 9m _ .!!!:)2 =--;;- = p(jxl) · 
40 5 

This is less than l6 for p(n) ;:::: 5761. Furthermore, if there are 2p(jxl) sim­
ulation rounds in which P1 disagrees with P2, then the probability that the 
disagreement is not discovered is at most 

( 1 __ 1_)2p(lxl) 

p(jxl) 

This is less than l6 for p(n) ;:::: 5761. Thus, for all n sufficiently large, the 
probability that V accepts x when there is no sampling error is less than ~­
Since a sampling error makes V accept and occurs with probability less than 
~. the probability that V accepts x is less than i· Hence, the protocol is 
sound. This proves the theorem. 0 Theorem 6.21 

Now we turn to the proof of Theorem 6.19. We first show that every 
language in MIP is indeed in NEXP. 

Theorem 6.23 MIP ~ NEXP. 
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Proof Let L E MIP. By Theorem 6.21, there is a polynomial time-bounded 
probabilistic oracle Turing machine M satisfying the completeness and the 
soundness conditions in Definition 6.20. Then, for every x E E*, x E L 
if and only if there is an oracle relative to which M on input x accepts 
with probability strictly greater than ~· Let p be a polynomial bounding 
the runtime of M. Then for every x E E* the queries of M on input x 
are of length at most p(ixi). Then, for every x E E*, x E L if and only if 
there is some B ~ (E*)SP(Ixl) such that M on x relative to B accepts with 
probability grater than ~· Without loss of generality, we may assume that 
at each computational step, M has at most two possible moves and that all 
possible moves that M can make are linearly ordered. Define N to be the 
nondeterministic Turing machine that, on input x, executes the following: 

• For each y E E* having length at most p(ixi) N guesses a bit b(y). N sets 
B to the set of all strings y E E* having length at most p(ixi) such that 
b(y) = 1. 

• N sets count S to 0. Then, for each w E EP(Ixl), N does the following: 
- N deterministically simulates M on input x with oracle B along path w 

as follows: For each i, 1 :::;_ i :::;_ p(ixi), if there are two possible moves that 
M on input x with oracle B can make at step i in the current simulation, 
then N picks the move with the lower order if Wi = 0 and the one with 
the higher order if wi = 1, where wi is the ith symbol of w. 

-If M on input x with oracle B accepts along path w, then N increments 
s by 1. 

• N accepts x if S/2P(Ixl) > ~ and rejects otherwise. 

It is easy to see that for every x E E*, N on input x accepts if and only if 
there is some B ~ (E*)SP(Ixl) such that M on x relative to B accepts with 
probability grater than ~· So, N decides L. The runtime of N is 2cp(n) for 
some constant c > 0. Thus, L E NEXP. 0 

6.4.2 NEXP ~ MIP 

The rest of the section proves the other inclusion: 

Theorem 6.24 NEXP ~ MIP. 

Let L be a language in NEXP and let N L be a one-tape NEXP machine 
that decides L. By Theorem 6.21, we have only to show that there is a 
probabilistic polynomial time-bounded oracle Turing machine M witnessing 
that L has a probabilistic oracle protocol. Our proof is in three phases: 

Phase 1 conversion of the membership question in L into a logical expres­
sion; 

Phase 2 conversion of the logical expression into an arithmetic expression; 
and 

Phase 3 development of an interactive oracle protocol for verifying the 
value of the arithmetic expression. 
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6.4.2.1 Encoding Membership Questions. In the first phase we convert 
the membership questions in L to logical expressions. By the tableau method, 
there is a polynorp.ial p such that, for every x E E*, there is a 3CNF formula 
'Px of 2P(Ixl) variables such that x E L if and only if 'Px is satisfiable. For a 
variable X, we write X = 1 to denote the literal X and x = 0 to denote the 
literal X. Then, we can assume that each clause in 'Px is of the form 

for some n 1 , n2, n3 E {0, ... , 2P(Ixl)- 1} and some b1 , b2, b3 E {0, 1}. For 
each x E E*, let the binary strings of length p(lxi) encode the numbers in 
{0, ... ,2p(lxl) -1}. Define the polynomial p' by: p'(n) = 3p(n) + 3. Then, 
for every x E E*, the set of all p'(lxi)-bit binary strings y = n 1n2n3b1b2b3 
is isomorphic to the set of all clauses that potentially appear in 'Px. There 
are exponentially many clauses in Cf'x, so no polynomial-time algorithm can 
compute the entire description of 'Px· However, a polynomial-time algorithm 
can check, given x E E* and a potential clause y, whether y actually appears 
in Cf'x· Define 

B = {x#y I x E E* 1\ y E EP'(Ixl) 1\ y appears in cpz}. 

Then B E P. Furthermore, for every x E E*, x E L if and only if 

($) there is an assignment A such that, for every potential clause y = 
n1n2n3b1b2b3, if y is actually a clause in Cf'x, then A satisfies y. 

By viewing A as a mapping from {0, 1 }P(Ixl) to {0, 1 }, ($) can be rewritten 
as 

(:JA : {0, 1 }P(Ixl) --.. {0, 1}) 
(Vy = n1n2n3b1b2b3 E {0, 1}P'(Ixl)) 
[x#y E B ===? 

(A(n1) = b1) V (A(n2) = b2) V (A(n3) = b3)]]. 

(6.2) 

Noting that B E P, consider a nondeterministic polynomial time-bounded 
machine N B that, on input x E E*, guesses a clause y, and then accepts if and 
only if x#y E B. Since for all x, x', y, y' E E*, if lxl = lx'l and IYI = IY'I, then 
lx#yl = lx'#y'l, by applying the tableau method to NB and by adding some 
dummy variables and some dummy clauses, we obtain in polynomial time, 
for each x E E*, a generic 3CNF formula (x with the following properties: 

• There is a polynomial q depending only on L such that (x has p'(ixi)+q(lxi) 
variables. 

• There is a polynomial m depending only on L such that (x has m(lxi) 
clauses C1, ... ,Cm(lxD· 

• For every y E EP'(Ixl), x#y E B if and only if there is a satisfying assign­
ment a of (x such that y is the length p'(lxl) prefix of a. 
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Then we can rewrite equation 6.2 as 

(3A: {0, 1}P(Ixl)- {0, 1}) 
(Vy = n1n2n2b1b2b3 E {0, 1}P'(IxD) (Vz E {0, 1}q(lxl}) (6.3) 
[(x(yz) ==} [(A(nl) = bl)V(A(n2) = b2)V(A(n3) = b3)]]. 

The condition inside the outer brackets [] of the formula, i.e., 

is equivalent to 

and thus, is equivalent to 

-.Cl(yz) V .. · V -.Cm(lxl)(yz)V 
(A(n 1) = bl) V (A(n2) = b2) V (A(n3) = b3). 

(6.4) 

Define p"(n) = p'(n) + q(n). Then equation 6.3 is equivalent to 

(3A: {0, 1}P(Ixl) - {0, 1} )(Vw E {0, 1}P"(IxD)[Z(A; w) = 1], (6.5) 

where 

Z(A,w) = [-.Cl(w) V .. · V -.Cm(lxl)(w)V 

(A(n 1) = bl) V (A(n2) = b2) V (A(n3) = b3)] 

and w is of the form n 1n2n3b1b2b3z such that ln1l = ln2l = ln31 = p(lxl), 
b1,b2,b3 E {0,1}, and lzl =q(lxl). 

6.4.2.2 Converting the Logical Expression to Arithmetic Expres­
sions. In the second phase we obtain an arithmetic expression of equa-: 
tion 6.5. For simplicity, in the following discussion we fix a string x whose 
membership in L we are testing. Let m = m(lxl), p = p(lxl), andp" = p"(lxl). 

To construct our arithmetic form, we first replace equation 6.4 by 

Here 

f31 = (A(6, ... ,€p) -6pH)2, 

f32 = (A(€P+l• ··· ,6p) -6p+2)2, 

f33 = (A(6p+l, ... , 6p) - 6p+3)2, 

and, for each i, 1 SiS m, 

Cl!i = (€k;,l- Ci,l)2 + (€k,, 2 - Ci,2) 2 + (€k;, 3 - Ci,3)2, 

(6.6) 

where Ci(yz) = (€k,, 1 = (1- Ci,l)) V (€k,, 2 = (1- Ci,2)) V (€k,, 3 = (1- Ci,3)). 
Then, for every A: {0, 1}P- {0, 1}, the following conditions hold: 

• If A is a polynomial of total degree at most d, then fx is a polynomial of 
total degree at most 6d + 2m. 
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• For every at, ... , ap11 E {0, 1}P11
, 0 $ f,(A; a1, ... , ap11) $3m. 

• f,(A; at, ... , ap11) = 0 if and only if equation 6.4 holds. 

Then, for every A: {0, 1}P---+ {0, 1}, 

(Vw E {0, 1}p11 (1xi))[Z(A;w) = 1] 

if and only if 

(V(a1, · · · ap11) E {0, 1}P11
) [fx(A; at, ... , ap11 ) =OJ. (6.7) 

To determine whether x E L we test whether there exists a function A : 
{0, 1}P---+ {0, 1} for which equation 6.7 holds. 

Let F be a field. Suppose that A is obtained from some B : FP ---+ F by 
restricting its domain to {0, 1}P. Then, x E L if and only if there exists some 
B : FP ---+ F that satisfies the following two conditions: 

• For every (a1, ... ,ap) E {0, 1}P, B(at, ... ,ap) E {0, 1}. 
• For every (a1, ... , ap11) E {0, 1}P11

, f,(B; at, ... , ap11) = 0. 

What field F and what kind of function B satisfy these conditions in the case 
when x E L? The following fact shows that a polynomial of total degree at 
most pis sufficient. 

Fact 6.25 Let Q be an arbitrary prime number greater tharJ, 3m. Then x E L 
if and only if there exists a B : Z~ ---+ Zq such that 

1. B is a polynomial of total degree at most p, 
2. for every (a 1. . . . , ap) E { 0, 1 }P, B (a 1, . . . , ap) mod Q E { 0, 1}, and 
3. for every (at, ... , ap11) E {0, 1}P11

, f,(B; a1, ... , ap11) = 0 (mod Q). 

Proof of Fact 6.25 Suppose that there exists an oracle A that satisfies 
equation 6.7. Define a multivariate polynomial B by: 

where t'o(~) = 1 - ~ and £1(~) = ~· Then B is a multilinear polynomial in 
6, ... , ~P' i.e., a polynomial that is linear in each of the variables ~1 , ... , ~p· 
This implies that B is a polynomial of total degree at most p. Thus, prop­
erty 1 holds. For all c = (c1, ... ,cp) and a= (a1, ... ,ap) E {0,1}P, 
TI1::;i:=;p t'c; (ai) is equal to 1 if c = a and is equal to 0 otherwise. Then, 
for every (at, ... , ap) E {0, 1}P, A(a1, ... , ap) = B(a1 , ... , ap)· Since the 
values of A are restricted to 0 and 1, property 2 holds. This implies that for 

( 
II 

every at, ... ,ap11) E {0,1}P, f,(B;a 1, ... ,ap11) E {0,1} andthatforevery 
( 

II 

at, ... , ap11) E {0, 1}P , f,(B; at, ... , ap11) = 0 {::::=} f,(B; at, ... , ap11) = 
0 (mod Q). Thus, property 3 holds. 

On the other hand, suppose that there is a polynomial B of total degree 
at most p that satisfies properties 1, 2, and 3. Let B' denote the function 
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constructed from 13 by restricting its domain to {0, 1}P and by taking modulo 
Q of the value. By property 2, we can treat 13' as if its values were restricted 
to 0 and 1. Recall that for every oracle A, and every (a 1 , ••• , ap") E {0, 1 }P", 

0 ~ fx(A; a1, ... ,ap") ~3m. 

Since Q >3m, for every (a1, ... ,ap") E {0,1}P", fx(l3'; a1, ... ,ap") = 0 
if and only if fx(l3'; a1, ... ,ap") = 0 (mod Q). Thus, equation 6.7 holds. 
This implies that x E L. 0 Fact 6.25 

6.4.2.3 Developing the Probabilistic Oracle Protocol. Now we de­
velop a probabilistic oracle Turing machine M that tests the membership of 
x in L based on Fact 6.25. 

We assume that the part of the oracle providing information about the 
membership of x in L has a binary encoding of an integer Q E [22m, 24m], 
which is supposedly a prime number, and a certificate of its primality that can 
be verified in polynomial time. This assumption is valid. See the discussion 
in the proof of Lemma 6.11 on page 131. 

We also assume that the _part of the oracle corresponding to x has infor­
mation about the function 13 : Z~ -+ ZQ, which the oracle claims has the 
properties in the statement of Fact 6.25. 

We define a family of polynomials 13o, ... , 13P. Define for all 6, ... , eP E 

ZQ, 13o: Z~-+ ZQ by 

For each i, 1 ~ i ~ p, define 

13i(6, ... , ep) = 

13i-1(6, ...• ei-1,o,ei+1• ...• ep) 
+13i-1(6, ...• ei-1,1,ei+1· ... • ep)ei· 

The functions B, 13o, ... , 13p have the following properties. 

Fact 6.26 

(6.8) 

(6.9) 

1. If f3 is a polynomial of total degree at most p, then, for every i, 0 ~ i ~ p, 
13i is a polynomial of total degree at most 2p + i. 

2. For every i, 0 ~ i ~ p, 

13i(6, ... ,ep)= L 13o(c1,····Ci,ei+1·····ep) 11 er 
Ct, ... ,ciE{0,1} 1$j$i 

3. If for all (6' ... 'ep) E {0, 1 }P it holds that B(6' ... 'ep) = 0 (mod Q) I 
then, for all (6, ... ,ep) E Z~, 13P::: 0 (mod Q). 

Proof If f3 is a polynomial of total degree p, then 13o is a polynomial of 
total degree 2p, For every i, 1 ~ i ~ p, if 13i-1 is a polynomial of total degree 
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at most 2p + i - 1, then Bi is a polynomial of total degree at most 2p + i. So, 
part 1 holds. 

We prove part 2 by induction on i. For the base case, the equality trivially 
holds. For the induction step, suppose that i = io for some 1 :::; i0 :::; p and 
that the claim holds for all values of that are greater than or equal to 0 and 
less than or equal to i0 - 1. By the induction hypothesis, 

Bi-1(6, ... ,ev) = 

L Bo(c1, ... ,ci-1,ei, ... ,ep) II e?, 
1~j~i-1 

and by definition 

Bi(6, ... ,ev) = Bi-1(6, ... ,ei-1,o,ei+1• ... ,ev) 
+ Bi-1(6, ... ,ei-1, 1,ei+1, ... ,ev)ei· 

By combining the two equalities, we have 

Bi(6, ... ,ev) 

L Bo(c1, ... ,Ci-1,o,ei+1, ... ,ep) II e? 
Ct, ... ,Ci-tE{0,1} 1~j:5i-1 

+ 
Ct. ... ,Ci-tE{0,1} 1~j~i-1 

= L Bo(c1, ... ,ci,ei+1, ... ,ep) II e?. 
c1, ... ,ciE{0,1} 1~j~i 

Thus, part 2 holds. 
To prove part 3, note that 

Bv = 

If for all (6, ... ,ev) E {0, l}P it holds that B0(6, ... ,ev) = 0 (mod Q), 
then for all (c1, ... , ep) E {0, 1}P B(c1, ... , ep) = 0 (mod Q). This implies 
that Bv = 0 (mod Q). 0 

We define a family of polynomials Co, . . . , Cp". Let Co 
fx(B; a~, ... , ap" ). For each i, 1 :::; i:::; p", define 

ci(6, ... ,ev") = 
ci-1(x1, ... ,xi-1,o,ei+1, ... ,ev") (6.10) 
+Ci-1(x1, ... ,xi_~,1,ei+b ... ,ev")ei· 

The functions C0, ... , Cp" have the following properties. 

Fact 6.27 

1. If B is a polynomial of total degree at most p, then for every i, 0 :::; i :::; p", 
ci is a polynomial of total degree at most (6p +2m)+ i. 
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2. For every i, 1 ~ i ~ p", 

c,, ... ,c;E{O,l} l~j~i 

3. If for all (6, ... ,ep") E {0,1}P" it holds that Co(6, ... ,ep") 0 

(mod Q), then, for all (6, ... ,ep") E z~', Cp" =: 0 (mod Q). 

Proof Suppose that B is a polynomial of total degree at most p. Then Co 
is a polynomial of total degree at most 6p +2m. For every i, 1 ~ i ~ p", and 
every d ::::: 1, if ci-1 is a polynomial of total degree at most d, then ci is a 
polynomial of total degree at most d + 1. Thus, part 1 holds. 

Parts 2 and 3 can be proven exactly the same way as we proved the 
corresponding parts of Fact 6.26. D 

We assume that the oracle has functions Q, go, ... , gp, 1io, ... , 1ip" 

which the oracle claims and B, Bo, ... , Bp, Co, ... , Cp", respectively, and that 
the oracle tries to convince M that both gp and 1ip" are zero functions mod­
ulo Q. To test the claim by the oracle, the machine M executes a sequence of 
protocols. The following conditions are tested by the sequence of protocols. 

(A) Q is a polynomial of total degree at most p. 
(B) For each i, 0 ~ i ~ p, gi is a polynomial of total degree at most 2p + i. 
(C) For each i, 0 ~ i ~ p", 1ii is a polynomial of total degree at most 

6p+2m+i. 
(D) Equation 6.8 holds with go and Q in place of Bo and B, respectively. 
(E) For each i, 1 ~ i ~ p, equation 6.9 holds with gi and gi-l in place of Bi 

and Bi-1, respectively. 
(F) For each i, 1 ~ i ~ p", equation 6.10 holds with 1ii and 1ii-l in place 

of Ci and Ci-1• respectively. 
(G) 1io = fx(Qo; k,6, ... ,ep"-1) (mod Q). 
(H) gP = 0 (mod Q). 
(I) 1ip" = 0 (mod Q). 

The machine M executes the following to test these conditions. 

• To test (A), M executes the Low-Degree Test in Fig. 6.7 with s = p, 

d = p, and U = Q. 
• To test (B), for each i, 0 ~ i ~ p, M executes the Low-Degree Test in 

Fig. 6.7 with s = p, d = 2p + i, and U = gi· 
• To test (C), for each i, 0 ~ i ~ p", M executes the Low-Degree Test in 

Fig. 6.7 with s = p", d = 6p +2m+ i, and U = 1ii· 
• To test (D), M executes the G-Equality Test in Fig. 6.8. 
• To test (E), for each i, 1 ~ i ~ p, M executes the Self-Correcting 

Polynomial Equality Test in Fig. 6.9 with s = p, d = p+i-1, U =gi-l, 

and V = gi· 
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• To test (F), for each i, 1 ~ i ~ p", M executes the Self-Correcting 
Polynomial Equality Test in Fig. 6.9 with s = p", d = 6p +2m+ i - 1, 
U = ?-li-1, and V = ?-li· 

• To test (G), M executes the 'Ho-lm Equality Test in Fig. 6.10. 
• To test (H), M executes the Zero Polynomial Test in Fig. 6.11 with 

s = p and U = gp· 
• To test (I), M executes the Zero Polynomial Test in Fig. 6.11 with 

s = p" and U = ?-lp"· 

If all the tests succeed, M accepts x. 
We will now prove that M witnesses that L E NEXP by proving that 

M can be polynomial time-bounded, that the protocol is complete (i.e., if 
x E L, M accepts with probability more than ~), and that the protocol is 
sound (i.e., if x fl. L, M rejects with probability more than ~). 

6.4.2.4 Running-Time Analysis of the Protocol. Since Q ~ 24m, the 
sampling algorithm runs in time polynomial in lxl. Let g(s, d)= 8s(d + 2) 2 . 

For a single run of the Low-Degree Test with parameters sand d, 8s(d + 2)2 

samples are used. Then, the number of samples used to test (A) is 8p(p+2)2 = 
O(p3 ), the total number of samples used to test (B) is 

L (8p(d + 2)2 ) = O(p4 ), 

2p~d9p 

and the total number of samples used to test (C) is 

L 8p"(d + 2)2 = O((p + m + p")4). 

6p+2m~d~6p+2m+p" 

For the G-Equality Test, the number of samples used is p. For a single run of 
the Self-Correcting Polynomial Equality Test with parameters s and d, the 
number of samples used is s + d + 1. Then, the total number of samples used 
to test (E) is 

L (p+d+1)=0(p2 ), 

p~d9p 

and the total number of samples used to test (F) is 

L (p" + d + 1) = O((p + m + p")2 ). 

6p+2m~d~6p+2m+p'' 

The numbers of samples used to test (G), (H), and (I) are p", p, and p", 
respectively. Thus, the grand total of the number of samples used is 0( (p+m+ 
p")4). This is O(nk) for some fixed constant k 2:: 1. All the other arithmetic 
operations required in the protocol can be done in polynomial time. Thus, 
M can be polynomial time bounded. 
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Repeat the following 6(d + 2) 2 times. 

Step 1 Select y, z E (Zq)• independently and uniformly at random. To select 
an entry use the Sampling Algorithm in Fig. 6.4 with M = Q and t = p. 

Step 2 For each i, 0 ~ i ~ d + 1, obtain from the oracle the value of U (y + iz). 
Step 3 Test whether Eo<i<d+l Old,iU(y + iz) = 0 (mod Q), where for every 

d;::: 0 and every i, 0 ~ i :5_ d + 1, Old,i = ( -1)i+l (~). 
If the test fails then immediately reject the input x. 

Fig. 6. 7 The low-degree test 

Step 1 Using the sampling algorithm select Yl, ... ,yp from Zq. 
Step 2 Use the oracle to obtain u = Q(y1, ... ,yp) and v = 9o(Yl, ... ,yp)· 
Step 3 Test whether u(1 - u) = v (mod Q). If the test fails, then reject x 

immediately. 

Fig. 6.8 The G-equality test 

Step 1 Use the sampling algorithm to select YI, ... ,y.,zo, ... ,zd from Zq. 
Step 2 Test whether zo, ... , Zd are pairwise distinct. If the test fails then accept 

X. 

Step 3 Set w to (y1, ... ,y.) and for each j, 0 ~ j ~ d, set Wj tow with the 
ith entry replaced by Zj. Obtain from the oracle ii. = V(w) and for each i, 
0 ~ i ~ d, Ui = U(wi). 

Step 4 Set A to the (d + 1) x (d + 1) matrix 

1 Z1 z1 · · · z1 ( 1zoz~ .. ·z1) 
A= ..... . 

• 0 • 0 • . . . . . 
1 Zd z~ · · · z; 

Use some polynomial-time algorithm (e.g., Gaussian elimination) to compute 
A-1. 

Step 5 Compute eo, ... , cd by 

and set t( 0) to the polynomial eo + c1 (} + · · · + cd(}d. 

Step 6 Compute Vo as t(O) mod Q and v1 as t(1) mod Q. Test whether vo + 
VIYi = ii. (mod Q). If the test fails then reject x immediately. 

Fig. 6.9 The self-correcting polynomial equality test 
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Step 1 Using the sampling algorithm select Yb ... ,yP" from ZQ. 
Step 2 Use the oracle to obtain uo = 'Ho(YI, ... ,Yp"), u1 = Q(y1, ... ,yp), 

u2 = Q(Yp+I, ... , Y2p), and U3 = Q(y2p+I, ... , Y3p). 
Step 3 Evaluate f1 1<i<m a;(YI, ... , Yp") modulo Q, where O!i is the polynomial 

appearing in the definition of f,. 
Step 4 Test whether uo = (ui-Y3p+I)2(u2-Y3p+2)2(u3-Y3p+3)2u4 (mod Q). 

If the test fails then reject x immediately. 

Fig. 6.10 The 'Ho-f, equality test 

Step 1 Use the sampling algorithm to select y E (ZQ)". 
Step 2 Obtain from the oracle u = U(y). If u '/:. 0 (mod Q) reject x immedi­

ately. 

Fig. 6.11 The zero polynomial test 

6.4.2.5 Completeness of the Protocol. Next we show that the proto­
col is complete. Suppose that x E L. Then there exists some polynomial 
B of total degree at most p that satisfies all the conditions in Fact 6.25. 
Take the oracle functions Q, 9o, ... , 9p, 'Ho, ... , 'Hp" that are equal to 

B,Bo, ... ,Bp,Co, ... ,CP"• respectively. Then, by Facts 6.26 and 6.27, the 
oracle functions satisfy the following conditions: 

• Bo(6, ... ,ep) = B;;(el, ... ,ep)(1- B;;(el, ... ,ep)). 
• For every i, 1 $ i $ p, 

ai(el, ... • ep) = 

9i-l(xl, ... ,xi-l,o,ei+l, ... ,ep) 

+ ai-l(xl, ... ,xi-1, 1,ei+1, ... ,ep)ei· 

• For every i, 0 $ i $ p, Qi is a polynomial of total degree at most 2p + i. 
• For all (el, ... ,ep) E z~, 9p(el, ... ,ep) = o (mod Q). 
• For every i, 1 $ i $ p", 

'Hi ( 6 , . . . , ep" ) = 

'Hi-l(xl, ... ,xi-l,o,ei+l, ... ,ep") 

+'Hi-l(xl, ... ,xi-1,1,ei+1, ... ,ep")ei· 

• 'Ho(XI, .. · ,ep") = fx(B; e1, ... ,ep")· 
• For every i, 0 $ i $ p", 'Hi is a polynomial of total degree at most 6p + 

6m+i. 
• For all (6, ... ,e;) E z~', 'Hp"(el, ... ,ep) = o (mod Q). 

Since the protocol is designed to accept on encountering a sampling error 
and we need to prove here that the probability that M accepts is greater 
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than ~' we can assume that there is no sampling error. We claim that with 
probability one all the tests e\ther succeed or force M to stop computation 
instantly by accepting x. Clearly, the Zero Polynomial Test succeeds with 
probability one for both QP and 'Hp". The Low-Degree Test succeeds, too 
(again, given that there is no sampling error), which follows from the lemma 
below. We will give its proof in Sect. 6.4.3. 

Lemma 6.28 (The Low-Degree Polynomial Characterization 
Lemma) Let d, s be positive integers. Let F = 7lR for some prime number 
R. For every function h : ps ~ F, h is a polynomial of total degree at most 
d if and only if for all y, z E F 8 , it holds that 

I: "fih(y + iz) = 0 (mod R), 
O~i~d+1 

where for every i, 0 $ i $ d + 1, 'Yi = (dt1) ( -1)i. 

Lemma 6.28 assures that the Low-Degree Test succeeds with probability 
one for 9o, ... , QP, 'Ho, ... , 'Hp"· Both the G-Equality Test and the 'Ho- fx 
Equality Test pass with probability one. 

Furthermore, we claim that the Self-Correcting Polynomial Equality Test 
succeeds with probability one each time it is called. To prove the claim, 
suppose that the test is called for i, 1 $ i $ p, s = p, d = 2p + i - 1, 
U = 9i-1, and V = Qi· Let Y1, ... , Yp, zo, ... , Zd E ZQ· If zo, ... , Zd are not 
pairwise distinct, then M accepts, so suppose that they are pairwise distinct. 
Let 

g(O) = 
U(y1, ... ,Yi-1,0,Yi+1• ... ,yp)+U(y1, ... ,Yi-1,1,Yi+1• ... ,yp)O 

and 
t(O) = U(y1, ... , Yi-1, t, Yi+1• ... , Yp)· 

Since U is a polynomial of total degree at most d = 2p + i - 1, t is a 
polynomial in (} of degree at most d. Then there exist unique c0 , ... , Cd E 

7lQ such that t(O) = L,0~j~dcJ(}J. For each j, 0 $ j $ d, let Wj = 

(y1, ... , Yi-1, Zj, Yi+1• ... , Yp) and Uj = U(wj)· Let c = (co, ... , cd)T and 
u = (uo, ... , ud)T. Let A be the matrix specified in the protocol, namely, 

( 1ZoZ~···Z~) 1 z1 z 1 · · · z 1 
A= ..... . . . . . . . . . . . 

1 Zd ZJ · · · Z~ 

This type of matrix is called a Vandermonde Matrix. The following proposi­
tion, which we state without a proof, shows that the determinant of a Van­
dermonde matrix has a simple formula. 
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Proposition 6.29 Let d 2': 2. Let A be a Vandermonde matrix of dimension 
d, i.e., for some a1, ... , ad, A is of the form 

( 

1 a1 a~ · · · at-1) 
1 2 d-1 

a2 a2 ... a2 

. . . . . . . . . . . . . . . . 
1 2 d-1 ad ad ... ad 

Then the determinant of A is fi 1~i<J~d(ai- aJ)· 

By Proposition 6.29, the determinant of A is fio~i<J~d(zi - ZJ)· Since 
z0 , ... , zd are pairwise distinct and ZQ is a field, the determinant of A is 
nonzero, so A is nonsingular. Thus, A-1 exists, and so we can set c = A-1u. 
For all() E ZQ, U(y1, ... ,Yi-1,0,yi+l, ... ,yp) = t(O). Thus, for all() E ZQ, 
g(O) = t(O) + t(1)0. In particular, g(yi) = t(O) + t(1)Yi· By our assumption, 
g(yi) = V(y1 , ... , Yp)· The right-hand side is u of the protocol. Since the 
protocol accepts if and only if u = t(O) + t(1)Yi (mod Q), the probability 
that the test succeeds is 1. 

By following a similar argument, we can show that the protocol accepts 
when the test is called fori, 1 :S i :S p", s = p, d = 6p+2m+i -1, U = 'H.i- 1 , 

and V = 'H.i· 
Hence, the probability that M accepts xis one. This proves the complete­

ness of the protocol. 

6.4.2.6 Soundness of the Protocol. Next we show that the protocol is 
sound. Suppose that x ¢ L. A sampling error occurs in a single run of the 
sampling algorithm with probability less than 2-P. Since the total number of 
samples generated in the entire protocol is 0( (p + m + p")4 ), the probability 
that a sampling error occurs during the execution of the entire protocol is 

0 cp+p;p+m)4). 

This is less than k for all x sufficiently large. That is, the probability that M 
accepts x due to a sampling error is less than k· We will show that for every 
oracle the probability that M accepts x, provided that no sampling error 
occurs, is less than k· Then for every oracle the probability that M accepts x 
is less than k + k = ~ as desired. For simplicity, in the following discussion, 

assume that no sampling error occurs. Let Q, Q0 , ... , QP : (ZQ)P --+ ZQ, 
'H.o, ... , 'H.p" : (ZQ)P" --+ ZQ be the oracle functions. We analyze the tests 
that M conducts. 

6.4.2.6.1 The Low-Degree Test. To analyze the Low-Degree Test, we need to 
define the concept of closeness. 

Definition 6.30 Let s 2': 1 be an integer. Let f, g : (ZQ )8 --+ ZQ be func­
tions. Let 0 :S € :S 1. Then f and g are said to be €-close if the proportion of 
x E ZQ such that f(x) =f. g(x) is at most €. 
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Then we have the following lemma. 

Lemma 6.31 (The Low-Degree Polynomial Closeness Lemma) Let 
s, d ~ 1 be integers. Let 8 = 2(d!2}2. Let f be a function from (ZQ )8 to ZQ. 
Suppose that f is not 28-close to any polynomial of total degree at most d. 
Then f survives the Low-Degree Test with probability less than ~. 

The proof of Lemma 6.31 is long; we defer its proof to Sect. 6.4.4. For 
now, assume that the lemma is correct. 

Let d = p and J = 2(p!2)2 . For each i, 0 ~ i ~ p, let di = 2p + i 
and 8i = 2(2p;i+2P . Also, for each i, 0 ~ i ~ p", let d~ = 6p + 2m + i and 

8~ = 2 (6P+2~+i+2) 2 . Then, by calling the Low-Degree Test, M checks whether 
the following conditions are all satisfied: 

• 9 is J-close to a polynomial of total degree at most d. 
• For all i, 0 ~ i ~ p, Qi is 8i-close to a polynomial of total degree at most 

di. 
• For all i, 0 ~ i ~ p11 , 1-li is 8~-close to a polynomial of total degree at most 

d~. 

Then, by Lemma 6.31, if one of these conditions is not satisfied, M on input 
x rejects with probability more than ~- So, in the following discussion, let us 
assume that these conditions are all satisfied, i.e., 

(*) 9 is J-close to a polynomial g of total degree at most d; 
for each i, 0 ~ i ~ p, there is a polynomial gi of total degree at most di 
that is 8i-close to Qi; and 
for each i, 0 ~ i ~ p11 , there is a polynomial hi of total degree at most d~ 
that is 8~-close to 1-li. 

The polynomials go, ... , gp, ho, ... , hp" are uniquely determined, due to the 
following lemma. 

Lemma 6.32 Let d, s ~ 1 be integers. Let F be a finite field and let N = 
IIFII· Let u : ps --+ F be a nonzero polynomial of total degree at most d. Then 
the proportion of y E ps for which u(y) = 0 is at most*· 

Proof of Lemma 6.32 Let d, s, F, N, and u be as in the hypothesis. Let 
T be the roots of u in ps, i.e., T = {y E ps I u(y) = 0}. To prove the lemma, 
it suffices to show that the cardinality of T is at most dN8 - 1• We prove 
this by induction on s. For the base case, suppose that s = 1. Then u is a 
univariate polynomial of degree at most d. u has at most d distinct roots, so 
IITII ~ d = dN8 - 1 as desired. Thus, the claim holds for s = 1. 

For the induction step, suppose that s = s0 for some s0 ~ 2 and that the 
claim holds for all values of s that are less than s0 and greater than or equal 
to 1. For some e, 0 ~ e ~ d, u can be written as 
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L Vi(6, ... 'es)eL 
O~i~e 

where for every i, 0 ~ i ~ e, Vi is a polynomial in 6, ... , es of total degree at 
most (d-i), and Ve is not the zero polynomial. Then, for ally= (y1, ... , Ys) E 
ps, y is a root of u if and only if one of the following conditions (i) and (ii) 
holds: 

(i) (y2, ... , Ys) is a root of each of vo, ... , Ve. 

(ii) For some i, 0 ~ i ~ e, (y2, ... , Yp) is not a root of vi, and y1 is a root of 
the nonzero univariate polynomial 

L vi(Y2, ... ,ys)et. 
09~e 

By our induction hypothesis, the number of y for which (i) holds is at most 
((d- e)N8 - 2 )N = (d- e)N8 - 1 and the number of y for which (ii) holds is 
at most (N8 - 1 )e. Thus, the total number of roots of u is at most dN8 - 1 as 
desired. This proves the lemma. 0 Lemma 6.32 

Now, the reason that the polynomials g, go, ... , gp and ho, ... , hp" are 
unique can be explained as follows: Let u and v be two distinct polynomials of 
total degree d. Suppose that both u and v are p-close to a function f : ps --+ 

F, where F is a field of size N. Let w = u-v. Since u =f. v, w =f. 0. Since u and 
v are p-close to f, u is 2p-close to v. So, the proportion of y E ps such that 
w(y) = 0 is at least 1 - 2p. By Lemma 6.32, the proportion of y E ps such 
that w(y) = 0 is at most tJ. This implies lft ~ 1- 2p, i.e., tJ + 2p ~ 1. We 
claim that this inequality holds for none of g, go, ... , gp, ho, ... , hp". Since 
N = Q > 2m, the largest value of d is 6p + 2m + p", and the largest value of 

· 1 d th d + 2 · t t 6P+2m+p" + 1 Th" · 1 th p 1s 2(P+2)2 , an us, N p 1s a mos 2m (p+2)2 • 1s 1s ess an 
1 for all x sufficiently large. Hence, g, go, ... , gp, ho, ... , hp" are uniquely 
defined. 

Now that each of Q, 9o, ... , QP, 1io, ... , 1ip" is close to a polynomial, 
we think of the other test as checking the properties (D) through (I) with 
each of these polynomial replacing its corresponding oracle function, i.e., (D) 
through (I) are modified as follows: 

(D') Equation 6.8 holds with g0 and g in place of 8 0 and B, respectively. 
(E') For each i, 1 ~ i ~ p, equation 6.9 holds for gi and gi-1 in place of Bi 

and Bi-1, respectively. 
(F') For each i, 1 ~ i ~ p", equation 6.10 holds for hi and hi-1 in place of 

Ci and Ci-1> respectively. 
(G') ho = fx(go; k, 6, ... ,ep"-1) (mod Q). 
(H') gp = 0 (mod Q). 
(I') hp" = 0 (mod Q). 

Of course, the machine M does not have direct access to any of the polyno­
mials go, ... , gp, h0 , .•• , hp", but each of them is close ·to the corresponding 
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oracle function, so with high probability a randomly selected point in the 
domain hits one at which the oracle function and the polynomial agree. 

6.4.2.6.2 The Zero Polynomial Test and Equality Tests. We next analyze the 
Zero polynomial Test and the Equality Tests. We analyze the effect of the 
Zero Polynomial Test first. Suppose that the test is called with s = p and 
U = QP. Suppose that gp is not the zero-polynomial. Since gp is a polynomial 
of total degree dp, by Lemma 6.32, the proportion of y = (Y1, ... , Yp) such 

that gp(Y) "¥=. 0 (mod Q) is at least 1 - ~· On the other hand, since QP is 
8p-close to gp, the proportion of y = (y1, ... , Yp) such that gp(Y) "¥=. Qp(Y) 
(mod Q) is at most 8p. Thus, the proportion of y = (y1, ... ,yp) such that 

Qp(Y) "¥=. 0 (mod Q) is at least 1- ~ - 8p = 1- ~ - 2 (3p~2)2. This is 

greater than ~ for all x sufficiently large. Thus, we have the following fact. 

Fact 6.33 Assuming (*), if gp is not zero, then gp survives the Zero Poly­
nomial Test with probability less than k. 

By following a similar discussion we can prove the following fact. 

Fact 6.34 Assuming (*}, if hp" is not zero, then hp" survives the Zero 
Polynomial Test with probability less than k. 

The G-Equality Test can be analyzed similarly. Suppose that g(y)(1 -
g(y)) "¥=. g0 (y) (mod Q). Since go is a polynomial of total degree at most 
do = 2p, the proportion of y = (y1, ... , Yp) E (ZQ)P such that g(y)(1 -
g(y)) "¥=. go(Y) (mod Q) is, by Lemma 6.32, at least 1- ~· Since Q is 8-close 

tog, the proportion of y = (y1, ... ,yp) E (ZQ)P such that Q(y)(1- Q(y)) "¥=. 

g(y)(1-g(y)) (mod Q) is at most 8. Since go is 8o-close to 9o, the proportion 
of y = (y1, ... , Yp) such that 9o(Y) "¥=. go(Y) (mod Q) is at most 8o. So, the 

proportion of y = (y1, ... ,yp) such that Q(y)(1- Q(y)) "¥=. 9o(Y) (mod Q) 
· 1 t 1 ~ r r - 1 ~ 1 1 Th" · t th 1s at eas - Q - u - uo - - Q - 2(p+2) 2 - 2(2p+2) 2 • 1s 1s grea er an 

~ for all x sufficiently large. 
Thus, we have the following result. 

Fact 6.35 Assuming(*), ifg(y)(1- g(y)) "¥=. go(Y) (mod Q), then the G­
Equality Test fails with probability greater than ~. 

The analysis of7-lo- fx Equality Test is similar. Let :F = fx(9o; 6, ... , ~p") 
and :F' = fx(go;6, ... ,~p") Suppose that :F' "¥=. ho (mod Q). Since ho is 
a polynomial of total degree at most db, by Lemma 6.32, the proportion 

d' 
of y = (Yb ... , Yp") such that :F'(y) "¥=. ho(Y) (mod Q) is at least 1- ~· 
Since ho is 8b-close to 7-lo, the proportion of y = (Y1, ... , Yp") such that 
7-lo(Y) "¥=. ho(Y) (mod Q) is at most 8b. To evaluate :F' on y = (Yb ... , Yp" ), 
the first, second, and third blocks of p entries are given to 9o, since go is 
directly accessible. Since these three blocks do not intersect with each other, 
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the proportion of y = (y1, ... , Yp") for which at least one of the queries to 
g0 returns a value different from that of Yo is at most 1- (1- ~0 )3 ~ 3~0 . So, 
the proportion of y = (y1, ... , Yp") such that :F(y) ¢. 1i0 (y) (mod Q) is at 

1 t 1 ~ ~1 3~ > 1 6P+2m 1 3 Th' · t eas - Q - 0 - o _ - 2,.. - 2(ap+2m+2)2 - 2(P+2)2. IS Is grea er 
than ~ for all x sufficiently large. Thus, we have the following result. 

Fact 6.36 Assuming{*}, if ho ¢. fx(Yo;EI, ... ,Ep") (mod Q), then the 
'Ho-fx Equality Test fails with probability greater than ~· 

6.4.2.6.3 The Effect of the Self-Correcting Polynomial Equality Test. Now 
we analyze the Self-Correcting Polynomial Equality Test. 

Fact 6.37 Assume (*). Suppose that there is some i, 1 ~ i ~ p, such that 
equation 6.9 does not hold with Yi in place of Bi and Yi-1 in place of Bi-I; 
i.e., 

Yi(€I, ... ,Ep) ¢. Yi-1(6, .. · ,€i-I,O,€i+I• ... ,Ep) 

+ Yi-I(EI, .. · ,Ei-1, 1,€i+I• ... ,Ep)Ei (mod Q). 

Then the probability that M rejects x during the execution of the Self­
Correcting Polynomial Equality Test with s = p, d = di-I, U = gi_1, and 
V = gi is greater than ~. 

Proof of Fact 6.37 Assume (*). Suppose that there is some i, 1 ~ i ~ p, 
such that 

Yi(EI, ... ,Ep) ¢. Yi-1(6, · · · ,Ei-I,O,Ei+I• · · · ,Ep) 

+ Yi-I(€I, ... ,Ei-I, 1,€i+I• ... ,€p)€i (mod Q). 

Let i be such an i. Consider the execution of the Self-Correcting Polynomial 
Equality Test with s = p, d = di, U = gi-l, and V = gi· Suppose that 
YI, ... ,Yi-I,Yi+I• ... ,yp E ZQ have been fixed and Yi,zo, ... ,zd are yet to 
be picked. Let Y denote the (p- 1)-tuple (y1, ... ,Yi-I,Yi+I, ... ,yp) and 
for each() E ZQ, let Y[O] denote (y1, ... ,Yi- 1 ,0,yi+ 1, ••• ,yp)· The protocol 
rejects x if and only if the following two conditions hold: 

• zo, ... , Zd are pairwise distinct, and 
• t(O) +t(1)yi ¢. V(y1 , ... ,yp) (mod Q), 

where t is the polynomial whose coefficients are given by 
A-1(U(Y[z0]), •.. ,U([Y[zd]))T and A is the (d + 1) x (d + 1) Vander­
monde matrix such that for all integers j and k, 0 ~ j, k ~ d, the 
(j + 1, k + 1)th entry of A is zj. Since Yi-I is a polynomial of total degree 
at most d, if Zo, · · · , Zd are pairwise distinct and, for all j, 0 ~ j ~ d, 
U(Y[zj]) :::: Yi-l([Y[zj]) (mod Q), then for all () E ZQ t(O) :::: Yi-l(Y[O]) 
(mod Q). So, M rejects x if 

(i) ZQ, ••• , Zd are pairwise distinct and for every j, 0 ~ j ~ d, U(Y[zj]) = 
Yi-l([Y[zj]) (mod Q), 
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(ii) Yi-i(Y[O]) + Yi-1(Y[1])yi ¢. Yi(YI, ... ,yp) (mod Q), and 
(iii) V(Y[yi]) = Yi(Y[yi]) (mod Q). 

We estimate the probability that all these conditions hold. Let 8 1 [Y] be the 
set of all (} E ZQ such that 9i-l (Y[O]) = Yi-1 (Y[O]) (mod Q) and 8UY] = 
ZQ - 8i[Y]. To estimate the probability that (i) holds, first suppose that 
8 1 [Y] has at least d + 1 elements. Then the probability that (i) holds is 

ll8dYlll(ll8dYJII-1) ... (l18l[Y]II- d) 

This is at least 

('181[~11-d) d+l 

= ( Q -II8~Ylll- d) d+l 

~ 1_ (d + 1)(11~ [YJII +d). 

Qd+l 

Next suppose that 8i[Y] has at most d elements. Then the probability that 
(i) holds is 0. Since II8UYJII + ll8dYJII = Q, 1- (d+I)(II~[YJII+d) < 0. So, 
regardless of the cardinality of 81 [Y], the probability that (i) holds is at least 
1 _ (d+I)(IIS] [YJII+d) 

Q . 
On the other hand, to estimate the probability that both (ii) and (iii) 

hold let 82 [Y] be the set of all (} E ZQ such that Yi-1 (Y[O]) + Yi-l (Y[1 ])yi ¢. 
Yi(YI, ... 1 Yp) (mod Q) and let 8~[Y] = ZQ- 82[Y]. Also, let 8a[Y] be 
the set of all (} E ZQ such that V(Y[yi]) = gi(Y[yi]) (mod Q) and let 
8~[Y] = ZQ- 83 [Y]. Then the probability that both (ii) and (iii) hold is 
IIS2[Y] 0 Ss[Y]II 

Q 

Now the probability that (i), (ii), and (iii) all hold is 

This is at least 

II82[Y] n 8a[YJII - (d 1) II8UYJII - (d + 1)d 
Q + Q Q . 

Since 82[Y] n 8a[Y] = ZQ - (8~[Y] U 8~[Y]), II82[Y] n 8a[YJII ~ Q -
II8~[YJII-II8~[YJII· So, the probability that (i), (ii), and (iii) hold is at least 

1 _ll8~~lll_ll8~~lll-(d+ 1)II8~~YJII_ (d~1)d, 

and the probability that M rejects x is the average of this amount where Y 
is chosen uniformly at random. 
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By hypothesis, gi-1(6, ...• ei-1,o,eH1• ... ,ep) + gi-1(6, ...• ei-1.1, 
ei+l• ... ,ep)ei ¢ gi(6, ... ,ep) (mod Q). Since gi is a polynomial of to-

tal degree di = 2p+i, by Lemma 6.32, the average of IIS2~Y]II is at most 2Z?Ji. 

S. v · }; 1 t th f ~ · 1 s· mce 1s ui-c ose o gi, e average o Q 1s at most 2(P+i+2) 2 . mce 

U is 8i_1-close to gi_ 1 , the average of IIS]~YJII is at most 2(P+!+1)2 • So, the 
probability that M rejects is at least 

1- 2p + i- 1 
Q 2(2p + i + 2)2 

1 
2(2p+i+1) 

(d + 1)d 

Q 

and this is greater than ~ for all x sufficiently large. This proves the propo-
sition. 0 Fact 6.37 

By a similar analysis we can show that the following fact holds. 

Fact 6.38 Suppose that there is some i, 1 ~ i ~ p, such that equation 6.10 
does not hold with hi in place of Ci and hi-1 in place of Ci-1; i.e., 

hi(6, ... • ep") t hi-1(6, ...• ei-1,o,ei+1· ...• ep") 

+hi-1(6, ...• ei-1.1,ei+1• ... • ep")ei (modQ). 

Then the probability that M rejects x during the execution of the Self­
Correcting Polynomial Equality Test with s = p", d = d~_ 1 , U = 7ii_ 1 , 

and V = 'Hi is greater than ~ . 

6.4.2.6.4 Putting the Pieces Together. Now we put all the pieces together. 
Assume that there is no sampling error and that (*) holds, i.e., each of the 
oracle functions is close to a polynomial of desired degree with a desired 
distance. Also, assume that the conditions (D') through (I') are all satis­
fied. Then, fJ is a polynomial of total degree at most p such that, for all 
(6, ... ,ep) E {0, 1}P, fJ(e1, ...• ep) mod Q E {0, 1}, and such that, for all 
(e1, ...• ep") E {0,1}P, fx(fJ;6, ... ,ep") = o (mod Q). This implies that 
x E L, a contradiction. So, either (*) does not hold or at least one of (D') 
through (I') fails to hold, and hence, M rejects x with probability at least l 
This proves the soundness of the protocol. 

Now the only remaining task is to prove the Low-Degree Polynomial Char­
acterization Lemma (Lemma 6.28) and the Low-Degree Polynomial Closeness 
Lemma (Lemma 6.31). 

6.4.3 Proof of the Low-Degree Polynomial Characterization 
Lemma (Lemma 6.28) 

This lemma states the following: Let d and s be positive integers and R be a 
prime number. Let h be a mapping from (ZR) 8 to ZR. Then his a polynomial 
of total degree at most d if and only if 
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('Vy, z E F 8 )[ L: "/ih(y + iz) = 0 (mod R)], 
O~i~d+l 

where for every i, 0 ~ i ~ d + 1, "/i = (d"t1)(-1)i. The lemma can be proven 
by simply combining two propositions. 

Proposition 6.39 Let d and s be positive integers. Let R be a prime num­
ber. Let h be a mapping from (ZR)s to ZR. Then h is a multivariate poly­
nomial over ZR of degree at most d if and only if for all y, z E (ZR) 8 the 
function h~,z ( i) = h(y + iz) is a polynomial in i of degree at most d over ZR. 

Proof of Proposition 6.39 Let d, s, R, and h be as in the hypothesis 
of the proposition. We first show that h is a polynomial of degree at most d. 
We first show that h is a polynomial. For each y = (y1, ... , Ys) E (ZR) 8 , let 
Qy(6, ... ,es) be the polynomial 

II II (ei- z)(Yi- z)- 1. 

1~i~s zEZR\{y;} 

Then Qy is an s-variate polynomial and for every a= (a1, ... ,a8 ) E (ZR) 8 , 

Qy(a) = 1 (mod R) if a = y and Qy(a) = 0 (mod R) otherwise. Define 

h(6, ... ,es) = L: Qy(6, ...• es)h(6, ...• es)· 
yE(ZR)• 

Then his an s-variate polynomial and h = h (mod R). Thus, his a poly­
nomial. 

Now what we need to show is that the degree of his at most d if and only 
if for all y and z, y, z E (ZR)8 , h~z(i) is a polynomial in i of degree at most 
d. Suppose that h has total degree at most d. Then h can be expressed as 
the sum of monomials, each of the form ce:ll 0 0 0 e:::: such that c E ZR \ {0}, 
1 ~ i 1 < · · · < im ~ s, e 1, ... , em ;::: 1, and e 1 + · · · + em ~ d. Let t be such 
a monomial. Let y and z be arbitrary elements of (ZR) 8 • Then, t(y + iz) is a 
polynomial in i of degree e1 + · · · +em ~d. Thus, the degree of h~.z<i) is at 
most d. This proves the direction from left to right. 

To prove the other direction, suppose that for ally, z E (ZR) 8 , the function 
h~,z ( i) = h(y + iz) is a polynomial in i of degree at most d. Assume that the 
total degree of h is some k > d. Divide h into u1 and u2, where u 1 consists 
of all the monomials of h having degree exactly k and u2 consists of all the 
monomials of h having degree less thank. Take y to be (0, ... , 0). Then for 
all z E (ZR) 8 , u 1(iz) = u 1(z)ik and u2(iz) is a polynomial in i having degree 
at most k- 1. By our assumption, for all z E (ZR) 8 , u(iz) is a polynomial 
in i of degree at most d. Since k > d, this implies that, for all z E (ZR) 8 , 

u 1(z) = 0 (mod R). Thus, h = u2 (mod R), and thus, the degree of his 
less than k, a contradiction. Hence, his a polynomial having degree at most 
d. This completes the proof of the proposition. 0 Proposition 6.39 
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Proposition 6.40 Let d be a positive integer, let R ;::: d + 1 be a prime 
number, and h be a mapping from ZR to 7lR. Then h is a polynomial of 
degree at most d if and only if for every y, z E ZR, 

L 'Yih(y + iz) = 0 (mod R), 
O~i~d+l 

where for every i, 0:::; i :::; d + 1, 'Yi = (d~ 1) ( -1)i. 

Proof of Proposition 6.40 Let d, R, and h be as in the hypothesis of 
the proposition. Suppose that h is a polynomial of degree at most d. Since 
two polynomials of degree :::; d can agree on at most d points, specifying the 
value of h at d + 1 distinct points will give a unique specification of h. Let 
a 1 , ... , ad+l be distinct elements of R. Then, h can be interpolated from the 
values of hat a 1 , ... ,ad+l• i.e., 

h(e) = 

L h(ai) ( II (e- aj)) 
l~i~d+l jE{l, ... ,d+l}\{i} 

( II (ai-aj))-l 

jE{l, ... ,d+l}\{i} 

holds. Let y, z be arbitrary elements of 7lR. If z = 0, then Lo<i<d+l 'Yih(y + 
iz) = h(y) Lo<i<d+l 'Yi· Note that, for all u, Lo<i<d+l "fiUi = (1--u)d+l. So, 
Lo<i<d+l 'Yi ~ {i- 1)d+l = 0. Thus, if z = 0, the; Lo<i<d+l 'Yih(y + iz) = 
0 =- 0 (mod R) as desired. So, suppose that z =/:- 0.-Let e = y and for 
each i, 0 :::; i :::; d + 1, let ai = y + iz. Then, since z =f. 0 and d + 1 :::; R, 
a1, ... , ad+l are pairwise distinct. So, we apply the above formula. For every 
i, 1 :::; i :::; d + 1, 

and 

So, 

II (e-aj)=(-1)dzd(d:1)! 
jE{l, ... ,d+l}\{i} 

II (ai- aj) = ( -1)d+l+i(i -1)!(d + 1- i)!zd. 
jE{l, ... ,d+l}\{i} 

h(y)= L (d~ 1)(-1)i+ 1 h(y+iz). 
l~i~d+l 

Since for every i, 0:::; i:::; d+ 1, 'Yi = (d~ 1)(-1)i, we have 

L 'Yih(y + iz) = 0 (mod R) 
O~i~d+l 
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as desired. 
On the other hand, suppose that for all y, z E ZR, it holds that 

Eo<i<d+l "fih(y + iz) = 0 (mod R). For each n ~ 0, let an = h(n mod R). 
It suffices to show that there is a degree-d polynomial q( n) such that 

(Vn ~ O)[an = q(n) (mod R)]. 

For each k, 1 ~ k::::.; d, and each n ~ 0, let 

Sk,n = L O!k,jan+j· 
O~j~k 

Then we have the following fact. 

Fact 6.41 For each k, 0 ~ k ~ d, there exists a polynomial qk of degree 
d- k such that, for all n ~ 0, Sk,n = qk(n) (mod R). 

Proof of Fact 6.41 The proof is by induction on k, going down from k = d 
to k = 0. For each k ~ 0 and each j, 0 ::::.; j ::::.; k, let ak,j = ( -1 )i (~). For the 
base case, let k = d. We are assuming that for ally, z E ZR, Eo~j~d+l "fih(y+ 
iz) = 0 (mod R). For all j, 0 ~ j ~ d + 1, O!d+l,j = 'YJ· So, it holds that 
Eo~j~d+l O!d+l,jay+jz = 0 (mod R). Replace y by n and take z to be 1. 
Then, for all n ~ 0, 

L O!d+l,jan+j = 0 (mod R). (6.11) 
O~j~d+l 

Note that for all m ~ 1, (;;:) = (';;) = 1 and for all i, 0 ~ i < m - 1, 
(7) + U:\) = (7.:/). So, equation 6.11 can be rewritten as 

By definition, the first term is sd,n and the second term is sd,n+l· So, we 
have sd,n- Sd,n+l = 0 (mod R). Let qd(n) be the constant polynomial sd,o, 
which is equal to Eo~j~d 0:d,jaj. Then, for all n ~ 0, sd,n = qd(n) (mod R). 
Thus, the claim holds for k = d. 

For the induction step, let k = k0 , 0 ~ k0 < d and suppose that the 
claim holds for all values of k greater than k0 and less than or equal to d. In 
particular, since the claim holds for k = ko + 1, for all n ~ 0, 

L O:ko+l,jan+i = qko+l(n) (mod R), 
O~j~ko+l 

where qko+l is a polynomial of degree d-ko-1. As in the previous paragraph, 
the sum can be rewritten as 
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So, for all n 2:: 0, Sk0 ,n- Sko,n+l = Qk0 +1(n) (mod R). Let f3ko = Sk0 ,o 

Lo~j~ko ak0 ,jaj. Then, for all n 2:: 1, 

Sk0 ,n = f3ko - L Qk0 +1(j) (mod R). 
1~j~n 

Since Qko+ 1 is a polynomial of degree d- ko -1, the summation on the right 
hand side is a polynomial of degree d-ko. To see why, let f 2:: 0 be an integer. 
Let us suppose that the sum L: 1~j~n l is a degree-(£+ 1) polynomial of the 

form eo+ c1n + · · · + Ct+1nH1. Since L: 1~j~n jt = 0, CQ. The condition that 
these coefficients have to satisfy is 

(c1n + · · · + Ct+lnH1) = 
(c1(n -1) + · · · + cH1(n -1)£+1) + nt (mod R). 

By rearranging terms, this condition is equivalent to 

c1(n- (n -1)) + · · · + Ct+l(nH1 - (n -1)t+l) + nt = 0 (mod R). 

Note that for every m 2:: 1, nm-(n-1)m = Lo~j~m- 1 am,jni. So, the above 
condition can be written as 

-at+1,t 0 0 0 C£+1 1 
-at+1,t-1 -at,t-1 0 0 Ct 0 
-at+1,t-2 -at,t-2 -at-1,t-2 · · · 0 Ct-1 0 

-at+1,0 -at,o -at-1,0 · · · -a1,o c1 0 

where the arithmetic is over ZR. The (£ + 1) x (f + 1)-matrix is lower tri­
angular and none of its diagonal entries are zero, so its inverse exists. Thus, 
c1, ... , Ct+l can be uniquely determined in ZR. Thus, the sum of the right­
hand side is a polynomial of degree d- k. Thus the claim holds for this k, 
too. Hence, the fact holds. 0 Fact 6.41 

Now note that so,n = an. Since so,n is a polynomial of degree d, his a 
polynomial of degree d. This proves the proposition. 0 Proposition 6.40 

This proves Lemma 6.28. 0 

6.4.4 Proof of the Low-Degree Polynomial Closeness Lemma 
(Lemma 6.31) 

This lemma states the following: Let s and d be positive integers and let 8 
be a real number such that 8 :S 2(d!2)2. Let f be a mapping from (ZQ) 8 to 
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ZQ that is not 28-close to any polynomial of total degree at most d. Then f 
survives the Low-Degree Test with probability less than !· 

The lemma follows from Theorem 6.42 below. 

Theorem 6.42 Let d and s be positive integers. Let R ~ d + 2 be a prime 
number. Let C be a mapping from (ZR) 8 to ZR. Let Eo = 2(d!2)2. Let f be the 
probability that 

L "'fiC(y + iz) ~ 0 (mod R), 
O~i~d+l 

where y and z are chosen independently and uniformly at random from (ZR) 8 • 

Suppose that f ~Eo. Then Cis 2e-close to a polynomial of total degree at most 
dover ZR· 

Proof of Lemma 6.31 Let R = Q, d = p, s = p, C = B mod ZR, and 
e0 = 8. Suppose that B mod R is 28-close to no polynomial of total degree 
at most p. By taking the contrapositive of the statement of the theorem, we 
have that f > Eo = 2cv!2)2 . Since the equivalence is tested 6(p + 2)2 times, 
the probability that the Low-Degree Test succeeds is at most 

( 
1 ) 6(p+2)2 1 

1 - 2(p + 2)2 < T3 = B. 

This proves the lemma. 0 Lemma 6.31 
Now let us turn to proving Theorem 6.42. Let d, s, R, C, e, and fo by 

as in the statement of the lemma and suppose that f ~ e0 . For each y E 

(ZR) 8 , define h(y) to be the most frequently occurring value in the multiset 
{(E 1~i~d+l "'fiC(y+iz)) mod R lz E (ZR) 8 }, where ties are broken arbitrarily. 

Fact 6.43 lf y is chosen uniformly at random from (ZR) 8 , then h(y) = 
C(y) mod R with probability at least 1- 2e. 

Proof Let W = {y E (ZR) 8 I h(y) = C(y) mod R}. Let p = IIWII/R8 • Since 
ties can be broken arbitrarily to determine the value of h, for every y E W, 
for at least half of z E (ZR) 8 it holds that C(y) ~ El<i<d+l "'fiC(y + iz) 
(mod R). Then f, the proportion of (y, z) E (ZR) 8 X (ZR) 8 such that C(y) ~ 
El<i<d+l "'fiC(y + iz) (mod R), is at least p/2. Thus, p ~ 2e. This proves 
the fact. 0 Fact 6.43 

Fact 6.44 For all y E (ZR) 8 , if z is chosen uniformly at random from 
(ZR) 8 , then the probability that h(y) = El<i<d+I "'fiC(y+iz) (mod R) is at 
least 1 - 2(d + 1)e. - -

Proof Let y E (ZR)s be fixed. Let i be any integer between 1 and d + 1. 
Suppose that we select z E (ZR) 8 uniformly at random and output u = 
y + iz mod R. Since R ~ d + 2, a multiplicative inverse of i in ZR exists, so, 
u is uniformly distributed over (ZR) 8 • So, the probability that 
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C(y + iz) = L "'(jC(y + iz + jw) (mod R) 
l~j~d+l 

(6.12) 

when y and z are chosen independently and uniformly at random from (Zn) 8 

is equal to the probability that 

C(u) = L 'YjC(u + jv) (mod R) (6.13) 
l~j~d+l 

when u and v are chosen independently and uniformly at random from (Zn) 8 • 

This probability is equal to 1-f by our assumption. By exchanging the role of 
i and j as well as the role of z and w, we have that, for every j, 1 ~ j ~ d + 1, 
the probability that 

C(y + jw) = L 'YiC(y + iz + jw) (mod R) 
l~i~d+l 

when z and ware chosen independently and uniformly at random from (Zn) 8 

is 1- f. Let Et[z, w] be the event 

E2[z, w] be the event 

and 
Eo[z, w] = Et[z, w] A E2[z, w]. 

Note that for all y, z E (Zn) 8 the following conditions hold: 

• If for all i, 1 ~ i ~ d + 1, equation 6.12 holds, then Et[z, w] holds. 
• If for all j, 1 ~ j ~ d + 1, equation 6.13 holds, then E 2[z, w] holds. 

Since both i and j range from 1 to d + 1, if z and w are chosen independently 
and uniformly at random from (Zn) 8 , then E0 [z, w] holds with probability 
at least 1- 2(d + 1)€. 

Let Vt, ... , vn be an enumeration of all the members of Zn. For each 
k, 1 ~ k ~ R, let Pk be the probability that Vk = Et<i<d+l 'YiC(y + iz) 
(mod Q) when z E (Zn) 8 is chosen uniformly at random-:- Assume, without 
loss of generality, that Pl = max{pt, ... ,pk}· Then E0 [z,w] occurs with 
probability at most p~ + .. · + p~ ~ Pt(Pl + .. · + PT) = Pl· Since the 
event Eo[z,w] occurs with probability at least 1-2(d+ 1)€, we have p1 ;::: 

1- 2(d + 1)€. Thus, the probability that Et<i<d+l 'YiC(y + iz) mod R takes 
the most frequently occurring value, which is li"(y), is at least 1 - 2(d + 1)€. 
This proves the fact. 0 Fact 6.44 
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Fact 6.45 Iff :::; Eo, then for all y, z E (ZR) 8 , 

L: 'Yih(y + iz) = 0 (mod R). 
0:5i:5d+l 

Proof Let u, v E (ZR) 8 be fixed. For every i, 0 :::; i :::; d + 1, and every 
w E (ZR) 8 , the equation u + iv .=. w (mod R) has precisely R8 solutions. So, 
for every i, 0 :::; i :::; d + 1, u + iv mod R is subject to the uniform distribution 
over (ZR) 8 when u and v are chosen independently and uniformly at random 
from (ZR) 8 • So, by Fact 6.44, for every i, 0 :5 i :::; d + 1, the probability that 

h(y + iz) .=. L: 'YjC((y + iz) + j(u + iv)) (mod R) 
1:5j:5d+l 

when u and v are chosen independently and uniformly at random from (ZR) 8 

is at least 1- 2(d + 1)f. So, the event 

L: 'Yih(y + iz) = 

L: 'Yj L: 'YiC((y + iz) + j(u + iv)) (mod R) 
1:5j:5d+l 0:5i:5d+l 

has probability at least 1-2(d+ 1)(d+2)f when u and v are chosen uniformly 
at random from (ZR) 8 • By rearranging terms (y + iz) + j(u + iv) is equal 
to (y + ju) + i(z + jv). If u is chosen uniformly at random from (ZR) 8 , 

then y + ju mod R is uniformly distributed over (ZR) 8 • Also, if v is chosen 
uniformly at random from (ZR) 8 , then z + jv mod R is uniformly distributed 
over (ZR) 8 • So, the probability that 

L: -y,C((y + iz) + j(u + iv)) = 0 (mod R) 
0:5i:5d+l 

is 1- f if u and v are chosen independently and uniformly at random from 
(ZR) 8 • By combining the two observations, the probability that 

L: -y,h(y + iz) = 
09:5d+l 

L: 'Yj L: -y,C((y + iz) + j(u + iv)) .=. 0 (mod R) 
1:5j:5d+l 09:5d+l 

is positive. Since the event L:o<i<d+l 'Yih(y + iz) = 0 (mod R) is indepen­
dent of y and z, L:o<i<d+l -y,h(i/+iz) = 0 (mod R) holds. 0 Fact 6.45 

Combining Fact -6:45 and Lemma 6.28, we have the following. 

Fact 6.46 Iff:::; Eo, then h is a polynomial of total degree at most d. 

Now the theorem follows by combining Facts 6.43 and 6.46. This concludes 
the proof of Theorem 6.24. 0 
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6.5 OPEN ISSUE: The Power of the Provers 

What computational power must the provers possess to convince the verifier 
of membership? Following a discussion similar to that of Sect. 6.2, one can 
show that p#P -machines can serve as provers for p#P. Also, the proof of 
IP = PSPACE gives that PSPACE-provers are sufficient and necessary for 
PSPACE. Then how about NEXP? Since the oracle has only to fix a satis­
fying assignment and the largest satisfying assignment in the lexicographic 
order of a formula with exponentially many variables can be computed in ex­
ponential time with an NP language as the oracle, the provers need only the 
computational power of EXPNP. Note that for EXP, an EXP prover suffices 
(because an EXP machine can be viewed as a special NEXP machine which 
uses no nondeterminism). Can we lower the upper bound of EXPNP? 

Open Question 6.4 7 Can we show a stronger upper bound on the power 
of the provers for NEXP? 

6.6 Bibliographic Notes 

Part 1 of Proposition 6.3 is due to Zanko [Zan91]. Theorem 6.4 is due to Lund 
et al. [LFKN92]. Definition 6.6, the notion of an enumerator (also known 
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The idea of arithmetization first appeared in a paper by Beaver and 
Feigenbaum [BF90]. In some sense arithmetization is a very sophisticated 
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version of program checking by Blum and Kannan [BK95]. The interactive 
proof for p#P combines the self-testing procedure of Lipton [Lip91 J and the 
downward self-reducibility by Blum, Luby, and Rubinfeld [BLR93J. 

To construct an oracle protocol for NEXP, Babai, Fortnow, and 
Lund [BFL91] stipulated that the polynomial held in the oracle is multi­
linear and developed a probabilistic oracle protocol for testing multilinearity. 
It is natural to ask whether the requirement that the polynomial should be 
multilinear be weakened so that only having a small degree is required. This 
question is studied in [BFLS91,FGL +96]. The goal of the Low-Degree Test 
in the proof of MIP = NEXP is to ensure that a given function is close to a 
low-degree polynomial. Once this has been done for all the functions involved, 
the other two tests can be carried out by simply assuming that the functions 
are all polynomials. The concept of hypothesizing that a given function is 
a low-degree polynomial, called self-testing, was introduced by Gemmell et 
al. [GLR+91] and was further explored by Rubinfeld and Sudan [RS96,RS96]. 
The problem of computing a value of function knowing that there is an oracle 
that is close to the function is called self-correction. Self-correction borrows an 
idea from random self-reducibility of Abadi, Feigenbaum and Kilian [AFK89J 
and was first formally studied by Blum and Kannan [BK95]. 

We note that the progress from Theorem 6.4 toward Theorem 6.23 was 
made in only five weeks. Email announcements of PH ~ IP by Fortnow, 
IP = PSPACE by Shamir, and MIP = NEXP by Fortnow again came out 
respectively on December 13, 1989, December 26, 1989, January 17, 1990. 
(For a detailed history, see an amusing survey by Babai [Bab90].) 

The polynomial interpolation technique was received with great excite­
ment and invigorated research on interactive proof systems. Babai and Fort­
now [BF91] show a new characterization of #P by straight-line programs, 
Cai, Condon, and Lipton [CCL94] show that every language in PSPACE 
has a bounded-round multiprover interactive proof systems, Lapidot and 
Shamir [LS97] show that a fully parallelized version of the protocol by Ben-Or 
and others [BOGKW88J yields a one-round "perfect zero-knowledge" proto­
col for each language in NEXP, and Feige and Lovasz [FL92] show that two­
prover one-round interactive proof systems exist for all languages in NEXP. 
We noted in Sect. 6.5 that to construct a multiprover protocol for a EXP 
language a prover in EXP is sufficient. In other words, the oracle of a prob­
abilistic oracle protocol for EXP languages can be in EXP. Based on this 
observation, Babai et al. [BFNW93J show that if EXP ~ P /poly then EXP 
is included in MA, a class introduced by Babai [Bab85]. Note that one can 
prove EXP ~ P /poly==> EXP = S~ by applying the proof of Theorem 1.16 
to EXP in light of Sengupta's observation (see the Bibliographic Notes of 
Chap. 1). However, the collapse shown by Babai et al. seems stronger since 
MA is known to be included in S~ [RS98J. 

The MIP = NEXP Theorem naturally raises the issue of translating the 
theorem to characterizations of NP. Feige et al. [FGL +96] and Babai et 
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al. [BFLS91] independently obtained two similar but incomparable results. 
Roughly speaking these two papers show that every language in NP has a 
probabilistic polynomial-time protocol for the verifier that uses polylogarith­
mic random coin tosses and communicates with its prover polylogarithmic bits 
of information. In addition to the "scaled-down" theorem, the former paper 
shows the following: If there exists a deterministic polynomial-time algorithm 
that approximates the size of the largest clique in a graph within a constant 
factor, then NP ~ DTIME[21ognloglogn]. This was a remarkable achievement, 
because for decades researchers had been looking for results to shed light to 
the question of whether polynomial time approximation of the largest clique 
size within any factor between 2 and lo;a n is possible. For the first time, 
strong evidence is given that approximation of the clique size within a con­
stant factor is not possible under some reasonable assumption about NP. 
Feige et al. also show that if there exist constants f, 0 < f < 1, and d > 0, 
such that one can approximate the clique size within a factor of 210g1

-• n using 
an algorithm that runs in time 2logct n, then 'NP ~ Uk>o DTIME[nlogk n ]. 

To describe the two results about NP, let PCP( r( n), q( n)) (see [AS98]) 
denote the class of all languages for which there exists a probabilistic polyno­
mial time oracle protocol with the following three properties: (i) the verifier 
flips r( n) coins and examines q( n) bits of the oracle on an input of length n, 
(ii) if the input belongs to the language, then there exists an oracle relative 
to which the verifier accepts with probability 1, and (iii) if the input does not 
belong to the language, then there is no oracle relative to which the verifier 
accepts with probability at least !· With this notation the MIP = NEXP 
Theorem can be restated as NEXP = Uc>O PCP(nc, nc), the above result 
about NP by Feige et al. as NP ~ Uc>O PCP(clog nlog logn, clog nloglog n) 
and the one by Babai et al. as NP ~ Uc>O PCP (loge n, loge n). 

The two results about NP raised the question whether the polylogarith­
mic number of random bits and the communication bits are truly necessary. 
Arora and Safra [AS98] made significant progress towards that question and 
showed that NP ~ PCP(O(logn),O(y1ogn)). To prove this result, Arora 
and Safra proposed a technique of composing verifiers-verifying computa­
tion of a verifier by another verifier. Improving this technique further, Arora 
et al. [ALM+98] reduced the second amount to a constant, and obtained 
the so-called PCP Theorem: NP = PCP(O(log n), 0(1)). The PCP Theorem 
states that every language in NP has a probabilistic oracle protocol such 
that (i) the prover provides a proof of polynomial length, (ii) the verifier 
tosses O(logn) coins and examines only a constant number of bits of the 
proof, (iii) if the input belongs to the language, then there is a proof with 
which the verifier accepts with probability 1, and (iv) if the input does not 
belong to the language, then there is no proof with which the verifier ac­
cepts with probability at least !· This theorem is optimal in the sense that 
NP = PCP(o(logn),o(logn)) implies P = NP [FGL+96]. In this model the 
verifier's error is one-sided, in the sense that it accepts each member of the 
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language with probability one given a correct proof. An alternative model is 
the one in which the verifier is allowed to make an error for both members 
and nonmembers, but the error probability is bounded by a constant that 
is strictly less than ~. When the amount of randomness is fixed to O(log n) 
an important question is how many bits of information have to be examined 
to achieve the desired error probabilities. For the one-sided-error PCPmodel, 
the current best known result is due to Guruswami et al. [GLST98]: For every 
constant e, every language in NP has a one-sided-error PCP protocol that 
uses O(log n) random bits, examines only three bits, and, for each nonmem­
ber, makes an error with probability at most ~ + €. For the two-sided-error 
PCP model, Samorodnitsky and Trevisan [STOO] show the following strong 
result: For all constants e > 0 and for all positive integers q, every language in 
NP has a two-sided PCP protocol that uses O(logn) random bits, examines 
q bits, accepts each member with probability at least 1 - e given a correct 
proof, and rejects each nonmember with probability at least 1 - 2-q+f:>(vq). 

This is essentially the current best bound. Hastad and Wigderson [HW01] 
present a simpler analysis of the proof of Samorodnitsky and Trevisan, and 
show that the error probability in the soundness condition can be slightly 
improved. 

The PCP Theorem also improves upon the nonapproximability result 
in [FGL +96] as follows: For every constant € > 0, it is NP-hard to approx­
imate the size of the largest clique in a graph in polynomial time within a 
factor of n l-£. The proof of the PCP Theorem is very complex and long, and 
thus, is beyond the coverage of the book. The reader may tackle the paper 
by Arora et al. [ALM+98] for a complete presentation. The PCP Theorem 
is a culmination of the research on interactive proof systems, and it opened 
up a new research subarea: NP-hardness of approximation based upon PCP 
characterizations of NP. There is a vast literature in this subarea. We refer 
the reader to two surveys, one by Arora and Lund [AL97], which discusses 
the basic results in the subarea, and the other by Bellare [Bel96], which dis­
cusses further development. Crescenzi and Kann ([CK], see also [ACG+99]) 
maintain a web site containing a compendium of NP optimization problems. 



7. The Nonsolvable Group Technique 

Bounded-width branching programs offer interesting connections between 
complexity classes and algebraic structures. Let k 2:: 2 and n 2:: 1 be integers. 
A width-k branching program over n-bit inputs prescribes manipulation of a 
pebble placed on a track of k squares. First the pebble is placed on square 
1. Then a sequence of instructions is executed. Each instruction is simple: 
it tells you to examine an input bit and then move the pebble to another 
(possibly the same) square, where to which square the pebble will be moved 
depends on the examined bit, the current location of the pebble, and the step 
of the computation. The program accepts the input if and only if the pebble 
is not on square 1 at the end. 

How big is the class of things that are accepted by a family of bounded­
width branching programs of polynomially many instructions? In the case 
where k = 2, since there are only two squares, the class does not seem large 
enough to contain many interesting languages other than the parity function 
(constructing such a program is easy). Then how about k = 3? Again, 3 does 
not seem big enough for us to handle complicated membership criteria. Then 
how about 4, 5, or 6? Note that for every k 2:: 2 a width-k branching program 
can be simulated by a bounded-fan-in circuit whose depth is proportional 
to the logarithm of the program size, i.e., the number of instructions. So we 
ask whether bounded-width branching programs can simulate every circuit 
in nonuniform-Ne1 . 

Pause to Ponder 7.1 Can polynomial-size, bounded-width branching pro­
grams simulate nonuniform-Ne1 ? 

Indeed, polynomial-size, bounded-width branching programs can simulate 
nonuniform-Ne1? Interestingly, to simulate nonuniform-Ne 1 the width of 
polynomial-size branching programs can be as small as 5. However, it is 
believed that the width cannot be smaller than that. A significant difference 
seems to exist between the computational power of width-4 programs and 
that of width-5 programs. Much to our surprise, the crucial difference lies in 
the fact that the permutation group over { 1, . . . , k} is nonsolvable for k ;:::: 5 
while it is solvable for k = 1, 2, 3, 4. Recall that a group is solvable if its 
derived series, Go, Gt, .. . , converges to the trivial group, where Go = G and 
for every i 2:: 1, Gi is the commutator subgroup of Gi_ 1 , i.e., Gi is the group 
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generated by the elements {h21 o h11 o h2 o h1 I h1, h2 E Gi-d· Here we call 
h21 o h1 1 o h2 o h1 the commutator of h1 and h2. Using nonsolvability of the 
permutation group over {1, ... , 5}, one can design a family of polynomial­
size, width-5 branching programs for each language in nonuniform-NC1. 

In this chapter we study the power of polynomial-size, bounded-width 
branching programs and how such results translate into uniform complexity 
classes. For a formal definition of the classes that are discussed in this chapter 
see Sect. A.18. 

7.1 GEM: Width-5 Branching Programs Capture 
Nonuniform-NC1 

7.1.1 Equivalence Between Width-5 Branching Programs and 
NC1 

As we have just mentioned, polynomial-size, width-5 branching programs 
capture nonuniform-NC1 . In fact, the two computational models are equal. 

Theorem 7.2 5-PBP = nonuniform-NC1 . 

We need to define some notions and notation. Recall that a monoid is a 
finite set S of objects with an associated binary operation o and an identity 
element. Let k?. 2 be an integer. By Mk we denote the monoid consisting of 
all mappings of { 1, ... , k} to itself and by Ik we denote the identity mapping 
in Mk. The binary operation o is defined as follows: For all a, (3 E Mk, ao(3 
is the mapping 'Y E M5 such that for all i, 1 $. i $. k, 'Y(i) = a((3(i)). The 
operation o is associative, i.e., for all a, (3, 'Y E Mk, 

a o ((3 o 'Y) = (a o (3) o 'Y. 

By Sk we denote the permutation group over {1, ... , k }, i.e., the set of all 
bijections from {1, ... , k} to itself. 

Let n?. 1 and let P = {(ij, J.L~, J.L})}J!= 1 be a width-k branching program 
for En. Then, by IPI, we denote its length, m. For each x E En, P[x] denotes 
the product 

Xim Xi 2 Xi 1 J.Lm o . . . o J.1.2 o I-Ll . 

Now we prove Theorem 7.2. 

Proof of Theorem 7.2 We first prove 5-PBP ~ nonuniform-NC1. The 
inclusion follows from a more general statement: 

Lemma 7.3 For all k?. 2, k-PBP ~ nonuniform-NC1. 

Proof of Lemma 7.3 Let k ~ 2. Let L be a language in k-PBP and 
P = {Pn}n;::::l be a family of width-k, polynomial-size branching programs 
that decides L. For all n?. 1, and for all x E En, 
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x E L -<=* Pn[x](1) f:. 1. 

Let p be a polynomial bounding the size of P, i.e., for all n ~ 1, IPnl :::; p(n). 
We'll replace P by a family of width-k, polynomial-size branching programs, 
P' = {P~}n~l, such that P' decides Land, for all n ~ 1, jP~I is a power of 
2 and is at most 2p(n). Let n ~ 1 and let m = !Pnl· If m is a power of 2, 
then P~ = Pn. If m is not a power of 2, we construct P~ as follows: Lett be 
the smallest integer such that 2t > m. Then 2t < 2m :::; 2p( n). Let P~ be the 
program of size 2t such that, for all j, 1 :::; j :::; m, the jth instruction of P~ 
is equal to that of Pn and, for all j, m + 1 :::; j :::; 2t, the jth instruction of 
P~ is (1, /k, Ik)· Then, for all x E En, P~[x] = Pn[x]. So, P~ has the desired 
properties. 

Let n ~ 1 be fixed. Let P~ = {(ij,J.L~,J.L])}j!, 1 . Lett be such that 2t = m. 
For all x E En and for all integers r and s such that 1 :::; r :::; s :::; m, define 
1r(r, s)[x] define inductively as follows: 

• If r = s, then 1r(r, s)[x] = J.L:i;. 
• If r > s, then 1r(r, s)[x] = J.L:i; o 1r(r, s -1)[x]. 

Clearly, for all x E En, P~[x] = 7r(1,m)[x]. 
Since the monoid operation o is associative, for every x E En, the expres­

sion 1r(1, m)[x] can be evaluate by a simple divide-and-conquer method: 

* Let r and s be integers such that 1 :::; r < s :::; m. To evaluate 1r(r, s)[x], 
evaluate a= 1r(r, l(r + s)/2J)[x] and f3 = 1r(l(r + s)/2J + 1, s)[x] individ­
ually, and then set 1r(r, s)[x] to f3 o a. 

Since m is a power of 2, the divide-and-conquer evaluation method can be 
viewed as a full binary tree having height t, where for all d, 0 :::; d :::; t, and 
j, 1 :::; j :::; 2d, the task at the jth node from right at depth d is to evaluate 
1r((j- 1)2t-d + 1,j2t-d)[x]. Call this tree Tn[x]. 

We construct a bounded-fan-in circuit Cn for L =n by transforming the 
tree Tn [x] into a circuit. To accomplish this, we need to fix a binary encoding 
of the mappings in Mk· Let i = pog(kk)l· Since IIMkll = kk, 22 ~ IIMkll· 
We encode each element of Mk as a 2£-bit string as follows: Let 91, ... , 9kk 
be an enumeration of the members of M. Then for each i, 1 :::; i :::; kk, the 
encoding of Yi• denoted by e(gi), is the 2£-bit stringy such that the first half 
of y has rank i in Ei and the second half of y is the bitwise complement of the 
first half of y. Let W = {y E E2i I (3g E Mk) [y = e(g)]}. Let Q : W X W ~ W 
be the function defined for ally, z E W by 

Q(y,z) = e(e-1(z) o e-1(y)). 

In other words, the function Q takes two strings in W and computes the 
encoding of the product of the mappings encoded by the two strings. Also, 
let R : W ~ E be the function defined for all y E W by 

R( ) = { 1 if e-1(y)(1) f:. 1, 
y 0 otherwise. 
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In other words, R takes a string in W and tests whether the mapping encoded 
by W maps 1 to something other than 1. We will show in Fact 7.4 that Q and 
R can be computed by depth-O(k log k) bounded-fan-in circuits. For now, let 
us assume the correctness of the fact and present how the circuits for Q and 
Rare built. 

Note that at the leaf level of Tn[x], each component of the product P~[x] 
is evaluated depending on a single bit of x. For each j, 1:::; j:::; m, there is a 
depth-0 circuit that computes e(7r(j,j)[x]). Let j, 1 :::; j :::; m, be fixed. Let 
a 1 · · · a2t = e(J.L~) and b1 · · · bu = e(J.L} ). For each r, 1:::; r :::; l, the rth output 
bit of e(7r(i,j)[x]) is 

{ 

0 if ar = br = 0, 
1 if ar = br = 1, 
Xi; ~far = 0 and br = 1, 
Xi; 1f ar = 1 and br = 0, 

and the (l + r)th output bit of e(7r(i,j)[x]) is 

{ 

1 if ar = br = 0, 
0 if ar = br = 1, 
Xi . if ar = 0 and br = 1, 
Xi: if ar = 1 and br = 0. 

Since this circuit computes by simply assigning input bits, the depth of the 
circuit is 0. 

Note that at each nonleaflevel ofTn[x], divide-and-conquer is applied. So, 
for each d, 0:::; d:::; t -1, and r, 1 :::; r _::::; 2d, we put the circuit for computing 
Q at the rth node from right at level d, where the first (respectively, the 
second) 2£ input bits of the circuit are the 2£ output bits of the circuit at 
the (2r -1)th position (respectively, at the 2rth position) from right at level 
d+1. 

The resulting circuit computes e(P~[x]). We feed the outputs of the circuit 
to the circuit for computing R. This is Cn. Then, for all x E En, Cn(x) = 1 if 
and only if R(e(P~[x])) = 1, and thus, Cn(x) = 1 if and only if P~[x](1) =f. 1. 
Clearly, the depth of the circuit Cn is 0( ( k log k )t), and this is O(log n) since 
k is fixed. 

Now it remains to show that depth-O(k log k) circuits exists for Q and R. 

Fact 7.4 There is a depth-O(klogk), bounded-fan-in boolean circuit H that 
computes Q in the following sense: For ally, z E E2l, if y, z E W, then 
H(yz) = Q(y, z). 

Also, there is a depth-O(k log k), bounded-fan-in boolean circuit H' that 
computes R in the following sense: For ally E E2l, if y E W, then H(y) = 
R(y). 

Proof of Fact 7.4 Let s be an integer such that 1 :::; s :::; kk. Note that 
e(gs) had exactly l1s. Let r 1 , •.. , rt be an enumeration of the l positions at 
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which the bit of e(g8 ) is a 1. Let F8 be a bounded-fan-in boolean circuit that 
takes y = y1 ... Y2t E E2'-, and computes 

Yr1 1\ · · · 1\ Yrt · 

Since each stringy E W has exactly l1's, for ally E W, 

F ( ) _ { 1 if y = e(g8 ), 

8 y - 0 otherwise. 

Let s 1 and s2 be integers such that 1 ::; s 1, s2 ::; kk. Let G 81 ,82 be a bounded­
fan-in boolean circuit that takes a pair of 2£ bits strings y = Y1 ... Y2i and z = 
z1 ... Z2t and outputs w = w1 ... W2t, defined as follows: Let 'Y = 'Y1 · · · 'Y2i 

be e(e- 1(g82 og81 )). Then, for each r, 1::; r::; 2£, Wr is given as 

Then, for ally, z E W, 

G ( z)={'Y ify=e(g81)and z=e(g82 ), 
81 '82 y 02'- otherwise. 

Now, for each r, 1 ::; r ::; 2£, let the rth output bit of H(yz) be defined by 

v a~:~82 (yz)' 
1~81,82~kk 

where at~82 (y, z) denotes the rth output bit of G81 ,82 (y, z). Then, for all 
y,zE W, 

H(yz) = e(e- 1(z) o e- 1(y)). 

The depth of H can be flogll + 2 + flogk2kl This is O(klogk). Thus, the 
first claim of the fact holds. 

To prove the second claim, let J = { s 11 ::; s ::; kk 1\ g8 (1) =/:. 1}. Then, 
for ally E W, R(y) = 1 <===? (::ls E J)[y = g8]. Define 

H'(y) = V F8(y). 
8EJ 

Then, for ally E W, H'(y) = R(y). The depth of H' can be fll + flog(k-
1)k-1l This is O(klogk). Thus, the second claim of the fact holds. 

0 Fact7.4 
This proves the first part. 
Next we prove the other part, i.e., nonuniform-NC1 ~ 5-PBP. Let L be a 

language in nonuniform-NC1. Let C = {Cn}n>l be a family of bounded-fan­
in, depth-O(logn), polynomial-size boolean ci;cuits that decides L. Let c > 0 
be a constant such that for every n ~ 1 it holds that depth(Cn)::; clogn. 
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For each 5-tuple of integers a, b, c, d, e such that {a, b, c, d, e} 
{1, 2, 3, 4, 5}, (a b c d e) denotes the permutation that maps a to b, b to 
c, c to d, d to e, and e to a. Define the following permutations in Ss: 

a= (1 2 3 4 5), f3 = (1 3 54 2), and 'Y = (1 3 2 54). 

Then 'Y is the commutator of a and /3, i.e., 'Y = /3- 1 oa- 1 of3oa. Furthermore, 
define 

00 = (1 2 5 3 4), 01 = (1 4 2 5 3), 02 = (1 4 3 2 5), and 83 = (1 5 3 2 4). 

By inspection one can easily verify that the following fact holds. 

Fact 7.5 001 o 'Y o 00 = a, 0} 1 o 'Y o 01 = /3, 02 1 o 'Y o 02 = a- 1, and 
031 0 'Y 0 03 = /3-1. 

Let n 2: 1 be fixed. Let u be the output gate of Cn. For each gate f in 
Cn and each input x E {0, 1}n, let f(x) be the output off on input x. Then, 
for all X E En, Cn(x) = u(x). 

Let Q be a branching program on {0, 1 }n, let f be a gate in Cn, and let 0 
and e be members of Ss. We say that Q is a (O,e) program for f if for every 
x E {0, l}n, Q[x], the mapping induced by Q on input x, satisfies 

Q[x] = { 0, if f(x) = 0, e, if f(x) = 1. 

We will construct for each gate f in Cn its (Is, 'Y) program pi. Then, for 
all X E En' P 11 [x] = Is if u(x) = 0 and P 11 [x] = 'Y if u(x) = 1. Note that 
Is (1) = 1 and "1(1) = 3. So, P 11 fixes 1 and 'Y moves 1 to 3. So, P 11 is a width-5 
branching program for £=n. The construction is inductive, proceeding from 
the input level toward the output level. 

First, let f be any input gate. Define pi as follows: 

• Iff is labeled by Xi for some i, then pi= {(i,Is,"()}. 
• Iff is labeled by Xi for some i, then pi= {(i,"(,Is)}. 
• Iff is labeled by 1, then pi= {(1,"(,"()}. 
• Iff is labeled by 0, then pi = {(1, Is, Is)}. 

Then clearly pi is an (/s, 'Y) program for f. 
Next, let f be a gate at a non-input level. Let g and h be the gates 

providing inputs to f. Suppose that we have already obtained a size-k, (/s, 'Y) 
program pg for g and a size-l, (Is, 'Y) program ph for h. We consider two cases: 
f is an AND gate and f is an OR gate. 

We first consider the case in which f is an AND gate. We construct a 
program To from pg such that ITo I = IPg I and, for every x E {0, 1 }n, 

To[x] = 001 o Pg[x] o Oo. 

This is done as follows: Let ( i, s, t) be the first instruction of pg. We replace 
this instruction by by (i, so Oo, to Oo). Let R be the resulting program. Let 
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(j, u, v) be the last instruction of R. We replace this instruction by (j, 001 o 
u, 00 1 o v). This is T0 . Then T0 has the desired properties. By Fact 7.5, 
001 o 'Yo 00 = o: and 001 o Is o 00 = Is. Since, PY is an (/s, 'Y) program for g, 
T0 is an (/s, o:) program for g. 

Similarly, construct T1 from ph using 01 in place of 00, T2 from PY simi­
larly with 02 in place of Oo, and T3 from ph similarly with 03 in place of Oo. 
Then, T1 is a size-l, (/s.f3) program for h, T2 is a size-k, (/s, o:- 1 ) program 
for g, and T3 is a size-l, (/s, /3- 1 ) program for h. 

Define p! to be the program that executes To, then T1 , then T2, and then 
T3 . Then, for every x E {0, 1}n, the following conditions hold: 

• If both g(x) = h(x) = 1, then Pf[x] = {3- 1 o o:- 1 o f3 o o: = 'Y· 
• If g(x) = 1 and h(x) = 0, then Pf[x] =Is o o:- 1 o Is o o: =Is. 
• If g(x) = 0 and h(x) = 1, then Pf[x] = {3- 1 o Is o f3 o Is= Is. 
• if g(x) = h(x) = 0, then Pf[x] =Is o Is o Is o Is= Is. 

So, p! is an (/s,"f) program for f and has size 2(k + l)::; 4max{k, l}. 
Next we consider the case in which f is an OR gate. As in Case 1, we 

construct p! from four programs T0 , ..• , T3. T0 is constructed from PY by 
inserting 'Y- 1 o03 0"( before the first instruction and 03 1 after the last instruc­
tion without increasing the program size. By Fact 7.5, 03 1 o 'Y- 1 o 03 = {3. 
Since, PY is an (/s, 'Y) program for g, T0 is a (/3 o "(,"f) program for g. Thus, 
To is a size-k, ({3 o "(, 'Y) program for g. 

T1 is constructed from ph by inserting "(- 1 o02 before the first instruction 
and 02 1 after the last instruction. By Fact 7.5, 02 1 o "(- 1 o 02 = o:. Since ph 
is a size-l, (/s, 'Y) program for h, T1 is a size-l, (o:, Is) program for h. 

For T2 we use PY and insert 'Y- 1 o 01 before the first instruction and 0~ 1 

after the last. By Fact 7.5, o-; 1 o 'Y- 1 o 01 = /3- 1 ,Since PY is a size-k, (/s, 'Y) 
program for g, T2 is a size-k, (/3- 1 , Is) program for g. 

For T3 we use ph and insert "(- 1 o 00 before the first instruction and 
appending 001 after the last. By Fact 7.5, 001 o 'Y- 1 o 00 = o:- 1 . Since ph is 
a size-l, (/s, 'Y) program for h, T3 is a size-l, (o:- 1 , Is) program for h. 

Now define pf to be the program that executes T0 , then T1 , then T2, and 
then T3 . Then for every x E {0, 1}n, the following conditions hold: 

• If g(x) = h(x) = 0, then Pf[x] = o:- 1 o {3- 1 o o: o ({3 o 'Y) =Is. 
• If g(x) = 0 and h(x) = 1, then Pf[x] =Is o {3- 1 o Is o ({3 o 'Y) = 'Y· 
• If g(x) = 1 and h(x) = 0, then Pf[x] = o:- 1 o Is o o: o 'Y = 'Y· 
• If g(x) = h(x) = 1, then Pf[x] =Is o Is o Is o 'Y = 'Y· 

Sop! is an (Is, "f) program for f and has size 2(k + l)::; 4max{k, l}. 
Define Pn = P". Since depth(Cn) ::; clogn, IPnl ::; 4depth(Cn) ::; n2c. 

Hence, L is recognized by a family of polynomial-size, width-5 branching 
programs 0 Theorem 7.2 
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7.1.2 Programs over a Nonsolvable Group Capture NC1 

We generalize the notion of branching programs. Let M be a finite monoid. 
A program over M for r:n is a sequence of instructions P = {( ij, s~, sJ )}j=1 

such that for all j, 1 ~ j ~ m, 1 ~ ij ~nand s~,sJ EM. For each string 
x E r:n, P[x] is defined as 

We say that P accepts x if P[x] =f. e, where e is the identity mapping of M. 
For W s;;; r:n, we say that P decides W if for every x E r:n it holds that 
x E W {::::::::} P accepts x. Let P = {Pn}n;::: 1 be a family of programs over M 
such that, for every n ~ 1, Pn is a program for r:n. We say that P decides 
a language L if for all n ~ 1 P n decides L =n. For a boolean function f over 
{0, 1}n, and s0 , s 1 E M, we say that a program Pis an (so, s 1 ) program for 
f if for every x E {0, 1}n the product generated by the instructions on input 
x is so if f(x) = 0 and s 1 otherwise. 

To prove that nonuniform-NC 1 s;;; 5-PBP, we showed that for all w E 

{a, ,8, a-1 , ,a-1 , "Y }, for all integers n ~ 1 and d ~ 0, and for all depth-d, 
bounded-fan-in circuits C with n inputs, there exists a length 4d, (15 ,w) 
program for C. By generalizing this we can show that, for every nonsolvable 
group G, there is an integer B > 0 such that, for all integers n ~ 1 and 
d ~ 0, for all depth-d, bounded-fan-in circuits C with n inputs, and for all 
s E G, both C and its negation have a size-Bd, (e, s) program, where e is the 
identity of G. 

Theorem 7.6 Let G be an arbitrary nonsolvable group. Let L be an ar­
bitrary language in nonuniform-NC1 • Then L is decided by a family of 
polynomial-size programs over G. 

Proof The proof is almost the same as that of Theorem 7.2. Let G be 
an arbitrary nonsolvable group. Since G is nonsolvable there exists some 
nontrivial subgroup H of G such that G's derived series Go, G 1 , ... converges 
to H. Let C be a circuit and let g be a gate in C. We define the height of 
g in C to be the length of the longest downward path from g to any input 
gate. Note that all input gates of C have height 0 and the output gate of C 
has height depth(C). 

Lemma 7. 7 Let n ~ 1. Let C be a bounded-fan-in circuit with n inputs. 
Let H be an arbitrary nonsolvable group such that its commutator subgroup 
(the group generated by the commutators of H) is identical to H. Let e be 
the identity element of H and let s be an arbitrary element in H. For every 
h, 0 ~ h ~ depth(C), and for every gate g inC having height h, g has an 
(e, s) program over H and an (s, e) program over H, both having size at most 
(4IIHII)h. 
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Proof of Lemma 7. 7 Let n, C, H, and e be as defined in the hypothesis. 
Let B = 4\IHII- Let s be an arbitrary element in H. If s = e, then the 
statement of the lemma trivially holds since for every gate gin C, {(1, e, e)} 
is an (e, e) program for g. So, assume that s =f. e. 

Note that in the boolean circuit model we use, the negation appears only 
at the input level. We show that for every gate g in C there is an (e, s) 
program, PY, for g having length at most ( 4\IHII)\ where h is the height of 
g. 

The proof is by induction on h. For the base case, let h = 0. Let g be a 
gate having height h. We define the program for g as follows: 

• If g is labeled by Xi for some i, then pg = {(i, e, s)}. 
• If g is labeled by Xi for some i, then PY = {(i,s,e)}. 
• If g is labeled by 1, then pg = {(1, s, s)}. 
• If g is labeled by 0, then P9 = {(1, e, e)}. 

Then PY is a desired (e, s) program for g. 
For the induction step, let h = ho ;:::: 1 and suppose that the claim holds 

for all values of h that are less than ho and greater than or equal to 0. Let g 
be a gate having height h. Let g1 and g2 be inputs of g. Since the commutator 
subgroup of His H itself, every element in H can be expressed as the product 
of commutators of H. The minimum number of commutators of H necessary 
to express s is at most IIHII· To see why, suppose that there exists some 
s E H such that the smallest number of commutators of H that are needed 
to express sis k > IIHII· Let t 1 · · · tk be commutators of H such that 

For all i, 1 ~ i ~ k, the partial product ti · · · t 1 is a member of H. Since 
k > IIH\1, there exist a pair of indices (i,j) such that 1 ~ i < j ~ k and 
ti · · · t1 = t3 · · · t1. Then 

This implies that a shorter expression for s exists, a contradiction. Thus, the 
length of expression for each element of H has length at most IIHII· Lets be 
expressed as 

(7.1) 

where 1 ~ k ~ IIHII and o:1, · · · ,o:k,{31, · · · ,f3k are commutators of H. The 
gates g1 and g2 are at height ~ ho - 1. Then by our induction hypothesis, 
for every i, 1 ~ i ~ k, there exist the following programs Pi, Qi, Ri, and Si: 

• Pi is an (e,o:i) program for g1 and has length less than or equal to Bho- 1 • 

• Qi is an ( e, f3i) program for g2 and has length less than or equal to Bho- 1. 
• ~is an (e, o:;--1) program for g1 and has length less than or equal to Bho- 1• 

• Si is an ( e, f3i 1) program for g2 and has length less than or equal to Bho-1. 
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LetT be the program that executes Pt,Q1,R1,St, ... Pk,Qk,Rk,Sk in that 
order. For all x E En, if g1 (x) = g2(x) = 1, then T[x] = s. Also, if either 
g1(x) = 0 or g2(x) = 0, then T[x] =e. Thus, Tis an (e, s) program for g. 
Since k ~ IIHII and Pt,Q1,R1,St, ... Pk,Qk,Rk,Sk all have length at most 
( 4IIHI i)ho-1, the length of the program T is at most ( 4IIHI i)ho as desired. 

To construct an (s,e) program for g having length at most (4IIHII)ho, 
we follow the above construction with s- 1 in place of s to define an (e, s-1) 

program for g. Let ( i, ~. 0) be its first instruction. Then we replace this first 
instruction by (i, ~ o s, 0 o s). The replacement turns the program into, while 
preserving the program size, an ( s, e) program for g. 

The construction in the case when g is an V gate uses the same idea. Let 
g' = •g, g~ = •g1, and g~ = •g2. Then g = •g' and g' = g~ 1\ g~. For all 
gates g and all~. 0 E H, a(~, 0) program for g is a (0,~) program for •g. So, 
we obtain an ( e, s-1) program for g' and then replace its first instruction, say 
( i, ~, 0), by ( i, ~ o s, 0 o s). That turns the program into, while preserving the 
program size, an (s, e) program for g', which is an (e, s) program for g. 

0 Lemma 7.7 
To complete the proof, note that NC1 circuits have depth O(logn) and 

that B 0 (logn) = O(nclogB). Thus, the resulting program has polynomial 
~. 0 

7.2 Width-5 Bottleneck Machines Capture PSPACE 

Let k ~ 2. Recall that SFk is the class of languages L for which there exists 
some polynomial p and some polynomial time computable function f : E* x 
E* --+ Mk such that for every x E E* it holds that 

x E L {::::::::} (!(x, 1P(Ixll) o f(x, 1P(Ixll-1o) o ... 

of(x, OP(Ixl)-11) o f(x,OP(Ixll)) (1) = 1. 

By translating Theorem 7.2 to polynomial space-bounded computation, we 
show that the power of SFs is exactly that of PSPACE. 

Theorem 7.8 SFs = PSPACE. 

In Theorem 7.2 branching programs are shown to be able to simulate NC1 

circuits. In Theorem 7.8 rather than use a bottleneck machine to simulate a 
PSPACE machine, we construct a polynomial-depth circuit from an instance 
of QBF, a canonical complete language for PSPACE. We then show that a 
width-5 bottleneck machine can evaluate all such circuits and determine for 
each given instance, whether the instance is a member of QBF. 

Proof of Theorem 7.8 SF5 ~ PSPACE holds because a polynomial 
space-bounded Turing machine can, by cycling through all counter values, 
compute the product of all the exponentially many mappings associated with 
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a given input x. For the other direction, we will show QBF E SF5. Then, 
since SF5 is closed under polynomial-time many-one reductions, it follows 
that PSPACE ~ SF5. 

Define a, {3, "f, and Oo, ... , (}3 as in the proof of Theorem 7.2. We will 
define a polynomial-time computable function f : E* X E* --+ s5 such that for 
every n ~ 1, and for every fully quantified boolean formula ( of n variables, 

f((, 12n) o ... of((, 02n) ="'if ( E QBF and !5 otherwise. 

This will establish that QBF E SF5. Since QBF is ~~-reducible to QBF, we 
will then have QBF E SF5. In order to construct such a function we will be 
scaling up the proof of Theorem 7.2, from logarithmic depth to polynomial 
depth. Let ( be a fully quantified boolean formula of the form 

Q1x1 · · · QnXntp(xl, ... ,xn). 

( can be naturally viewed as a bounded-fan-in boolean circuit in the shape 
of a full binary tree having height n with 2n inputs, where the inputs of the 
circuit are tp(O, ... , 0), ... , tp(1, ... , 1) and, for each i, 1 ~ i ~ n, the gates 
at level i (distance i from the input level) are AND gates if Qn+l-i = V and 
are OR gates if Qn+l-i = 3. Call this circuit Cr,. Since it is a tree, each 
gate of Cr, can be specified uniquely by the downward path from the root 
(the output gate). For each y E (E*)~n, the gate specified by y evaluates the 
following formula: 

• If y is the empty string, the formula is (. 
• If 1 ~ IYI ~ n- 1, then the formula is 

QIYI+lXIYI+l · · · QnXntp(bl' · · · 'biYI' XIYI+l' · · · 'Xn)' 

where for every i, 1 ~ i ~ IYI, bi is the ith bit of y. 
• If IYI = n, then the formula is <p(b1, ... , blyl), where for every i, 1 ~ i ~ n, 

bi is the ith bit of y. 

We apply the construction of a branching program described in Theorem 7.2 
to Cr, to build a directed graph, Tr,, in the shape of a full quaternary tree 
having height n. In Tr, each nonroot v is bidirectionally connected to its 
parent. For each nonleaf of Tr,, we assign numbers 0, ... , 3 to its four children 
from right to left. Since the nodes of Tr, are laid out in a full quaternary tree, 
each node of Tr, can be specified by a unique downward path from the root. 
Written in binary, for every m, 0 ~ m ~ n, the length of the path for each 
node at depth m is 2m. The empty string specifies the root and for each m, 
1 ~ m ~ n, and for each u = b1 · · · b2m E {0, 1 }2m, the string u specifies 
the node that is reached from the root by the downward path along which 
for each d, 1 ~ d ~ m, the edge towards the (b2d-lb2d)th child is selected at 
depth d- 1, where 00, 01, 10, and 11 stand for 0, 1, 2, and 3, respectively. 

We let each node of Tr, correspond to a fully quantified boolean formula. 
Let u be a binary string such that lui is even and 0 ~ lui ~ 2n. The formula 
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corresponding to the node specified by u, denoted by F(u), is determined as 
follows: 

• If u is the empty string, F(u) = (. 
• If2 :5 lui :5 2(n-1), then 

where for every i, 1 :5 i :5 2m, bi is the ith bit of y. 
• If lui = 2n, then 

where for every i, 1 :5 i :5 2n, bi is the ith bit of y. 

Next we label each edge and each leaf of Tc by an element of Ms. For 
each edge e = ( u, v), write AE ( u, v) to denote the label assigned to e and, for 
each leaf u, write Av(u) to denote the label assigned to u. Let u be any node 
of Tc. Let P( u) denote the product of the labels, defined as follows: 

• If u is a leaf, then P(u) = Av(u). 
• If u is not a leaf, let vo, v1, v2, va be the four children of u, enumerated from 

right to left. For each i, 0:5 i :53, let ai = AE(u,vi) and f3i = AE(Vi,u). 
Then 

P(u) = 

f3a o P(va) o aa o fJ2 o P(v2) o a2 o 

(31 o P(vl) o a1 o f3o o P(vo) o ao. 

In other words, P(u) is the product of the all labels that are encountered 
during the in-order traversal of the subtree rooted at u, where at every nonleaf 
node, the children are visited from right to left. 

We assign these labels are assigned so that, for all u, it holds that P(u) = 
'Y if F(u) = 'Ifue and P(u) = Is otherwise. To accomplish this, we use 
the construction in the proof of Theorem 7.2. Recall that, to construct a 
program for an /\-gate or an V-gate, we concatenated four programs that were 
constructed recursively, and that we inserted into each of the four programs 
two constant mappings, one at the beginning and the other at the end. The 
four children of a nonleaf node correspond to the four components, so for 
each i, 0 :5 i :5 3, the downward edge to the ith child of u is labeled by the 
constant mapping that is inserted at the very beginning of the ith component 
and the upward edge from that child is labeled by the one inserted at the 
very end. 

More specifically we determine the labels as follows: 

1. For every leaf u, it is labeled by 'Y if the formula corresponding to it 
evaluates to 1 and Is otherwise. 
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2. For every d, 0 ~ d ~ n- 1, such that Qd = V, for every nonleaf u at 
depth d, and for every r, 0 ~ r ~ 3, the label of the edge going to the 
rth child from right is Or and the label of the edge coming back from the 
child is o:; 1 . 

3. For every d, 0 ~ d ~ n - 1, such that Qd = 3, for every nonleaf u at 
depth d, and for every r, 0 ~ r ~ 3, the label of the edge going to the 
rth child from right is 
• ')'- 1 o 03 o 'Y if r = 0 and 
• ')'- 1 o 03-r if r = 1, 2, 3, 
and the label of the edge coming back from the rth child is 03,!r. 

Now we show that these labels give us the property we need. 

Fact 7.9 For every node u ofTc;, P(u) =')'if F(u) = 'frue and 15 otherwise. 

Proor'of Fact 7.9 We prove the fact by induction on the height h of the 
subtree of Tc; rooted at u . For the base case, suppose that h = 0. Then u is a 
leaf. Then P(u) = Av(u). According to rule 1, Av(u) equals')' if F(u) = 'frue 
and equals 15 otherwise. Thus the claim holds for h = 0. 

For the induction step, suppose that h = ho for some ho > 0 and that 
the claim holds for all values of h less than ho and greater than or equal 
to 0. Let u be a node such that the subtree rooted at u has height h. Let 
Q = Qn+l-h· First suppose that Q = V. Let vo, ... , V3 be the children of u 
enumerated from right to left. Note that the downward path from the root 
to vo is identical to that to v2 except that the second-to-last bit is a 0 for vo 
and is a 1 for v2. Since the second-to-last bit is not used to determine F(v0 ) 

or F(v2), we have F(vo) = F(v2). For much the same reason, F(v1) = F(v3). 
Since Q = V, F(u) = F(v0 ) 1\ F(v1). By rule 2, P(u) is 

(031 o P(v1) o 03) o (021 o P(vo) o 02) 

o (01 1 o P(v1) o 01) o (001 o P(vo) o Oo). 

By our induction hypothesis, P(vo) = ')' if F(vo) = 'frue and P(v0 ) = 15 

otherwise, and the same holds for P(v1). According to the analysis for the 
case in which f is an AND gate on page 172, we have the following: 

• 031 oP(v1)o03 is equal to /3- 1 if F(v1) = 'frue and is equal to 15 otherwise. 
• 021oP(vo)o02 is equal to a-1 if F(vo) = 'frue and is equal to 15 otherwise. 
• 011 o P(v1) o 01 is equal to f3 if F(v1) = 'frue and is equal to 15 otherwise. 
• 001 o P(vo) o Oo is equal to a if F(vo) = 'frue and is equal to 15 otherwise. 

Thus, P(u) =')'if P(v1) = P(vo) = 'frue and P(u) = 15 otherwise. Hence, 
the claims holds for the case when Q = V. 

Next suppose that Q = 3. By following an analysis similar to the above, 
P( u) is equal to 

(Oo o P(v1) o ')'-1 o 001) o (01 o P(v0 ) o 'Y-1 o 011) 

o (02 o P(v1) o ')'- 1 o 021) o (03 o P(v0 ) o ')'- 1 o 0317). 
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By our induction hypothesis, P(vo) = "Y if F(vo) = True and P(vo) = Is 
otherwise, and the same holds for P(vl). Then, by inverting (001 o"Yo00)- 1 = 
a, we have the following: 

• 00 o P(v1 ) o "Y- 1 o 001 is equal to Is if F(v1 ) = True and is equal to a- 1 

otherwise. 

Similarly, we have the following: 

• 01 o P(vo) o "Y- 1 o 01 1 is equal to Is if F(vo) = True and is equal to {3- 1 

otherwise. 
• 02 o P(v1) o "Y- 1 o 02 1 is equal to Is if F(vl) = True and is equal to a 

otherwise. 
• 03 o P(v0 ) o "Y- 1 o 03 1 is equal to "Y if F(v0 ) =True and is equal to {3 o "Y 

otherwise. 

Since a-1 o {3-1 o a o {3 = "'f- 1 , P(u) = "Y if F(u) =True and P(u) = Is 
otherwise. Hence, the claim holds for the case where Q = 3. Thus, the claim 
holds for all d, 0 $ d $ n. 0 Fact 7.9 

Let u be the root ofT,. Now it suffices to show that there is a polynomial­
time computable function f such that 

P(u) = J((, 12n) o .. · of((, o2n). 

Recall that the definition of P(u) corresponds to the in-order traversal of 
the tree. For each w = b1 · · · b2n E E2n \ {o2n, 12n }, we define f((, w) to 
be the product of all the labels that are encountered while moving from the 
leaf w' to the leaf w during the in-order traversal of the tree, where w' is 
the predecessor of w in E2n. We define f ( (, o2n) to be the product of all 
the labels that are encountered while moving from the root to the leaf o2n 
during the traversal and J((, 12n) to the product of all the labels that are 
encountered while moving from the leaf 12n-lo to the root. More precisely, 
f ( (, w) is defined as follows: 

1. If w = o2n, then 

!((, o2n) = Av(o2n) 0 AE(o2n-2, o2n)o 

.•. 0 AE(OO, 0000) 0 AE(t, 00). 

2. If w = 12n, then 

f((, 12n) = AE(ll, t) o AE(llll, 11) o · · · OAE(12n, 12n-2)o 
Av(12n) o AE(12n-2' 12n) o AE(12n10, 12n-2). 

3. If w = w1 · · · W2n E E2n \ {02n, 12n}, let w' = wi · · · w~n denote the 
predecessor of w in { 0, 1} 2n. Let m be the largest integer i such that the 
prefix of w having length 2i is equal to the prefix of w' having length 2i. 
In other words, w1 · · · w2m is the least common ancestor of w and w'. 
We define 



7.3 Width-2 Bottleneck Computation 181 

f((,w) = Av(w)o 

AE(wl · · · W2n-2,w) o · · · o AE(wl · · · W2m 1 WI · · · W2m+2) o 

\(I I I I) \(II I) /\E WI ... W2m+2• WI •.. W2m o ... o AE W 'WI ... W2n-2 . 

It is easy to see that the product 

is equal to R,. The labels AE and Av can be easily computed. The number 
of terms in each value off is bounded by 2n + 1 (the maximum is achieved 
when w = b1c102n- 2 for some b1c1 E {01,10,11}). So f is polynomial-time 
computable. Thus, QBF E SFs. Hence, PSPACE <;;;; SFs. 0 Theorem 7.8 

7.3 Width-2 Bottleneck Computation 

In the previous section, we showed that width-5 bottleneck Turing machines 
capture PSPACE. Here we study the complexity of width-2 bottleneck com­
putation from three angles. First, we ask what power polynomial-size width-2 
bottleneck Turing machines possess. Second we ask, in regards to width-2 
computation, how important the order of the instructions is. Then finally we 
ask how much computational power is added if the machines are allowed to 
behave probabilistically. In the following discussion let v=1 (respectively, v=2 ) 

denote the constant function in M2 that maps both 1 and 2 to 1 (respectively, 
2). 

7.3.1 Width-2 Bottleneck Turing Machines 

$0ptP is the class of all languages L for which there exists a language A E $P 
and a function g E OptP such that for every x E E* 

x E L <==> (x, g(x)) EA. 

The goal of this section is to prove the following theorem, which states that 
the class of languages accepted by polynomial-time width-2 bottleneck com­
putation is identical to $0ptP. 

Theorem 7.10 SF2 = $0ptP. 

Proof Throughout this proof we use the following notation. For each string 
y, rank(y) denotes the rank of y in EIYI. Also, for each integer n ~ 1 and i, 
1 $ i $ 2n, strn(i) denotes the stringy E En such that rank(y) = i. 

We first prove that SF2 <;;;; $0ptP. Suppose that L E SF2 . There exists a 
polynomial p and a polynomial-time computable function f : E* x E* - M 2 

such that, for every x E E*, 
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For each x E E*, define 

Q[x] = f(x, 1P(Ixll) 0 ... 0 f(x, OP(Ixll). 

Then, for all x E E*, 

x E L {::::=:} Q[x] E {h v=l}· 

Define N to be the nondeterministic 'lUring machine that, on input x E E*, 
guesses a stringy E EP(Ixl) and then outputs rank(y) if f(x,y) E {v=1,v=2} 
and outputs 0 otherwise. N can be polynomial time-bounded. For all x E E*, 
N on input x outputs a nonnegative integer along each computation path. 
Let g be the OptP function defined by N, i.e., for all x E E*, 

g(x) = ma.x{i EN I some path of N(x) has i as its output}. 

For each x E E* and each i ~ 0, define 

M(x, i) = II{ z I z E EP(Ixl) 1\ rank(z) ~ i + 1 1\ f(x, z) = (1 2)}11· 

Define 

A = { (x, i) I x E E* 1\ i ~ 0 1\ 

((i = 0 1\ M(x, 0) is an even number) V 

(1 ~i~p(lxl) 1\f(x,strP(Ixl)(i)) =V=l/\ 

M(x, i) is an even number) V 

(1 ~ i ~ p(lxl) 1\ f(x, strP(Ixl)(i)) = v=2 1\ 

M(x, i) is an odd number))}. 

Then A E ®P. To see why, let 

A'= {(x,i) I x E E* 1\0 ~ i ~ 2P(Ixl) 1\ M(x,i) is an odd number}. 

Then A' E ®P and A ~l-tt A'. By part 2 of Proposition 4.8, ®P is closed 
under ~~-reductions. So, A E ®P. We now prove that the membership in L 
can be decided by the membership A with g as advice. 

Fact 7.11 For every x E E*, x E L {:::::;:} (x,g(x)) EA. 

Proof of Fact 7.11 Let x E E* be fixed. We consider the following three 
possibilities: 

• g(x) = 0, 
• 1 ~ g(x) ~ 2P(Ixl) and f(x,strp(lxl)(g(x))) = v=b and 
• 1 ~ g(x) ~ 2P(Ixl) and f(x,strP(Ixl)(g(x))) = V=2· 
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First consider the case when g(x) = 0. Since g(x) = 0, for all y E EP(JxJ), 
f(x,y) E {/2, (1 2)}. So, x E L {::::::::} Q(x] = /2. It holds that 

(x, 0) E A {::::::::} M(x, 0) is an even number 

and 
Q[x] = /2 {::::::::} M(x, 0) is an even number. 

Thus, x E L {::::::::} (x,g(x)) EA. 
Next consider the case when 1 ~ g(x) ~ 2P(JxJ) and /(x,strp(JxJ)(g(x))) = 

v=l· It holds that Q(x] E {v=b v=2}· So, x E L {::::::::} Q(x] = v=l· It holds 
that 

(x,g(x)) E A {::::::::} M(x,g(x)) is an even number 

and 
Q(x] = v= 1 {::::::::} M(x,g(x)) is an even number. 

Thus, x E L {::::::::} (x,g(x)) EA. 
Finally, consider the case when 1 ~ g(x) ~ 2P(JxJ) and 

f(x,strp(JxJ)(g(x))) = v=2· It holds that Q(x] E {v=l,v=2}· So, x E L {::::::::} 
Q(x] = v=l· It holds that 

(x,g(x)) E A {::::::::} M(x,g(x)) is an odd number 

and 
Q[x] = v= 1 {::::::::} M(x,g(x)) is an odd number. 

Thus, x E L {::::::::} (x,g(x)) EA. 0 Fact 7.11 
By Fact 7.11, we have L E EBOptP. 
Next we prove that $0ptP ~ SF2. Let L be a language in EBOptP. Let 

A be a language in EBP and let g be a polynomial, such that A and g jointly 
witness that L E $0ptP, i.e., for all x E E*, 

x E L {::::::::} (x,g(x)) EA. 

Since g E OptP, there is a polynomial-time nondeterministic Turing machine 
such that, for every x E E*, g(x) is the maximum of the output values of the 
machine on input x. By definition, for every x E E*, N on input x outputs 
a nonnegative integer along each computation path. Let p be a polynomial 
that bounds the runtime of N. Then, for all x E E*, each output string of 
N on input x has at most p(Jxl) bits. This implies that, for all x E E*, each 
output of N on input x is in the interval (0, 2P(JxJ) - 1]. On the other hand, 
for each x E E*, the rank of a string having length p(JxJ) is in the interval 
(1, 2P(JxD]. So, for each x E E*, we correspond EP(JxJ) to {0, ... , 2P(JxJ) - 1} 
by letting each y E EP(JxJ) represent the integer rank(y)- 1. 

We may assume that at each computation step, N has two possible (not 
necessarily distinct) moves. Then, for all x E E*, each computation path of 
Non x can be uniquely encoded as a string of length p(Jxl). Since A E EBP, 
there exist a polynomial r and B E P, such that, for all x E E*, 
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x E A <===> II{Y I y E Er(lxl) 1\ (x,y) E B}ll is an odd number. 

We can choose the polynomial r so that it is strictly increasing, i.e., for all 
n ~ 0, r(n + 1) > r(n). Take k to be the smallest integer such that, for all 
n ~ 0, knk + k ~ r(n). We'll replace r(n) by r'(n) = knk + k and replace B 
by 

B' = { (x, yw) I y E Er(lxl) 1\ w = or'(lxl)-r(lxl) 1\ (x, y) E B}. 

Then r' is strictly increasing and, for all x E E*, 

II{Y I Y E Er(lxl) 1\ (x,y) E B}ll = II{Y I Y E Er'(lxl) 1\ (x,y) E B'}ll· 

Let l be a polynomial such that, for all x E E* and i, 0 ~ i ~ 2P(Ixl) - 1, 
i(x,i)l ~ l(ixi). Define s(n) = 2p(n) +r'(l(n)). 

Define f : E* X E* --+ M2 as follows: Let x, w E E*. 

• If lwl -:f. s(ixi), f(x, w) = h. 
• If lwl = s(ixi), let yzuv be the decomposition of w such that IYI = izl = 

p(ixi) and lui = r'(l(i (x, rank(y)- 1) 1)). Then the value of f(x, w) is de­
fined as follows: 
-If N on input x along path z outputs rank(y) - 1, u E 0*, 

((x,rank(y) -1),u) E B', and v E 0*, then f(x,w) = 11=l· 

- If N on input x along path z outputs rank(y) - 1, u E 0*, 
((x,rank(y) -1),u) fJ B', and v E 0*, then f(x,w) = 11=2· 

- If N on input x along path z outputs rank(y) - 1, u fJ 0*, 
((x,rank(y) -1),u) E B', and v E 0*, then f(x,w) = (1 2). 

- Ify, z, u, and v satisfy none of the three conditions above, then f(x,w) = 
12. 

Let x E E* be fixed and let n = lxl. Let y = strp(n)(g(x) + 1) and let 
z = max{z E EP(n) IN(x) outputs g(x) along the computation path z}. Then, 
rank{Y) = g(x), and for ally, z E EP(n) and w E Es(n)-2p(n), if yz <lex yz, 
then f(x, yzw) = 12. Also, f(x, yzOs(n)-2p(n)) E {11=1!11=2}. So, 

f(x, 1 s(n)) 0 ••• 0 f(x, os(n)) 

= f(x, yz1 s(n)-2p(n)) 0 ••• 0 f(x, yzos(n)-2p(nl). 

Let a= r'(l(l(x,g(x)rank(y) -1)1)) and let f3 = s(n)- 2p(n)- a. Then, for 
all u E E"' and v E E.8 \ {0.8}, 

f(x, yzuv) = 12. 

So, 

f(x, yZl s(n)-2p(n)) o ... o f(x, yz0s(n)-2p(n)) 

= f(x,yzu2"o.B) o f(x,yzu2"-lo.B) o · · · o J(x,yzu20.8) o f(x,yzulo.B), 

where for every i, 1 ~ i ~ 2"', Ui = str0 (i), i.e., the ith smallest string in 
E"'. For each i, 1 ~ i ~ 2"', let <f'i = (1 2) if ((x,g(x)),ui) E B' and <f'i = h 
otherwise. Note that 
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and that 

f( x Az o.B) = { V=i if ((x,r~nk(y) -1),yi) E B', 
' y Yi v=2 otherwise. 

So, 

f(x, yzu2"'0.a) o f(x, yzu2"'-io.B) o · · · o f(x, yzu20.a) o f(x, yzuio.a) 

= CfJ2"' o · · · o CfJi o V=2· 

Note that ll{i 11 ~ i ~ 2<> 1\ CfJi = (12)}11 = ll{i 11 ~ i ~ 2<> 1\ ((x,g(x)),ui) E 
B'}ll· Also, ll{i 11 ~ i ~ 2<> 1\ ((x,g(x)),ui) E B'}ll is an odd number if and 
only if (x, g(x)) E A. So, we have 

Thus, 

"' 0 •.• 0 0 V- = { v=i if (x,g\x)) E A, 
cp2 CfJi - 2 v=2 otherwise. 

f(x, 1s(n)) 0 ••• 0 f(x, os(n)) = { V=i if X E L, 
v=2 otherwise. 

Hence, L E SF2. 

7 .3.2 Symmetric Width-2 Bottleneck Turing Machines 

0 

We now consider symmetric bottleneck Turing machines. They are defined 
by allowing bottleneck Turing machines to execute their tasks in arbitrary 
order, and by demanding that, no matter what the order is, the product of 
the tasks (as mappings) fixes 1 if and only if the input is to be accepted. 

We will show that width-2 symmetric bottleneck Turing machines are 
much weaker than width-2 bottleneck Turing machines, as every language in 
SSF 2 is the disjoint union of a language in NP and another in EBP. 

Theorem 7.12 For every L E coSSF2, there exist disjoint sets Li and L2, 
LiE NP and L2 E EBP, such that L = Li U £2. 

Proof Let L E coSSF2 be witnessed by a polynomial-time computable func­
tion f and a polynomial p such that for every x E E* and every permutation 
1r of EP(Ixl), it holds that 

x E L {:::::::? (!Cx,7r(F(Ixl))) o ... o f(x,7r(OP(ixD))) (1) = 1, 

or equivalently, 

x E L {:::::::? (f(x,7r(1P(Ixl))) o · · · o f(x,7r(OP(ixi)))) (1) = 2. 
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For each x E E*, define S(x) to be the set of all p. E M2 such that for some y E 
EP(Ixl) it holds that f( (x, y}) = p.. Since f(x, 7r(1p(lxl))) o · · · o f(x, 7r(OP(Ixll)) 
maps 1 to the same index regardless of the choice of 7r, at most one element 
from {v=1 , v=2, (1 2)} can be in S(x). Then, for every x E E*, x E L if and 
only if either S(x) contains v=2 or (S(x) contains (1 2) and there is an odd 
number of y E EPCixl), such that f( (x, y}) = (1 2) ). The former condition can 
be tested by an NP set 

Ll ={xI (:lyE EP(Ixll)[f((x,y}) = v=2]} 

and the latter can be tested by a EBP set 

L2 = {x III{Y I Y E Ep(lxl) 1\ f((x,y}) = (1 2)}11 is an odd number}. 

Thus, L = L1 U L2. For all x E E*, if x E L2, then (1 2) E S(x), so 
v=2 ¢ S(x), and thus, X¢ Ll. Thus, Ll n L2 = 0. 0 

7.3.3 Probabilistic Symmetric Bottleneck Turing Machines 

The power of width-2 symmetric bottleneck Turing machines is, as we showed 
in the previous theorem, very restricted. They do not seem powerful enough 
to include the polynomial hierarchy. However, if they are endowed with access 
to randomness, they gain the polynomial hierarchy. 

Theorem 7.13 ProbabilisticSSF2 = NPPP. 

Proof First we show that ProbabilisticSSF2 2 NPPP. Let L be any lan­
guage in NPPP. We claim that there exists a polynomial p and a language 
A E C=P such that, for every x E E*, x E L if and only if there exists some 
y E EP(Ixl) such that (x, y} E A. To see why this claim holds, let N be a 
polynomial time nondeterministic Turing machine and let B be a language 
in PP such that L(N8 ) = L. Let B E PP and let this be witnessed by 
a polynomial-time nondeterministic Turing machine M such that, for every 
x E E*, x E B ¢=:::} #gapM(x) 2: 0. Let q be a polynomial bounding the 
runtime of N. There is a polynomial r such that, for every x E E* and ev­
ery potential query y of Non x, both #accM(Y) and #rejM(Y) are strictly 
less than 2r(lxl). Define T to be a nondeterministic polynomial-time oracle 
machine that, on input x E E*, behaves as follows: 

Step 1 T nondeterministically simulates N on x. Each time N makes a 
query, instead of making that query, N guesses a single bit b E {0, 1} 
and then returns to the simulation assuming that the oracle answer is 
affirmative if b = 1 and the oracle answer is negative if b = 0. 

Step 2 T rejects x immediately if N on input x rejects along the compu­
tation path simulated in Step 1. 
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Step 3 Let Yl, . . . , Ym be an enumeration of all the queries made by N 
along the computation path that has been simulated in Step 1. For each 
i, 1 :5 i :5 m, T guesses Yi, Zi E Er(lxl) and sets O:i to the rank of Yi in 
Er(lxl} and f3i to the rank of Zi in Er(lzl). 

Step 4 T tests whether there is some i, 1 :5 i :5 m, such that either 
• O:i ~ f3i and the bit b guessed for query Yi during the simulation in 

Step 1 is a 0, or 
• o:i < f3i and the bit b guessed for query ·yi during the simulation in 

Step 1 is a 1. 
If there is such an i, T immediately rejects x. 

Step 5 T asks its oracle whether {'v'i, 1 :5 i :5 m) [o:i = #accM(Yi) 1\ f3i = 
#rejM(Yi)]. T accepts x if ~he answer from the oracle is affirmative and 
rejects x otherwise. 

Clearly, the machine T runs in polynomial time. Define 

Wacc = {(y,m) I Y E E* 1\ m ~ 01\ m = #accM{Y)} 

and 
Wrej = {(y, m) I y E E* 1\ m ~ 01\ m = #rejM(y)}. 

Then both Wacc and Wrej belong to C=P. The queries in Step 5 can be done 
by a single, conjunctive query to the marked union of Wacc and Wrej. Since 
C=P is closed under :5~tt-reductions (see Theorem 9.9), there is a language 
D E C=P such that D can answer the conjunctive query that is made in 
Step 5. Let p be a polynomial bounding the runtime ofT. Since T is poly­
nomial time-bounded, there is a polynomial p such that, for all x E E*, each 
computation path ofT on input x can be encoded as a string having length 
at most p(lxl). Define A = { (x, u) I x E E* 1\ u E EP(!xl) 1\ u is an accepting 
computation path of T on input x 1\ the query that T on input x makes in 
Step 5 along path u belongs to D}. Then "A:5~D, and thus, A E C=P. Since 
for every x E E*, 

x E L ¢:::=:> (3u E EP(!xD) [(x,u) E A], 

the claim holds. 
Since A E C=P, there exist a language B E P and a polynomial q, such 

that for all x E E*, 

X E A ¢:::=:> II{Y E Eq(!xl) I (x, y) E B}ll = ll{y E Eq(!xl) I (x, y) ¢ B}ll. 

Define f : E* X E* -+ { (1 2), h} to be the probabilistic function defined by the 
following machine M1: On input (x, y), x E E* andy E EP(!xl), Mf selects z 
from Eq(!(x,y)l) uniformly at random and then outputs {12) if ((x,y),z) E B 
and outputs h otherwise. For each x E E* and y E EP(!xl), define 

d( (x, y)) = Pr[f( (x, y)) = /2] - Pr[f( (x, y)) = {1 2)]. 
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Then, for all x E E* and y E EP(Ixl), 

(x,y)EA <==:::} d((x,y))=O. 

By routine calculation, for every x E E* and every permutation 1r of EP(Ixl), 

Pr [(f(x,7r(1P(Ixl)))o ··· of(x,7r(OP(Ixl)))) (1) = 1] 

-Pr [ (!(x, 7r(1P(Ixl>)) o · · · o f(x, 7r(OP(Ixl>))) (1) = 2] 

II d( (x, y) ). 
yEEP(Izl) 

Since the sum of the two terms on the left-hand side of the formula is 1, we 
have 

Pr [(f(x,7r(1P(Ixl)))o ··· of(x,7r(OP(Ixl)))) (l) = 1] 

1 1 
=2+2 II d((x,y)). 

yEEP(Izll 

So, for every x E E*, the following conditions hold: 

• If x E L, then for some y E EP(Ixl) it holds that d(x, y) = 0, so, for every 
permutation 1r of EP(Ixl), 

Pr [ (f(x, 7r(1P(Ixl>)) o · · · o f(x, 7r(OP(Ixl)))) (1) = 1 J = ~-

• If x (/_ L, then for every y E EP(Ixl) d(x, y) =f. 0, so, for every permutation 
7r of EP(Ixl)' 

Hence, L E ProbabilisticSSF2. 
Conversely, suppose that L E ProbabilisticSSF 2. There exist a polyno­

mial time probabilistic 'lUring machine T that defines, on each input x, a 
distribution over M2 and a polynomial t, such that, for every x E E*, and 
every permutation 1r over Et(lxl), 

1 x E L <==:::} Pr[f(x, 7r(1t(lxl>)) o · · · o f(x, 7r(Ot(lxl)))(1) = 1] = 2 . 

Let p be a polynomial that bounds the runtime ofT. Let x E E* be fixed. Let 
M = 2t(lxl). For each i, 1 ~ i ~ M, let ai = Pr[f(x, Yi) = /2]- Pr[f(x, Yi) = 
(1 2)] and f3i = Pr[f(x,yi) = v= 1]-Pr[f(x,yi) = v=2], where Yi is the string 
in Et(lxl) having rank i. 

For each permutation 1r of {1, ... , M}, let Q[1r] denote 

{31r(M) + a1r(M)(f31r(M-l) + a1r(M-l)( · · · 

f31f(2) + a1f(2)(f31f(l) + a1f(l)))). 
(7.2) 
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By routine calculation, for all permutations 1r of {1, ... , M}, it holds that 

Q[1r] = Pr [(f(x, 1r(M)) o .. · o f(x, 7r(1))) (1) = 1] 

-Pr [(f(x, 1r(M)) o .. · o f(x, 7r(1)))(1) = 2]. 

Then, for every permutation 7r of Et(ixl), 

X E L ¢:=} Q[7r] = 0. 

Let r be a polynomial such that, for all u E E* and v E EP(iui), q(l (u, v) I) ~ 
r(lvl). We claim that x E L if and only if one of the following two conditions 
holds: 

(*) For some i, 1 ~ i ~ M, ai = f3i = 0. 
(**) There exist some m, 1 ~ m ~ r(lxl) and j 1 , ••• ,jm E {1, ... , M} such 

that 
• for every i E {1, ... ,M} \ {jl, ... ,jm}, f3i = 0, and 
• {3;"' + a;"' ( ... {3h + ah (f3it + a it)) = 0. 

First we show that x E L if either (*) or (**) holds. Suppose that (*) holds. 
Let i E {1, ... , M} be such that ai = f3i = 0. Let 1r be a permutation of 
{1, ... , M} that maps M to i. Then, by (7.2), for some real number Z, it 
holds that Q[1r] = ai + f3iZ. Since ai = f3i = 0, this implies that Q[1r] = 0. 
Thus, x E L. Next suppose that (*) does not hold and (**) holds. Let m E 

{1, ... ,r(lxl)} and j 1 , ..• ,jm E {1, ... , M} for which the two conditions of 
(**)hold. Let 1r be a permutation such that for every i, 1 ~ i ~ m, 1r(i) = }i. 
Then 

Q[7r] = 

( IT ai) ({3;"' + a;M ( .. · {332 + ah (f3it + a;t))) · 
iE{l, ... ,M}\{it. ... dm.} 

By the second condition of(**), the second term on the right-hand side is 0. 
Thus, Q[1r] = 0, and thus, x E L. 

Next we show that if x E L then either (*) or (**) holds. Suppose that 
x E L. Let K = {iIi E I 1\ f3i =f 0} and M' = IIKII· Let S = {a I a is a 
permutation of {1, ... , M} 1\ a( {1, ... , M'}) = K}. For each a E S, let Let 
Q'[a] be the formula Q[a] with everything beyond index a(M') eliminated, 
i.e., 

f3u(M') + au(M') (f3u(M'-1) + au(M'-1) ( · · · 

· · · f3u(2) + au(2)(f3u(l) + au(l)))). 

Then, as we have seen in the previous part of the proof, for all a E S, 

Q[a] = Q'[a] IT 
iE{l, ... ,M}\K 

(7.3) 
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Since x E L by our assumption, this implies that for all a E S, either Q'[a] = 0 
or niE{l, ... ,M}\K ai = 0. We will show that if(*) does not hold, then (**) 
holds. Suppose that (*) does not hold, i.e., for every i E {1, ... , M} \ K, 
a =f. 0. Then, niE{l, ... ,M}\K ai =f. 0. So, for all a E s, Q'[a] = 0. We will 
show below that M' ~ r(lxi). Then(**) holds for an arbitrary enumeration 
j 1 , ..• ,JM' of the members of K. 

Note that, for every i E {1, ... , M}, I ail+ I,Bil ~ 1. For every i E K, 
,Bi =f. 0. This implies that for all i E K ai =f. 1 ai =f. -1. We also claim that, for 
every i E K, ai =f. 0. To see why, assume that there is some i E K such that 
ai = 0. Take a E S to be the one that maps M' to this i. Then Q'[a] = ,Bi. 
This implies ,Bi = 0, a contradiction because i E K. Furthermore, note that 
( **) trivially holds if M' = 1. Suppose M' = 1. Let i be the only element 
of K. Then, for all a E S, Q'[a] = ,Bi + ai and this is 0. So, (**) holds with 
m = 1 and Jm = i. In the following discussion, we thus assume that M' ~ 2 
and that for all i E K ai f/. {-1,0, 1}. 

Let k and l be two distinct elements of K. Let 71' E S be such that 
11'(M') = k and 11'(M'- 1) = l. Let a be the permutation in S such that 
a(M') = l, a(M'- 1) = k, and for all i E {1, ... , M} \ {k, l}, a(i) = 11'(i). 
Let 

() = ,81r(M' -2) + a1r(M' -2) (,81r(M' -3) + a1r(M' -3) ( · · · ,81r(l) + a1r(l))) · 

Then 

and 
Q'[a] = ,Bz + az(,Bk + akO). 

By our supposition, Q'[11'] = Q'[a] = 0, so Q'[11'] = Q'[a]. By canceling aka10, 
we obtain 

,Bk(1- az) = ,Bz(1- ak)· 

Since l E K, az =f. 1. So, we have 

,B 1- ak,B 
k=--- l· 

1-az 

This relation holds for all pairs of distinct indices (k, l) inK. 
Let j~, ... ,JM' be an arbitrary enumeration of all elements inK. Then 

for every k, 2 ~ k ~ M', 
1-a· 

,Bik = 1 Jk ,Bit. 
-ail 

Let 71' E S such that for all k, 1 ~ k ~ M', 11'(k) = Jk· In the expression of 
Q'[11'], for each k, 2 ~ k ~ M', replace ,Bik by ~=:i& ,Bj1 • Then we have 

31 
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where ( = nl~k~M' O'.jk. Since Q'[7r] = 0 by our supposition, 

/3]1 + (1- 0'.]1- /3]1)( = 0. (7.4) 

By definition of r, for all y E Et(lxl) and J.t E M2, the preciSion of the 
probability that T on input (x, y) outputs J.t is at most r(lxl). For alll E K, 
0'.! ¢ { -1, 0, 1 }. Thus, for every l, 1 ~ l ~ M', there exist some odd (not 
necessarily positive) integer hk and some positive integer dk such that O'.j1 = 
f.f,;-. This implies that ( = ~for some odd (not necessarily positive) integer 
ho and some positive integer Do 2: M'. Note that 1 - 0'.31 - /331 =/= 0. This is 
because if 1 - a 11 - /331 = 0 then by equation 7.4 we have Q'[1r] = {311 = 0, 
contradiction our assumption that j1 E K. So, the term (1- a 11 - {311 )( 
appearing in equation 7.4 can be written as -!{:; for some odd (not necessarily 
positive) integer H and some positive integer D 2: M'. Furthermore, {311 = 

~ for some odd (not necessarily positive) integer H' and a positive integer 
lJ' ~ r(lxl). Now we have 

I H' H H'2D-D' + H 
Q [7r] = 2D' + 2D = 2D = 0. 

Since both H' and H are odd integers, the numerator H'2D-D' + H is not 0 
unless D = D'. So, D = D'. Note that D 2: M' since (is the product of M' 
terms, none of which belong to { -1, 0, 1 }. So, if M' > r(lxl), clearly, D =I= D'. 
Thus, M' ~ r(lxl). Thus, (**) holds. 

Now we consider the complexity of testing(*) and (**). Define 

Ta = { (x, i, H} 11 ~ i ~ 2t(lxl) 1\ - 2r(lxl) ~ H ~ 2r(lxl) (\ 

and the value of O'.i for the input x is 2r~xl) } 

and 

T13 = { (x, i, H} 11 ~ i ~ 2t(lxl) 1\ - 2r(lxl) ~ H ~ 2r(lxl) (\ 

and the value of f3i for the input x is 2r!l)}. 

Then Ta and T13 are in C=P. We will leave the task of verifying this claim to 
the reader. 

Let g E GapP be a function for checking the value of f3i in C=P, i.e., for 
every x E E*, every i, 1 ~ i ~ 2t(lxl), and every integer H in the interval 
[-2r(lxl), 2r(lxl)], 

H 
Pr[f(x, Yi) = v=l] - Pr[f(x, Yi) = v=2] = 2r(lxl) {::::::::} g(x, i, H) = 0, 

where Yi denotes the string in Et(lxl) having rank i. For each x E E* and each 
nonempty J ~ {1, ... , 2t(lxl)} having cardinality at most r(lxl), define 
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g'(x, J) = 
iE{l, ... ,2t(lzll}\J 

Then, by parts 3 and 5 of Proposition 9.3, g' E GapP. Then, for a given J, 
part 1 of (**) can be tested by asking whether g'(x, J) = 0. This is a query 
to a C=P language. 

Now consider a nondeterministic Turing machine that, on input x E E*, 
nondeterministically selects and executes one of the following two tasks: 

Task 1 Nondeterministically select i, 1 ~ i ~ 2t(lxl). Ask the oracle 
whether ai = f3i = 0. Accept x if the answer of the oracle is positive 
and reject x otherwise. 

Task 2 Perform the following three operations: 
• Nondeterministically select m, 1 ~ m ~ r(lxl), J1, ... ,Jm, 1 ~ J1 < 

· · · < Jm ~ 2t(lxll, integers a1, ... ,am, b1, ... ,bm between -2r(lxl) 
and 2r(lxl) 0 

• Test whether the second condition of(**) holds with, for all i, 1 ~ i ~ 
m, ai/2p(lxl) in place of O!j; and with f3j; in place of bi/2P(Ixl) for /3j;. 

If the test fails, then immediately reject x. 
• Ask the oracle whether the first condition of (**) holds. Accept x if 

the answer is positive and reject x otherwise. 

By the discussion in the above, a C=P oracle can answer each of the questions 
that are made. Obviously, the machine is polynomial-time bounded. Thus, 
L E NPC=P. D 

7.4 OPEN ISSUE: How Complex Is Majority-Based 
Probabilistic Symmetric Bottleneck Computation? 

Theorem 7.13 states that probabilistic symmetric bottleneck computation 
captures precisely NPC=P. We define ProbabilisticSSF2 using "the exact half" 
as the membership criterion. Namely, for every x and every permutation of 
the mappings, xis a member if and only if the probability that 1 is mapped 
to 1 is exactly a half. What kind of class does it become if we change the 
definition such that the probability must be more than a half? No one knows. 
In fact, we don't even know whether the majority-based class includes the 
"exactly-half" -based class. 

7.5 Bibliographic Notes 
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ter's thesis of Masek [Mas76] under the name of "decision graphs." Borodin et 
al. [BDFP86] and Chandra, Fortune, and Lipton [CFL85] questioned whether 
simple functions such as the parity function can be computed by polynomial­
size, bounded-width branching programs. Barrington [Bar89] positively re­
solved the question, and this is Theorem 7.2. Barrington's earlier work [Bar85] 
characterizes the power of width-3, permutation only polynomial-size branch­
ing programs. In [Bar89] Barrington shows that the languages recognized by 
polynomial-size, permutation-only, branching programs of width less than 
five are AC0-reducible to a mod function. 

A further extension of Theorem 7.6 is proven by Barrington [Bar89]. Here 
the membership is determined by examining whether the product belongs 
to a set of predetermined elements of a monoid. More precisely, a program 
over a monoid consists of its instructions and a list of permissible product 
values, which is a list of elements in the monoid. The program accepts an 
input x if and only if the product of the monoid elements generated by the 
input x according to the program belongs to the list provided. This is the 
concept called nonuniform deterministic finite automata (NUDFA) [Bar89] 
over a finite monoid. Recognition by NUDFA extends the concept of language 
recognition as word problems over a monoid (translate each input symbol 
to an element in a monoid and compute the product of the elements). An 
immediate observation that follows from Theorem 7.6 is that the class NC 1 is 
equal to the class of languages that are recognized by a family of polynomial­
size NUDFA programs on some monoid. 

One wonders whether a fine classification of languages in NC 1 can be 
obtained by restricting the monoid in polynomial-size programs for NUDFA. 
A monoid is aperiodic if every element m in it satisfies an equation of the form 
mt = mt+l for some t ~ 0. A monoid is solvable if every group contained in 
it is solvable. For a group G, its lower central series is a sequence of groups 
Go, G1, ... defined as follows: Go = G and for every i ~ 1, Gi is the group 
generated by {h2 1 o h1 1 o h2 o h1 I h1 E Gi-l 1\ h2 E G}. A group is nilpotent 
if its lower central series converges to the trivial group. Building upon earlier 
work of Therien [The81], Barrington and Therien [BT88] show that AC0 is the 
class of languages that are recognized by a family of polynomial-size NUDFA 
programs on some aperiodic monoid and that ACC is the class of languages 
that are recognized by a family of polynomial-size NUDFA programs on some 
solvable monoid. Barrington, Straubing, and Therien [BST90] show that a 
language is recognized by a family of polynomial-size programs for NUDFA 
on a nilpotent group if and only if it is represented by a family of polynomials 
of constant degree over a direct product of cyclic rings. 
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The concept of bottleneck Turing machines was introduced in the pa­
per by Cai and Furst (CF91]. In addition to the complete characterization 
of SF5 (Theorem 7.8), Cai and Furst observe that SF2 includes ~~ and 
asked whether any of SF2, SF3, and SF4 contains the polynomial hierarchy. 
In (Ogi94a] Ogihara obtained upper and lower bounds for these classes, in­
cluding Theorem 7.10. Ogihara's upper and lower bounds are in the class 
family MOD6PH, where MODaPH is the smallest family :F of complex­
ity classes satisfying the following conditions: (i) P E :F and (ii) for every 
C E :F, NPc E :F, coNPc E :F, Mod2Pc E :F, and Mod3Pc E :F. Ogi­
hara shows that SF 4 ;;:;? (E~)ffiP, which implies, by Toda's Theorem 4.12, 
that PH ~ SF 4, answering the question raised by Cai and Furst. Beigel and 
Straubing (BS95] also showed some insights into how the upper and lower 
bounds shown in (Ogi94a] can be tightened. The exact characterizations of 
SF 3 and SF 4 and special cases of SF classes are given by Hertrampf ( [Her97], 
see also [HerOO]). Hertrampf et al. [HLS+93] show that the characterizations 
of AC0 and of ACC proven by Barrington and Therien (BT88] can be trans­
lated into polynomial-time uniform classes to characterize PH and MODaPH. 

There is another application of Theorem 7.2. Let k ~ 1 be an integer. A 
language L is called k-locally self-reducible if there exists a polynomial time 
oracle Turing machine M that decides L with oracle L such that, for every 
input x and every query y of M on input x, the lexicographic order of y is 
between that of x minus one and that of x minus k; i.e., the membership of 
only k predecessors of x in the lexicographic order can be asked. Beigel and 
Straubing (BS95] show that for every k, all k-locally self-reducible sets are in 
PSPACE, and that, while all 2-locally self-reducible sets belong to MOD6PH, 
some 3-locally self-reducible sets are PSPACE-complete. They also show that 
there is a PSPACE-complete 6-locally self-reducible set whose self-reduction 
is many-one. 

The concept of symmetric bottleneck Turing machines was introduced 
by Hemaspaandra and Ogihara (H097]. They observe that for every k ~ 2 
and every language Lin SSFk, Lis ::;~-reducible to a language in coModkP 
by a function that is polynomial-time computable with an oracle in PH. 
Hertrampf ([Her99], see also (HerOO]) obtained an exact characterization of 
SSF classes. 

Based on Barrington's S 5 trick, Ben-Or and Cleve [BOC92] showed that 
algebraic formulas over any ring can be evaluated by straight-line programs 
using just three registers. Caussinus et al. [CMTV98] use this result to obtain 
a characterization of the class GapNC1 in terms of bounded-width branching 
programs. 

Theorem 7.2 can be applied to quantum computation. (For a textbook 
on quantum computation, see [Gru99].) Ambainis, Schulman, and Vazi­
rani (ASVOO] show that width-5 permutation branching programs can be 
simulated by a quantum computer with three qubits one of which is in a 
pure initial state and two others are in a completely mixed (random) start-
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ing state. Thus, NC1 can be computed by quantum computers with all but 
one qubit in a completely random starting state. 





8. The Random Restriction Technique 

Oracle construction is a major tool for studying questions about complexity 
classes. Suppose we find an oracle relative to which a complexity-theoretic 
property Q holds and another oracle relative to which Q does not hold. 
Then we can conclude that settling the question of whether Q holds without 
assumption is very tough, in the sense that proof techniques that can be 
relativized, such as those based on Turing-machine computation, cannot on 
their own successfully resolve whether Q holds. 

It is often the case that one of the two kinds of oracles-oracles making Q 
hold and oracles making Q fail to hold-is easy to construct, while the other 
kind is more difficult to construct. An example of this type is the question of 
whether P equals NP. If we relativize this question by any PSPACE-complete 
oracle, then the two classes both become PSPACE, and thus equality holds. 
On the other hand, the existence of an oracle for which the equality does not 
hold is typically demonstrated by a diagonalization argument that is more 
complicated than the few-line proof of the equality. 

The focus of this chapter is an oracle construction based on impossibil­
ity results about boolean circuits. These impossibility results are proven by 
randomly fixing the input bits (and so are called the random restriction tech­
nique). The chapter is organized as follows. Section 8.1 introduces the random 
restriction technique and presents the first circuit lower bound proven by the 
technique: Constant depth, polynomial-size circuits cannot compute parity. 
Section 8.2 presents an exponential-size lower bound for parity and, based on 
that bound, constructs a world in which PH =/= PSPACE. Section 8.3 is an 
interlude. We prove that a probabilistic experiment yields a world separating 
PH from PSPACE with probability one. Section 8.4 is an application of the 
technique to the question of whether the polynomial hierarchy is infinite. 

8.1 GEM: The Random Restriction Technique and a 
Polynomial-Size Lower Bound for Parity 

8.1.1 The Idea 

First let us briefly sketch the idea behind the technique. Let f be a function 
and let C be a depth-k circuit. We wish to prove that C does not compute 
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f. We assume that every downward path in C from its output gate to an 
input gate has length k. Then we divide the gates into k + 1 levels, 0, ... , k, 
where the input gates are at level 0, and, for each k ;::: 1, the level k nodes 
are those that take inputs from level k -1. Suppose that we assign the values 
0 and 1 to some of the variables and restrict the inputs of both C and f to 
those consistent with the assignment. Some restrictions may force all depth-2 
subcircuits of C to depend on a small number of variables. If there is such 
a restriction, then all the depth-2 subcircuits can be simplified so that their 
top gates are the same as the gates in C at the third level. This simplification 
will produce either two consecutive levels of /\'s or two consecutive levels of 
V's, which can be collapsed to yield an equivalent depth-(k- 1) circuit. 

We require that for any restriction, f depend on all the remaining vari­
ables. We search for a restriction sequence that collapses the depth of C to 
two and simultaneously forces all the depth-1 subcircuits of C to have fan-in 
less than the number of remaining variables. If there is such a sequence, then 
we can use one more restriction to reduce C to a constant while keeping f 
nontrivial. Now combine all the restrictions that we have identified into one 
big restriction. Under this combined restriction, C and fare different, which 
shows that C and f were different from the very beginning. 

Now the question is how to find restrictions with desired properties. It 
may be very difficult to describe precisely what restrictions will do the job. 
So we attempt a nonconstructive approach. We introduce probability distri­
butions on restrictions and prove that good restrictions appear with nonzero 
probability, which guarantees that at least one exists. 

8.1.2 Preliminaries 

We need some preparation. 

8.1.2.1 Unbounded Fan-in Boolean Circuits. An unbounded fan-in 
circuit over a set of variables B is a labeled, directed acyclic graph C with 
the following properties: 

1. There is a unique node with no outgoing edges, called the output gate. 
2. Each node with no incoming edges is labeled either by x or by x for some 

x E B. Such a node is called an input gate as well as a leaf. 
3. Each nonleaf node is labeled either by 1\ or by V. 
4. Every two adjacent nodes are labeled differently. 
5. All paths from leaves to the output node have the same length. 

Note that the above properties imply that our circuit consists of alternating 
levels of 1\ gates and V gates. We assign numbers to the levels of such stratified 
circuits in a natural way: The input level is level 0, and, for each k ;::: 1, the 
level k nodes are those that take inputs from level k- 1. 

For a circuit C, the size of C, denoted by size(C), is its number of nonleaf 
nodes. The depth of C, denoted by depth( C), is the length of the paths from 
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level3 

level2 

levell 

level 0 

Fig. 8.1 A depth-3 circuit 

its leaves to its output node. For a nonleaf v, the fan-in of v, denoted by 
fan-in(v), is the number of edges coming into v. For simplicity, for a depth-1 
circuit C, we write fan-in( C) to denote the fan-in of the output node of C. 

Let xll ... , Xn be a fixed enumeration of the variables in 3. Let a = 
( a 1 , ... , an) E {0, 1 }n. The output of C on input a is inductively evaluated 
as follows: 

1. If a leaf v is labeled by Xi (respectively, Xi) for some i, 1 ~ i ~ n, then 
the output of vis 1 if and only if ai = 1 (respectively, ai = 0). 

2. For each nonleaf v labeled by A, v outputs 1 if and only if all its input 
signals are 1. 

3. For each nonleaf v labeled by V, v outputs 1 if and only if at least one of 
its input signals is 1. 

4. The circuit C outputs 1 if and only if the output node of C outputs 1. 

We assume that no depth-1 circuit takes as input two conflicting literals, i.e., 
x and x for some variable x. 

8.1.2.2 Restrictions. Let 3 be a finite set of boolean variables. A restric­
tion on 3 is a partial assignment of 3 to boolean values. Formally, a restriction 
on 3 is a mapping p of 3 to {0, 1, *},where p(x) = 0 (respectively, p(x) = 1) 
indicates that x E 3 is assigned the value 0 (respectively, 1) and p(x) = * 
indicates that x is not assigned a value, i.e., is preserved as a variable. 

For a restriction u, u-1(*) (respectively, u-1(0) and u-1(1)) denotes the 
set of all x E 3 to which u assigns* (respectively, 0 and 1), and u-1({0, 1}) 
denotes u-1(0) U u-1(1). 

Let F be a function over the variables of 3, and let p be a restriction on 
3. We assume that there is a natural order among the elements of 3 (that 
is, it has first, second, etc. elements). Let Y = p-1(*) and let m = IIYII· 
Let Yb ... , Ym be the enumeration of all the elements of Y according to the 



200 8. The Random Restriction Technique 

natural order among the elements of 3. Then F under restriction p, denoted 
by F f p, is the function G over Y such that, for every b = bi · · · bm E { 0, l}m, 
G maps b to the value of F when the variables in 3 - Y are given values 
according top and when for each i, 1 ~ i ~ m, Yi receives the value bi. 

Given two restrictions PI and P2, their product PIP2 is the restriction p' 
defined as follows: For all x E 3, 

! *if PI(x) = P2(x) = *• 
1 if PI(x) = 1V 

p'(x) = (PI (x) = * 1\ P2(x) = 1), 
0 if PI(x) = OV 

(PI(x) = * 1\ P2(x) = 0). 

Let a, T be restrictions on 3. We say that a and T are disjoint if 
a-I({O, 1}) n T-I({O, 1}) = 0. We say that a restriction a subsumes are­
striction T if a-I(1) 2 r-I(1) and a-I(o) 2 r-I(o). We write a 2 T to 
denote that a subsumes T. 

For a boolean circuit C and a restriction p, cr pis obtained by simplifying 
the circuit according to p, working from the input level towards the output 
level as follows: 

• At the input level for each variable x such that p(x) E {0, 1}, we replace x 
by p(x) and x by 1- p(x). 

• At an V-level, for each gate g at that level, we check whether it has an 
input fixed to 1. If so, the gate g is replaced by the constant 1. Otherwise, 
we eliminate all the 0 inputs to g. If there is no input left to g, then we 
replace g by the constant 0. 

• At an /\-level, for each gate g at that level, we check whether it has an 
input fixed to 0. If so, the gate g is replaced by the constant 0. Otherwise, 
we eliminate all the 1 inputs to g. If there is no input left to g, then we 
replace g by the constant 1. 

For a function F we write F = 1 (respectively, F = 0) to denote that F 
acts as the constant 1 function (respectively, the constant 0 function). 

Let 3 be a set of variables and let p, 0 < p < 1, be a real number. Then 
R; is the distribution on the restrictions on 3 defined as follows: For each 
variable x E 3, 

{ 
* with probability p, 

p(x) = 0 with probability ~, 
1 with probability ~. 

(8.1) 

8.1.2.3 Minterms and the Parity Function. We say that a restriction a 
is a minterm of a function F ifF fa = 1 and for any restrictiona' ~ a, F fa' ¢. 
1. Thus the minterm of the constant 1 function is the empty restriction and 
the minterm of the constant 0 function is undefined. For a restriction a, 
the size of a, denoted by lal, is the number of x E 3, satisfying a(x) =/= *· 
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The size of the smallest minterm ofF is denoted by MIN(F). IfF is the 
constant 1 function clearly MIN(F) = 0. IfF is the constant 0 function, we 
define MIN(F) = 0. Each minterm a can be viewed as the smallest /\-gate 
that outputs 1 if and only if all the value assignments in a are given. So for 
any function f, if C is the smallest V-1\ circuit (i.e., an V of 1\ gates) that 
computes f then each /\-gate of C is a minterm. 

The n-ary parity function, 11"n, is the function that maps each n-bit input 
to the modulo 2 count of the number of 1s in the input bit. Note that for 
every n there are precisely 2n-I minterms of 11"n, each of size n. 

We say that a family of circuits { Cn}n> 1 computes the parity function if, 
for every n ~ 1, Cn computes 1l"n· 

8.1.3 The Main Theorem 

Theorem 8.1 For no k ~ 1 can the parity function be computed by a family 
of depth-k, polynomial-size circuits. 

The rest of the section proves the above theorem. 

Proof of Theorem 8.1 We prove the theorem by induction on k. The 
base case is when k = 2. Let n ~ 1 and let C be the smallest depth-2 circuit 
of n inputs that computes 11"n. Suppose C is an V-1\ circuit. Then we claim 
that each /\-gate of C has fan-in n and for each i, 1 ~ i ~ n, takes exactly 
one of Xi and Xi as input. To see why, suppose that there is an /\-gate, say g, 
such that, for some i, 1 ~ i ~ n, g takes both Xi and Xi as input. Then, for 
every input x 1 , .•• ,xn, g outputs 0 because Xii\Xi = 0 regardless of whether 
Xi = 0 or Xi = 1. Then, since the output gate of C is an V-gate, g can be 
removed from C. Now assume that there is an /\-gate, say g, having fan-in 
less than n. Then there is some i, 1 ~ i ~ n, such that neither Xi nor Xi is an 
input to g. As we have already eliminated gates in C with input from both 
a variable and its negation, there is some a = (al! ... , an) such that g on 
input a outputs 1. Let a' be a with the ith bit flipped. Then g outputs 1 on 
a', too. Since the output of C is an V-gate, C outputs 1 both on a and on a'. 
Since the parity of a is different from the parity of a', C does not compute 
11"n. This is a contradiction. 

The above observation implies that for each /\-gate of C, there is only one 
input for which the gate outputs 1. Since there are 2n-I inputs for which C 
needs to output 1, C needs to have at least 2n-I many /\-gates, which implies 
that the size of C is at least 2n-l + 1. 

If C is an 1\-V circuit, construct C' from C by interchanging the labels 
1\ and V and interchanging, for each variable x, the labels x and x. Then C' 
has the same depth and size as C does and computes the complement of 11"n· 

The complement has 2n-l minterms so size(C') ~ 2n-l + 1. 
For the induction step, let k ~ 3 and suppose that the claim holds for 

all k', 2 ~ k' ~ k - 1. Assume, by way of contradiction, that for some 
integer l ~ 1, there is a depth-k, size-n1 circuit family {Cn}n~l that computes 
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• • 
• • 

(a) the circuit 

01"01"1"11"1"1"11"0 

(b) a random assignment to the inputs 

01"01"1"11"1" "11"0 

(c) simplifying the bottom level gates 

Fig. 8.2 The random restriction technique 

(d) the resulting depth-2 subcircuits 

(e) rewriting of the depth-2 subcircuits 

• 
• 
• • 

(t) in the resulting circuit, the 2nd and 
the 3rd levels can be collapsed into one 

the parity function. Then we show that there is a family of depth-(k- 1), 
polynomial-size circuits for the parity function, a contradiction. We derive the 
contradiction in three phases. In Phase 1, we use a restriction to significantly 
reduce the bottom fan-in; in Phase 2, we use a restriction on depth-2 circuits 
at the bottom to reduce the number of inputs that each of these circuits 
depends on; in Phase 3, we merge level 2 and 3 gates. Figure 8.2 illustrates 
how the reduction proceeds. 

Phase 1 Let a = 4l + 1. For each n ~ 1, pick a random restriction p under 
distribution R~n with p = n- 1/ 2 , where 3n is the set of variables of Cn. 
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Let n 2: 1 be fixed and let St. ... , Sm be an enumeration of all depth-1 
subcircuits of Cn. We say that p succeeds if 

• IIP-1 (*)11 2: ~ and 
• for every i, 1 ~ i ~ m, if Sir p t= 0 and Sir p t= 1, then fan-in(Si r p) ~ o:. 

Otherwise, we say that p fails. Define Q to be the probability that llp-1(* )II < 
~ and for each i, 1 ~ i ~ m, define pi to be the probability that sir p t= 0, 
Sir p t= 1, and fan-in(Si r p) > o:. Then the probability that p fails is at most 

Q+P1 + ··· +Pm. 

We will obtain an upper bound on each of these terms. 
In order to evaluate Q, let E and V respectively be the expected value 

and the variance of llp-1(*)11. Then E = np = .,fii and V = np(1- p) ~ .Jii. 
Chebyshev's Inequality (Lemma 6.22) states that if a random variable z has 
expectation E and variance V, then for every d > 0, the probability that z 
is less than E-d is at most ~· By plugging in d = fo/2, E = .Jii, and 
V ~ .,fii, we have 

Q ~ ~ ~ Jn = O(n-1/2). 

In order to evaluate Pt. ... , Pm, fix i, 1 ~ i ~ m. Lett= fan-in(Si) and 
let u1, ... 'Ut be an enumeration of all the input literals of si. Let b = 0 if 
Si is an 1\ circuit and let b = 1 otherwise. If for some j, 1 ~ j ~ t, p( Uj) = b 
then Sir p = b. We divide the analysis into two cases depending on t. 

First suppose that t 2: o: ln n. If jan-in(Si r p) > o: then for every j, 1 ~ 
j ~ t, p( Uj) # b. For each j, 1 ~ j ~ t, the probability that p( Uj) f. b is 
(1 + p)/2 = ~ + 2}n. So, Pi is at most 

( 1 1 )t (1 1 )"'Inn - + -- ~ - + -- = o(n-(1-E)<>) 
2 2fo 2 2fo 

for every constant f > 0. So, 

Next suppose that t < 0: ln n. If fan-in(Si r p) > 0: then p( Uj) = * for more 
than o: integers j, 1 ~ j ~ t; and p( Uj) = 1 - b for all the other j's. Thus Pi 
is at most 

for every constant f > 0. So, Pi = o(n-21 ). 

Now, since m ~ size( Cn) ~ n 1, the probability that p fails is at most 
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Hence, there exists some n 1 > 0 such that for every n ;::: n 1 a successful 
restriction p exists. For each n ;::: n 1 pick a successful restriction Pn and 
define Dn = cnrPn, Yn = p;;: 1(*), and f..Ln = IIYnll· We obtain a new family 
of circuits {Dn}n~n1 satisfying the following conditions for all n;::: n 1: 

1. Dn computes either the parity function or the complement of the parity 
(depending on the parity of llp;;: 1(1)11) on the set Yn of f..Ln variables, 
where f..Ln = n(yln). 

2. size(Dn) ~ n1 = O((f..Ln) 21 ). 
3. Each depth-1 subcircuit of Dn is of fan-in at most a. 

Phase 2 For each n;::: n 1, we pick a random restriction a under Rrn with 

q = (f..Ln)- 112 . We say that a succeeds if 

• lla-1(*)112: if and 
• every depth-2 subcircuit of Dn r a is dependent on at most f3o. variables, 

where the sequence /31 , f32, . . . will be defined below. 

Otherwise, we say that a fails. Let n ;::: n 1 be fixed. Let Q be the prob­
ability that lla- 1(*)11 < if. As in Phase 1, by Chebyshev's Inequality 
(Lemma 6.22) 

To bound the probability that there exists a depth-2 subcircuit of Dn r a that 
depends on more than f3o. variables, we need the following lemma. 

Define 'Y = 6l + 1 (recall that the size of the circuit Cn is bounded by n1), 

/31 = "(, and for each d 2: 2, /3d = 'Y + 2'"~ /3d-1· 

Lemma 8.2 For every d;::: 1, there exists a constant n2 ;::: n 1 such that, for 
all n ;::: n2, and for all depth-2 subcircuits S of Dn, the following is true: If 
every depth-1 subcircuit of S has fan-in at most d, then with probability at 
least 1 - 0 (f..L;;: 31 )' s r a depends on at most f3d variables. 

Proof of Lemma 8.2 Suppose that depth-2 subcircuits of Dn are V-/\ 
circuits. The proof is by induction on d. For the base case, let d = 1. Let 
n;::: n 1 be fixed and letS be a depth-2 subcircuit of Dn. Suppose that all the 
depth-1 subcircuits of Dn have fan-in 1. We can eliminate every level-1 gate 
g by directly connecting the input literal of g to each gate that receives signal 
from g. This reduces S to a depth-1 circuit. Lett= fan-in(S). By applying 
the analysis from the previous phase with f..Ln in place of n and /31 in place of 
a, we have: 

• If t > /31lnf..Ln, then fan-in(sra) > {31 with probability at most 

( 1 1 ) t ( 1 1 ) f3t In 1-'n _ + __ < _ + __ = o(f..L-(1-•)f3t) 
2 2.jji;;. - 2 2.jji;;. n 

for every constant E > 0. So, the probability in question is o(f..L;;:- 31 ). 
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• If t ~ f3IlnJ.Ln, then the probability that fan-in(Sru) > {31 is at most 

(t) (-1-)r/311 ~ (-t-) 131 < ({31lnJ.Ln).B1 = o(J.L~(i-e)/31) 
f31 ffn ffn ffn 

for every constant € > 0. So, the probability in question is o(J.L~ 31 ). 

Thus, the probability that S r u is dependent on more than {31 variables is 
o(J.L~3'). Thus the claim holds for d = 1. 

For the induction step, let d ~ 2. Let b = 3l(3d). Let S be any depth-
2 subcircuit of Dn. Call depth-1 subcircuits F1, ... , Ft of S disjoint if no 
distinct two of them depend on a common variable. Let r be the largest t 
such that there are t disjoint depth-1 subcircuits of S. Let F 1, ... , Fr be such 
r disjoint depth-1 subcircuits of S and G 1, ... , G 8 be an enumeration of all 
the remaining depth-1 subcircuits of S. Then 

Here we may assume that r < blnJ.Ln· To see why, suppose r ~ blnJ.Ln· 
Since f3d ~ 1, if sru depends on more than {3d variables then sru ¢ 1, and 
if sru ¢ 1, none of F 1, ... ,Fr is reduced to the constant 1. For every j, 
1 :::; j ~ r, fan-in( Fi) S d, so the probability that Fir u = 1 is at least 
(~- 2_fi..;)d, and this is w(3-d). Thus the probability that Firu ¢ 1 for all 

j, 1 :::; j ~ r, is at most 

(1 - 3-d)blnJLn = (1 _ 3-d)31(3d)lnJLn = o(T3llnJLn) = o(J.L~31). 

So the probability that sru depends on more than f3d variables is o(J.L~ 31 ). 
Thus we can assume that r < blnJ.Ln· Let H be the set of all variables x 

on which some Fi is dependent. Since F's are disjoint, the distribution Rrn 
is identical to that of the products 0"10"2, where 0"1 is subject to RIJ and 0"2 

is subject to R~Yn-H)_ The probability that llu;:-1(*)11 > "f is at most 

for every constant f > 0. So, the probability that llu;:-1(*)11 >"'is o(J.L~ 31 ). 
Fix u1 under Rlf such that llu;:-1(*)11 S "'·LetS'= srub H' = u;:-1(*), 

and h = IIH'II· Let a1, ... ,a2h be an enumeration of all possible assignments 
to the variables in H'. For each i, 1 S i ~ 2\ let Ai be the depth-1 V circuit 
that checks whether the input assignment to H' is different from ai and let 

si = Ai v (s'rai)· 

Let v = (vt, ... , vh) denote the variables of H'. For every i, 1 ~ i :::; 2\ 
Si = S' r ai if v = ai and Si = 1 otherwise. Thus, S' = /\.~: 1 Si. For every 
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i, 1 ~ i ~ 2h, Ai can be viewed as an V-1\ circuit of bottom fan-in 1. 
For every j, 1 ~ j ~ s, Gi has fan-in at most d and, since F., ... , Fr is 
maximally disjoint, Gj is dependent on at least one variable in H. For every 
i, 1 ~ i ~ 2h, ai1({0, 1}) = {v1, ... ,vh}, so Si is an V-1\ circuit all of whose 
depth-1 subcircuits have fan-in at most d- 1. Then for each i, 1 ~ i ~ 2h, 
the probability that sir 0"2 depends on more than /3d-1 variables is 0 (JL~31 ) 0 

If for every i, 1 ~ i ~ 2h, sir 0"2 depends on at most f3d-1 variables, then 
S' r a 2 depends on at most h + 2h f3d- 1 variables, and this quantity is at most 
/3d because h ~ 'Y. So the probability that S' r a2 is dependent on more than 
/3d variables is at most 

o(2h JL~3l) = o(JL~3l) 
because h ~ 'Y and 'Y depends only on d and l. Thus, the probability that 
a = a 1 a 2 reduces S to a circuit that is dependent on more than /3d variables 
is o(2JL~31 ) = o(JL~31 ). 

In the case where Sis an 1\-V circuit we exchange the role of 0 and that of 
1 and carry out the same analysis, except that the circuit Ai checks whether 
the input assignments on H' are identical to ai, and that Si = Ai 1\ (S'rai). 

2h 
Then S' = Vi=1 Si. 0 Lemma 8.2 

By the above lemma, the probability that not all of the depth-2 subcircuits 
of Dn are forced to depend on at most {301 variables is o(JL~31 )JL~1 = o(JL~ 1 ). 
Thus the pr_obability that a fails is 

o(n-1/4) + o(JL;;z) = o(n-1/4). 

Hence, there exists some n2 > n 1 > 0 such that for every n 2: n2 there exists 
a successful restriction a. So for each n 2: n2, we pick a successful O"n and 
apply it to Dn to obtain En = Dn ran. Define ~ = {301 • Then the following 
conditions hold for all n 2: n2: 

1. For some Vn = n(n114), En computes the parity function of a set of Vn 
variables. 

2. size(En) ~ n 1 = O((vn) 41 ). 
3. Each depth-2 subcircuit of En is dependent on at most ~ variables. 

Phase 3 Note that if a function is dependent on ~ variables then it can be 
expressed as an 1\-V circuit of top fan-in at most 2/3 and of bottom fan-in~. 
and alternatively as an V-1\ circuit of top fan-in at most 2/3 and of bottom 
fan-in ~- For each n 2: n2, we apply one of the two conversions to each 
of the depth-2 subcircuits of En so that the level-2 and level-3 gates have 
an identical type. Then we collapse the levels into one thereby reducing the 
depth of the circuit to k - 1. The resulting circuit has size at most 

2/3 size(En) ~ 2{3441 (vn) 41 . 

Thus, we obtain a family of depth-(k - 1) circuits {Fn}n;:::n2 satisfying the 
following conditions for all n 2: n2: 

1. Fn has Vn 2: n~4 variables. 
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2. Fn computes the parity function of lin variables. 
3. size(Fn)::; 2t3441 (vn)41. 

For each n ~ 1, let s(n) be the smallest n' such that lin• ::; n. Then, for all 
but finitely many n, s(n)::; (4n)4 .1f Fs(n) depends on more than n variables, 
then we assign 0 to some variables to make it dependent on exactly n inputs. 
Let Gn be the resulting circuit. Since Fs(n) computes the parity function, Gn 
computes the parity function of n inputs. Then 

This implies that the parity function can be computed by a family of depth­
(k-1), polynomial-size circuits. This contradicts to our inductive hypothesis. 
This proves the theorem. 0 Theorem 8.1 

8.2 An Exponential-Size Lower Bound for Parity 

8.2.1 Proving the Size Bound 

In the previous section we proved that polynomial-size, constant-depth 
circuits cannot compute the parity function. In this section, we improve upon 
the proof technique to show an exponential-size lower bound for computing 
the parity function by constant-depth circuits. Based on this bound, we con­
struct an oracle separating PSPACE from PH. Below is the first of our goals 
in this section, the exponential lower bound for parity. 

Theorem 8.3 Let k ~ 2. Suppose that a family {Cn}n>l of depth-k circuits 
computes the parity function. Then, for all but finitely ;,any n, 

. (C ) (l/lO)k/(k-llnl/(k-lJ stze n > 2 . 

The key ingredient of the proof of Theorem 8.3 is the following lemma, 
called the switching lemma, which generalizes the method we developed in 
the previous section. 

Lemma 8.4 {Switching Lemma) 
fan-in at most t. Let p, 0 < p < 1, 
unique positive root of the equation 

1 4p ( )
t 

+ (1+p)a 

Let G be an 1\-V circuit with bottom 
be such that 5pt < 1 and let a be the 

Suppose that a restriction p is chosen under the distribution R";. Then, for 
every s ~ 0, with probability at least 1 - as, G f p is equivalent to an v-I\ 
circuit of bottom fan-in strictly less than s. 
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The lemma follows from the slightly stronger lemma below. 

Lemma 8.5 Let G be an 1\-V circuit with bottom fan-in at most t. Let p, 
0 < p < 1, be such that 5pt < 1 and let a denote the unique positive root of 
the equation 

( 4 )t ( 2 )t 1+ p = 1+ p +1. 
(1+p)a (1+p)a 

Let F be any boolean function and let s ;::: 0 be arbitrary. Suppose that a 
restriction p is chosen under the distribution n;. Then 

Pr(MIN(Gfp);::: s I Ffp = 1] ~as. 

Proof of Lemma 8.5 Let G, t, p, a, F, and s be as in the hypothesis. 
Note that the statement of the lemma trivially holds for s = 0. So, suppose 
s > 0. Let G 1, ... , Gm be an enumeration of all the depth-1 subcircuits of 
G. Then G = /\.":::1 Gi. We prove the statement by induction on m. The base 
case is when m = 0. If m is 0, G is a constant function. Which of the two 
constant functions G actually is may depend on the context. For every p, 
G = Gfp, and thus, MIN(Gfp) = MIN(G) = 0. Thus, the probability that 
MIN(Gf p) ;::: s is 0 regardless of the choice of F. Hence the claim holds for 
m=O. 

For the induction step, let m ;::: 1 and suppose that the claim holds for 
every m', 0 ~ m' < m. We consider the following two cases: 

Case 1 G1 fp = 1, and 
Case 2 G 1 f p ¢ 1. 

Then we have only to show that, for each i E {1, 2}, 

Pr(MIN(Gfp);::: s I Case i holds and Ffp = 1] ~as. (8.2) 

As to Case 1, let G' = /\."';'=2 Gif p and F' = F /\G1. Note that if G 1 f p = 1 
then G f p = G'. Since the conditions G 1 f p = 1 and F f p = 1 can be combined 
into F' f p = 1, the probability in equation 8.2 can be rewritten as 

Pr(MIN(G'fp);::: s I F'fp = 1]. 

Then by our inductive hypothesis, this probability is at most as. Thus, equa­
tion 8.2 holds for Case 1. 

As to Case 2, define Po= Pr[MIN(Gf p);::: s IFf p = 1 1\ G1 r p ¢ 1]. Then 
we have to show that Po ~ as for all s > 0. 

Let H = /\.":::2 Gi. LetT be the set of all variables on which G 1 depends. 
Since G is an /\-V circuit, every minterm of G has to have a literal from T. 
Also, since we are considering only p such that G 1 f p ¢ 1, each minterm of 
Gf p, if one exists, has to have a literal from T. So, split p into the part P1 
that assigns values to variables in T and the part P2 that assigns values to 
variables in 3-T. Let a be a restriction. As we did for p, split a into a1 and 
a2. If a is a minterm of Gfp, then the following three conditions must hold: 

(i) a11({o, 1}) =10. 
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(ii) P11({0, 1}) n a11({0, 1}) = 0. 
(iii) a2 is a minterm of H[pa1 • 

So, if G[ p has a minterm of size at least s, F[ p = 1, and G[ p "¢ 1, then there 
is some restriction a1 overT that is disjoint with p1 such that H[ pa1 has a 
minterm of size at least s - la1l· For each nonempty restriction a1 over T, 
define 

Q[al] = Pr[a11{{0,1}) n P11({0, 1}) = 0/\ 

MIN(H[pat) ~ s -Ialii F[p = 1/\ G1[P "¢ 1]. 
Then Po is bounded from above by the sum of Q[at] where a 1 ranges over 
all nonempty restrictions over T. 

Consider 

Qt[at] = Pr [a11{{0, 1}) n P11{{0, 1}) = 01 F[p = 1/\ G1 [p "¢ 1] 

and 

Q2[at] = Pr [MIN(H[ pat) ~ s -lad IF[ p = 1/\ G1 [ p "¢ 1] . 

Then Q[at] ~ Qt[a1]Q2[at]. 

Fact 8.6 For every a1, Pr[a11{{0,1}) n P11{{0,1}) = 01 G1tP1 "¢ 1] < 
(..1E....)I""ll 

l+p . 

Proof of Fact 8.6 In order for G1 [ p1 "¢ 1 to be true, p1 has to assign 
either 0 or * to each literal of G1. In order for al1( {0, 1}) n P1 1( {0, 1}) = 0 
to hold, p1 has to assign * to all variables in a1 ( {0, 1} ). So, the probability 
in question is at most pl""1 1 /( ~ + p)l""1 1 = ( m)1""1 1. D Fact 8.6 

Fact 8. 7 For any events A, B, and C, Pr[A I B 1\ C] ~ Pr[A I C] if and only 
ifPr[B I A 1\ C] ~ Pr[B I C]. 

Proof of Fact 8. 7 The proof is by routine calculation. D Fact 8.7 

Fact 8.8 Qt[a1] ~ (frp)l""d. 

Proof of Fact 8.8 Let A, B, and C be the events 
a11{{0,1}) n P11{{0,1}), F[p := 1, and G1[P1 "¢ 0,1, respectively. 
Then Qt[at] = Pr[A I B 1\ C], and Fact 8.6 shows that Pr[A I C] ~ ( frp)1""1 1. 
Note that 

Pr[F[p = 11 a11{{0, 1}) n P11({0, 1}) = 0/\ G1 tP1 "¢ 1] 

~ Pr[F[p = 11 G1 [Pl "¢ 1], 

because adding the condition a 1 1 ( { 0, 1}) n p11 ( { 0, 1}) = 0 does not increase 
the probability that F[p = 1. Thus, Pr[B I A 1\ C] ~ Pr[B l C]. Now, by 
Fact 8.7, Qt[a1] ~ Pr[A I C], and this implies that Qt[a1] ~ (r.fp)1""1 1. 

D Fact 8.8 
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Proof of Fact 8.9 Let Z denote the set of all restrictions over variables 
T. Note that 

Q2[a1] ~ max{Pr[MIN((Hra1pl)rp2) ~ s -la1ll (Frp1a1HP2 = 1 

1\ G1rP1 ¢. 0 1\ G1rP1 ¢.1]1 P1 E Z} 

where p2 is subject to the distribution R~-T. This inequality holds because 
restricting F r p to a 1 does not decrease the probability. We can eliminate the 
condition G 1 r p1 ¢. 0 1\ G 1 r p1 ¢. 0 from this because we are maximizing over 
all possible Pl· So, 

Q2[al] 

~ max{Pr (MIN((HralPlHP2) ~ s -Ialii (FralPlHP2 = 1] I Pl E Z}, 

where P2 is subject to the distribution R~-T. Then, since H r a 1p1 is an 1\ 

of m - 1 V circuits, each of which has fan-in at most t, by our inductive 
hypothesis (recall that we are in the proof of Lemma 8.5), Q2[a!] ~ o:s-lu1l. 

0 Fact 8.9 
By Facts 8.8 and 8.9, we have 

This implies 

R < ~ ~ ( ~ yull o:s-lu1l. 
0 

- l::s;i::s;IITIIIud=i 1 + p 

For each i, 1 ~ i ~ IITII, and for each nonempty subset ofT of size i, there 
are 2i - 1 possibilities for a 1 since a 1 has to assign 1 to at least one literal of 
G1. Then 

p0 ~ ~ (11~11)(2i _1) ( 12p )i o:s-i. 
1::;i::;IITII + p 

By hypothesis, IITII ~ t. So 

p0 ~ o:8 ~ (~)(2i -1) (/P )i o:-i. 
o::;i::;t + P 

Note that 
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This last formula is 1 by the assumption of the lemma. So, Po :5 a 8 • Thus, 
the claim holds. This proves the lemma. a Lemma 8.5 

Lemma 8.4 immediately follows from Lemma 8.5 by taking F = 1. 
Next we derive another lemma from Lemma 8.4. For each k > 2 and 

n > 1 define l(n k) = ...!..n6 -
- ' ' 10 . 

Lemma 8.10 Let k ~ 2. Let {Cn}n~1 be a family of depth-k circuits. Sup­
pose that for every n ~ 1 the following conditions hold: 

1. Every depth-1 subcircuit of Cn is of fan-in at most l(n, k). 
2. There are at most 2l(n,k) depth-2 subcircuits of Cn. 

Then for only finitely many n does Cn compute 1rn· 

Proof The proof is by induction on k. For the base case, let k = 2. Then for 
all n ~ 1l(n, k) < n. Let n ~ 1 and let Cn be a depth-2 circuit satisfying the 
two conditions in the statement of the lemma. By property 1, each depth-1 
subcircuit of Cn is of fan-in less than n. So, in the case where Cn is an V-/\ 
circuit, there is a restriction p of size less than n that reduces one of the 
subcircuits to 1, thereby reducing Cn to 1, and in the case where Cn is an 
/\-V circuit, there is a restriction of size less than n that reduces one of the 
subcircuits to 0, thereby reducing Cn to 0. Such a restriction does not reduce 
1rn to a constant function, so Cn does not compute 1rn. 

For the induction step, let k ~ 3 and suppose that the claim holds for 
all k', 2 :5 k' < k. By symmetry between 1\ and V, we may assume that the 
depth-2 subcircuits of Cn are /\-V circuits. Let n > 10k- 1 and suppose Cn 

1 
satisfies properties 1 and 2. Let p = 1 ol(~,k) = n-li"=T and let s = t = l(n, k). 

Because 0 < 5pt = ! < 1 and for every n > 1ok-1 , 0 < p < 1, we can 
apply Lemma 8.4 to each depth-2 subcircuit of Cn. Then, for each depth-2 
subcircuit H of Cn, the probability that H cannot be rewritten as an V-/\ 
circuit of bottom fan-in at most s is at most al(n,k), where a is the unique 
positive root of the equation 

1+ p = 1+ p +1. ( 4 )t ( 2 )t 
(1+p)a (1+p)a 

By plugging p = lOl(~,k) and t = l(n, k) into this equation, we obtain 

( 
4 )l(n,k) ( 2 )l(n,k) 

1 + (1 + lOl(n, k))a = 1 + (1 + lOl(n, k))a + 1. 

Since l is an increasing function of n, the left-hand side approaches 

4l(n,kt 
e l+10l(n,)a 

as n increases, which has the limit value of es:. By a similar analysis, the 
right-hand side approaches 1 + e~. By replacing e5~ by a variable Z, we get 
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equation Z 2 - z - 1 = 0, which has a unique positive solution z = ¥ 
So, the unique solution of the original equation approaches 

1 
( ) 

= 0.4156 .... 
5 ln .!b::E: 

2 

Thus, for sufficiently large n, a < 0.45 = io. Since there are at most 2L(n,k) 

depth-2 subcircuits of Cn, the probability that every depth-2 subcircuit can 
be rewritten as an V-1\ circuit of bottom fan-in at most 8 is at least 

( 
g )l(n,k) 2 

1 _ 2t(n,k)Qi(n,k) = 1 _ (2a)L(n,k) > 1 _ _ > _ 
10 3 

for sufficiently large n. If we replace each depth-2 circuit of Cn f p by an 
equivalent V-1\ circuit, then we can collapse the second and the third levels 
of Cn into one because they have the same gate type, thereby obtaining an 
equivalent depth-(k -1) circuit. Thus, with probability greater than j, Cn f p 
can be rewritten as a circuit of depth k- 1 and of size at most 8ize(Cn)· 

On the other hand, the expected number of variables in Cn f p is pn = 
n i=t. So, for sufficiently large n, the probability that the number of variables 
in Cn f p is at least pn is larger than l· 

The probability that both of the above events occur at the same time is 
2 k-2 

larger than 9 . Note that m 2: n~ implies i(m, k- 1) 2: i(n, k). Thus, with 
some positive probability, we can convert Cn f p to a depth-(k -1) circuit Dm 
over m 2: pn variables such that 

1. every depth-1 subcircuit of Dm is of fan-in at most i(m, k- 1) and 
2. there are at most 2L(m,k-l) depth-2 subcircuits of Dm. 

By our inductive hypothesis, Dm does not compute 7!'m 1 and thus, Cn does 
not compute 1l'n· Thus the claim holds fork. This proves the lemma. 0 

Now we are ready to complete the proof of Theorem 8.3. 

Proof of Theorem 8.3 Let n .2: 1 and let Cn be a depth-k circuit of size 
(1/ 10)k/(k-1) 1/(k-1) • • • 

bounded by 2 n . We can v1ew Cn as a depth-(k + 1) c1rcmt 

all of whose depth-1 subcircuits are of fan-in 1. Let p = 1~, 8 = 110 ( ;1) 6, 
and t = 1, and apply Lemma 8.4. Since a = ffp = 121 , the probability that 
all depth-2 subcircuits of Cn f p can be rewritten so that the second and the 
third levels of Cn f p have the same type and thus can be collapsed into one 
is at least 1- 28 a 8 _2: 1 - 28 4-s = 1 - 2-s. 

On the other hand, the expected number of variables in Cn f p is ;1. So, 
with probability larger than l, Cn f p is dependent on at most m = ;1 vari­
ables. 

So, with probability (1 - 2-8 ) + l - 1 > 0, the above two events occur 
at the same time. Thus, for some restriction p, Cn f p can be converted to a 
circuit Dm such that 

1. every depth-1 subcircuit of Dm is of fan-in at most i(m, k) and 
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2. Dm has at most 2t(m,k) depth-2 subcircuits. 

Then, by Lemma 8.10, Dm does not compute 11"m. Thus, Cn does not compute 
11"n. This proves the theorem. 0 Theorem 8.3 

8.2.2 Constructing an Oracle Separating PSPACE from PH 

We will now use Theorem 8.3 to show that there is an oracle relative to which 
PH is properly included in PSPACE. Our model of PSPACE oracle compu­
tation even requires that the query tape is polynomially length bounded. (In 
the model lacking this requirement, it is trivial to separate PSPACE from 
PH via an oracle.) 

Theorem 8.11 There is an oracle A such that PH A =F PSPACEA. 

Proof Since for every oracle A, ®PA ~ PSPACEA, it suffices to construct 
an oracle A such that ®PA ~ PHA. For each language A, define 

W(A) ={On 111{0, 1}n n All is odd}. 

Let M be a polynomial time-bounded Turing machine that, on input x E E", 
guesses y of length lxl, and accepts if and only if y is in the oracle. Then for 
every oracle A, and every x E E*, olxl E W(A) if and only if MA on x has an 
odd number of accepting computation paths. Thus, W(A) E EBPA for every 
oracle A. 

In order to construct an oracle A relative to which W(A) fl. PHA, we 
first introduce a view of PH in terms of constant-depth circuits and define 
an enumeration of all relativized PH-machines based on that view. Then 
we consider a very simple oracle construction scheme in which the machines 
in the enumeration are "killed" one after another. Finally we argue that the 
scheme will be successful, because construction failing at a stage would imply 
that we could construct a constant-depth subexponential-size circuit family 
for parity, which contradicts Theorem 8.3. 

Recall that for a language A, A EB A denotes {Ox I x fl. A} U { 1x I x E A}. 
First we draw an analogy between the polynomial hierarchy and constant­
depth circuits. 

Proposition 8.12 Let k ~ 1 be an integer and let A be a language. Let C 
be one of Et·A or rrt·A 0 Then, for every L E c' there exist a polynomial p 
and a polynomial-time computable function f : E" --+ E* such that, for every 
X E E", 

X E L-<=:::} (Q1Y1 : Y1 E Ep(lxl)) · · · (QkYk : Yk E EP(Ixl>) 
(Qk+Ii : 1 $ j $ P(lxl)) [f( (x, Y1, · · · , Yk, j)) E A EB A], 

(8.3) 

where the quantifiers alternate, and Q1 = 3 if C = Et·A and\;/ otherwise. 
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Proof of Proposition 8.12 Let k ;:::: 1 and let C be either Et·A or II1'A. 
Let L E C. Then there exist a polynomial Po and a polynomial time-bounded 
deterministic oracle Turing machine M such that, for every x E E*, 

X E L <==> (QlYl : Yl E EPo(lxll) (Q2Y2: Y2 E EPo(lxll) · · · 
(QkYk: Yk E EPo(lxll) [MA((x,yl, ... ,yk)) accepts], 

(8.4) 

where the quantifiers alternate, and Q1 = :3 if C = E1'A and Ql = V if 
c = rrt·A. We divide the proof into four cases: 

Case 1 C = E1'A and k is odd, 
Case 2 C = E1'A and k is even, 
Case 3 C = II1'A and k is odd, and 
Case 4 C = II1'A and k is even. 

First we consider Case 1. Here Qk = :3. Let p1 be a polynomial bounding 
the runtime of M. We can assume that Pl is increasing; i.e., for all n ;:::: 0, 
p1 ( n + 1) > p1 ( n ). We may assume that, for all u E E*, M on input u makes 
exactly p1 (lui) queries regardless of its oracle. We will replace M by a new 
machine, M', that on each input u simulates M on input u while counting in 
a variable C the number of queries that M makes along the simulated path. 
When M halts, if Cis smaller than Pl (lui), then M' queries the empty string 
to the oracle exactly Pl(lul)- C times. Then M' accepts if M on x accepts 
along the simulated path and rejects otherwise. 

Let N be a deterministic Turing machine that, on input w = (u, v), if 
I vi = p1 (lui), then simulates M' on input u by assuming, for each i, 1 ~ i ~ 
p1(lul), that the answer of the oracle to the ith query is affirmative if the ith 
bit of vis 1 and the answer is negative if the ith bit of vis 0. If lvl =f p1 (lui), 
then N rejects w immediately. For each u E E* and each v E EP1 (1ul), and j, 
1 ~ j ~ p1(lul), let R(u, v,j) denote the jth query of M' on input u along 
the simulation carried out by Non input (u, v). Then, for all u, u E L if and 
only if for some v, I vi = Pl (lui), it holds that N on input (u, v) accepts and 
that, for all j, 1 ~ j ~ Pl (lui), R(u, v,j) E A if the jth bit of v is 1 and 
R(u, v,j) E A otherwise. 

Let so ¢A E9 A and s1 E A E9 A be fixed. We define a mapping fo. For 
every w E E*, fo ( w) is defined as follows: 

• If for some u, v E E* and t, 1 ~ t ~ lvl, it holds that I vi = Pl (lui), 
w = (u,v,t), and Non input (u,v) accepts, then f 0 (w) = VtR(u,v,t), 
where Vt is the tth bit of v. 

• If for some u,v E E* and t, 1 ~ t ~ lvl, it holds that lvl = Pl(lul), 
w = (u,v,t), and Non input (u,v) rejects, then fo(w) =so. 

• If neither of the above two conditions hold, then fo(w) = s1. 

Then fo is polynomial-time computable, and for every u E E*, MA(u) accepts 
if and only if 

(:3v : v E EP1 (1ull) (Vt : 1 ~ t ~ Pl (lui)) [fo((u, v, t)) E A E9 A]. 
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By combining this with equation 8.4, 

x E L {::::::::? (3y1 : y1 E :EPo(lxll) ... (3yk : Yk E :EPo(lxll) 

(3v : v E :EP1 (1ull) (Vt : 1 ~ t ~PI (lui)) [fo( (u, v, t)) E A Etl A), 

where u = (x, y1, ... , Yk). Let r be a polynomial such that, for all x E 
:E" and Yl, 00. ,yk E :EPo(lxll, l(x,yl, 00 • ,yk)l ~ r(lxl). Define p(n) = 
Po(n) + PI(r(n)). We define a new mapping f. For every k + 2 tuple 
w = (x, w1, ... , Wk, t), f(w) is defined as follows: 

• If lwkl ~ p(lxl) and there exist some YI, ... ,yk,v E :E" such that 
- for every i, 1 ~ i ~ k, Yi is the prefix of wi having length po(lxl), 
-vis the suffix ofwk having length PI(I(x,yl, 00. ,yk)l), and 
- 1 ~ t ~ PI(I(x,yl, oo. ,yk)l), 
then f(w) = fo((x,yl, 00. ,yk),v,t). 

• Otherwise, f(w) = 81. 

Then f is polynomial-time computable and for every x E :E", 

x E L {::::::::? (3y1 : y1 E :EP(Ixll) ... (3yk : Yk E :EP(Ixll) 

(Vt: 1 ~ t ~ p(lxl)) [/((x,yl, oo. ,yk, t)) E A Etl A], 

as desired. 
We can treat Case 4 similarly. The only difference here is that the first 

quantifier Q1 is V. 
- pA pB -Next we consider Case 3. Let B = A. Since :Ek• = :Ek• and L belongs 

to :E~·A, we obtain the following characterization of L as in Case 1: For every 
X E :E", 

x E L {::::::::? (3y1 : y1 E :EP(Ixll) ... (3yk : Yk E :EP(Ixll) 

(Vt: 1 ~ t ~ p(lxl)) [f((x, Y1, · · · , Yk, t)) E B EBB), 

where the quantifiers alternate. By negating both sides of the equality, for 
every x E :E* , 

x E L {::::::::? (Vyl : Yl E :EP(Ixll) ... (Vyk : Yk E :EP(Ixll) 

(3t: 1 ~ t ~ p(lxl)) [/((x, Y1, 00 • ,yk, t)) ~ B EBB). 

Since A Etl A = A Etl A, the condition in the bracket can be writ­
ten as f((x, y1, 00 • , Yk, t)) E B Etl B. Since B = A, this condition is 
f((x,yl, oo, ,yk,t)) E AffiA. So, for every x E :E", 

x E L {::::::::? (Vy1 : y1 E :EP(Ixll) ... (Vyk : Yk E :EP(Ixl)) 

(3t: 1 ~ t ~ P(lxl)) [f((x,yb · · · ,yk, t)) E A Etl A), 

as desired. Case 2 is the same as Case 3 except that the first quantifier is 3. 
This proves the proposition. D Proposition 8.12 

Next we present our oracle construction scheme. Let {Pi}i~ 1 be an enu­
meration of polynomials such that, for each i ~ 1, Pi(n) = ni + i. For all 
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polynomials p, there is some i ~ 1 such that, for all n ~ 0, p(n) ~ Pi(n). Let 
JI, f2, ... be an enumeration of all polynomial-time computable functions. 
For each triple s = (i, j, k), let Ks (A) be the language in E~·A characterized 
as in equation 8.3 with Pi and iJ in place of p and J, respectively. More 
precisely, for every triple s = (i,j, k), for every x E E*, and for every oracle 
A, x E Ks(A) if and only if 

(Q1Y1 : Y1 E EP;(I:z:l)) ... (QkYk : Yk E EP;(I:z:l)) 

(Qk+lt: 1 ~ t ~Pi(lxi))[IJ((x,y1, ... ,yk,t)) E AEBA]. 

The language A is constructed in stages. At stage s = (i, j, k) we will 
identify an integer is and extend A as well as A up to length is, so that 
there exists some integer n ~ 0 such that on E W(A) {::::::::} on ¢ Ks(A). We 
assume that for all i,j, k ~ 1, (i,j, k) ~ 1 and that {1, 1, 1) = 1. Let io = 0. 
We put the empty string in A. 

Lets= (i,j, k). The construction in stages proceeds as follows: 

• Let Ao (respectively, A1) be the set of all strings put in A (respectively, 
A) prior to stage s. It holds that Ao n A1 = 0 and Ao U A1 = (E*)~l.-t. 

• Let r be the smallest polynomial in the enumeration such that, for all x E 
E* and Y1, ... ,yk E EP;(I:z:l), it holds that lfj({x,y1, ... ,yk,j))l ~ r(lxl). 

• For each n = is-1 + 1, is-1 + 2, ... , test whether there is a partition 
(Bo, B1) of (E*)~r(n) such that Bo 2 Ao, B1 2 A1, and 

If such a partition is found for n, then do the following: 
- Set is to r(n). 
- Add all strings in Bo - Ao to A. 
-Add all strings in B1- A1 to A. 
- Terminate the loop and proceed to the next stage. 

We claim that this construction is successful at every stage. We prove the 
claim by contradiction. Assume that at stages= (i, j, k), for all n ~ is_1 + 1, 
the search for a desired partition fails, i.e., for all n ~ is-1 + 1 and for all 
partitions (Bo, Bl) of Er(n) such that Bo 2 Ao and B1 2 A1, it holds that 

We construct from Ks a family of depth-(k+ 1) circuits C1. C2 , ..• for parity 
in the following way. 

For each n ~ 1, let J-L(n) = min{l EN jl ~ is-1 + 1 1\ 21 ~ n}. For each 
n ~ 1, the circuit Cn is constructed from c/>o below, which is the formula for 
Ks on input O~t(n): 

c/>o = (QlYl: Y1 E EP;(~t(n))) · · · (QkYk: Yk E EP;(~t(n))) 

(Qk+lt: 1 ~ t ~Pi(J-L(n))) [IJ((O~'(n),yl. ... ,yk,t)) E AEBA]. 
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The quantifiers appearing in ¢o alternate; that is, in the case when QI = 3, 
for all r, 1 ~ t ~ k + 1, Qr = 3 if r is odd Qr = V if r is even, and in the case 
when QI = V, for all r, 1 ~ t ~ k + 1, Qr = V if r is odd Qr = 3 if r is even. 
For each r, 1 ~ r ~ k, and each YI, ... , Yr E EP•(I-I(n)), let ¢r[YI, ... , Yr] 
denote the formula 

(Qr+IYr+l : Yr+l E EPdl-l(n))) · · • (QkYk: Yk E EPi(l-l(n))) 

(Qk+It: 1 ~ t ~Pi(J.L(n))) [/j((O~-'(n),yi, ·· · ,yk,t)) E AEBA]. 

For each t, 1 ~ t ~ Pi(J.L(n)), and each YI, ... ,yr E EP•(I-I(n)), let 
¢k+I [YI, ... , Yr. t] denote the formula 

To construct Cn, for each of the ¢'s defined in the above, introduce a gate 
corresponding to it. The type of the gates is determined as follows: 

• The node corresponding to ¢o is the output gate. The output gate is an 1\ 

gate if QI = V and is an V gate if QI = 3. 
• Each node corresponding to a ¢k+I formula is an input gate. 
• Let 1 ~ r ~ k. Each node corresponding to a ¢r formula is an 1\ gate if 

Qr+l = V and is an V gate if Qr+I = 3. 

The inputs to the nonleaf gates are determined as follows: 

• The inputs of the output gate are the gates corresponding to {¢I [yi] I YI E 
EPdl-l(n))}. 

• Let 1 ~ r ~ k- 1. Let g be a gate corresponding to ¢r [YI, . . . , Yr] for some 
YI, ... , Yr E EP•(I-I(n)). The inputs of g are { ¢r+dYI, ... , Yr+IJI Yr+l E 
EPdl-l(n))}. 

• Let g be a gate corresponding to ¢r[YI, ... , Yk] for some YI, ... , Yk E 
EPdll(n)). The inputs of g are { ¢k+I [YI, ... , Yk, tJI1 ~ t ~ Pi(J.L(n))}. 

Since 21-1(n) ;::::_ n, E~-'(n) has cardinality at least n. Let Wn = {WI, ... , Wn} be 
the smallest n strings of length J.L(n). Let YI, ... , Yk E EP•(I-I(n)) and 1 ~ t ~ 
Pi(J.L(n)). Let g be the input gate corresponding to ¢HdYI, ... , Yk, t]. Let 
z = /j(Oil(n),yi, . .. ,yk,t). The label of g is determined as follows: 

• If for some l, 1 ~ l ~ n, z = 1wz, then g is labeled Wz. 
• If for some l, 1 ~ l ~ n, z = Owz, then g is labeled wz. 
• If for some u E E* - Wn it holds that z = 1 u, hen g is assigned 1 if u E AI 

and is assigned 0 otherwise. 
• If for some u E E*-Wn it holds that z = Ou, then g is assigned 0 if u E AI 

and assigned 1 otherwise. 
• If z is the empty sting, assign g to 0. 

Then work from the input level to eliminate all subcircuits whose output is 
a constant regardless of the values of WI, ... , Wn· This is Cno The circuit Cn 
clearly has depth k + 1. 
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By assumption, for every B ~ {w1, · · · ,wn}, 

Since 
on E W(Al u B) {::::::::} IIBII is odd 

and 
on E Ks(Al U B) <===> Cn(XB(wl) · · · XB(wn)) = 1, 

Cn computes 11"n. For every n 2::. 1, the size of Cn is at most 

L (2P•(~t(n))r + Pi(JL(n))(2P•(~t(n)))k < (pi(JL(n)) + 2)(2P•(~t(n)))k. 
O~r~k 

By definition, there exists a fixed constant c > 0 such that for every n ~ 1 
the number JL(n) in the construction of Cn is at most clog n. So, for every 
n 2::. 1, the size of Cn is at most 

For some constant c1 > 0, this is at most 

Hence, {Cn}n~l is a family of depth-(k + 1), size-0(2c' logk+l n) circuits com­
puting the parity function. However, this is impossible due to Theorem 8.3 

• I I i+lJ (1/lO)(k+l)/k 1/k) • . s1nce c 2 og ogn = o(2 n . Thus, the constructiOn 1s successful 
at every stage. This proves the theorem. 0 

8.3 PH and PSPACE Differ with Probability One 

In the previous section, we proved an exponential-size lower bound for 
constant-depth circuits for computing the parity function and, based on that 
impossibility result, proved the existence of an oracle that separates PSPACE 
from PH. One might be tempted to ask how common it is for us to find an 
oracle that separates the two classes if we randomly search for one. 

To formalize the question, consider the characteristic sequence for each 
set; for each i ~ 1, the ith bit of the sequence is a 1 if and only if the ith 
string of E* belongs to the set. For each set A, w(A) denotes the characteristic 
sequence of A. Note that, for each set A, w(A) E {0, 1}"'. The question we 
are asking is how dense is the collection, C, of sequences corresponding to 
oracles that separate PSPACE from PH. The cardinality of all the subsets 
of E* is N1. so ordinary counting methods do not apply to calculating the 
density. So we use Lebesgue measure. The characteristic sequence of a set is a 
real number in [0, 1]. First of all, we check whether Cis measurable in [0, 1], 
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and then, if so, measure its density. The mapping from the characteristic 
sequences to [0, 1] is one-to-one except for finite and cofinite sets. For a finite 
set S, the characteristic sequence of S and the characteristic sequence of S 
are the same real number. However, this is not an issue here since the number 
of finite sets is countable. 

It turns out that there are only two choices for the probability that PH 
and PSPACE differ relative to a thus-chosen oracle-it's either 0 or 1 and, 
thus, in order to settle the question of whether the probability is 0 or 1, we 
have only to show either that the probability is not 1 or is not 0. 

Proposition 8.13 p.(C) > 0 implies p.(C) = 1 and p.(C) < 1 implies 
p.(C) = 0. 

Proposition 8.14 Either p.(C) = 1 or p.(C) = 0. Thus, either PHA -:f: 
PSPACEA with probability 1 or PHA -:f: PSPACEA with probability 0. 

We will show that the verdict is 1. 

Theorem 8.15 With probability 1, a random oracle separates PSPACE 
from PH. 

In order to prove the theorem, we need to define the notion of probabilistic 
circuits. A probabilistic circuit is a circuit that takes, in addition to its actual 
input bits, a special set of bits called random bits, each of which is assigned 
either 0 or 1 with probability ~· The output of a probabilistic circuit is thus 
subject to a probability distribution. 

The following lemma states that a circuit family computing the parity 
function correctly for more than half of the inputs can be made errorless at 
the expense of small increases in the depth and the size. 

Lemma 8.16 Let {Cn}n~l be a family of depth-d, size-s(n) circuits. Sup­
pose that there is a constant f > 0 such that, for every n?. 1, the proportion 
of the inputs for which Cn(x) -# 11"n(x) is at most ~ - €. Then there exists a 
family {En}n~l of depth-(d + 7), size-O(n<> s(n) + ni3) circuits that correctly 
computes the parity function, where a and f3 are constants depending only 
on e. 

Proof Let {Cn}n~l, d, s(n), and f be as in the hypothesis of the lemma. 
Let n ?. 1. For each X= Xt · · · Xn E {0, l}n andy =Yo · · · Yn E {0, 1}n+l, 
define 

Hn(X, y) = Zt · · · Zn, 

where for each i, 1 ~ i ~ n, Zi =Xi EEl Yi-1 EEl Yi, and define 

Fn(x, y) = Cn(Hn(x, y)) EEl Yo EEl Yn· (8.5) 

Note that for every x E {0, 1}n andy E {0, 1}n+l 



220 8. The Random Restriction Technique 

7rn(Hn(X, y)) 
= (x1 E9 Yo E9 yt) E9 (x2 E9 Y1 E9 Y2) E9 · · · E9 (xn E9 Yn-1 E9 Yn) 

= 7rn(x) E9 Yo E9 Yn· 

By rearranging terms, we have 

7rn(x) = 7rn(Hn(X, y)) E9 Yo E9 Yn· (8.6) 

By combining equations 8.5 and 8.6, for all x E {0, 1}n andy E {0, 1}n+1, 

Cn(Hn(X, y)) = 7rn(Hn(X, y)) {::::::} Fn(X, y) = 7rn(x). (8.7) 

Define c~ to be a probabilistic circuit that computes Fn(x, y) given X as the 
input and y as the random bits. For all x, z E {0, 1}n, there exist exactly 
two y E {0, 1}n+1 such that z = Hn(x, y). Then, by equation 8.7, for every 
x E {0, 1}n, the probability that C~(x) =/:. 7rn(x) is precisely the proportion 
of z E {0, 1}n such that Cn(z) =/:. 7rn(z). So, the error probability of C~ is at 
most ~ -f. As the exclusive-or of three bits can be computed by a depth-2, 
size-5 circuit, we can design c~ so that its depth is d + 4 and its size is at 
most O(s(n) + n). 

We will convert C~ to a deterministic circuit. Let a be an integer greater 
than or equal to ~- Since f can be arbitrary small, we may assume that 

0 < f < i, so a~ 2. Let D~1 ) be the circuit that computes the 1\ of f3alognl 
copies of C~, where each copy has its own random bits. Since C~ computes 
7rn with error probability at most ~ -f = ~(1-a- 1 ), the following conditions 
hold: 

1. For every x E {0, 1}n, if7rn(x) = 1, then D~1)(x) = 1 with probability at 
least [~(1 + a-1)Jf3alognl ~ n-3a+2. 

2. For every x E {0, 1}n, if 7rn(x) = 0, then D~1)(x) = 1 with probability at 
most [~(1- a-1 )] f3alognl ~ n-3a-2. 

3. depth(D~1 )) = d + 5 and size(D~1 )) = O((s(n) + n) log n). 

Next let D~2) be the circuit that computes the V of n3a copies of D~1 ), 
where we attach the copies independent random bits. Then the following 
conditions hold: 

1. For every x E {0, 1}n, if 7rn(x) = 1, then each input bit to the output 

gate (which is an V gate) of D~2)(x) becomes 0 with probability at most 
1- n-3a+2, so, D~2) (x) = 0 with probability at most (1- n-3a+2)n3 "" = 
(1- n-3a+2)n3""- 2n2 • This is at most 2-n2 for n ~ 2. 

2. For every x E {0, 1}n, if 7rn(x) = 0, then each input bit to the output gate 
of D~2)(x) becomes 1 with probability at most n-3a-2, so D~2)(x) = 0 
with probability at least 1- n3an-3a-2 = 1- n-2. 

3. depth(D~2)) = d + 7 and size(D~2)) = O(n3a(s(n) + n) logn). 



8.3 PH and PSPACE Differ with Probability One 221 

Next let D~3) be the circuit that computes the 1\ of n copies of the com­

plement of D~2), where the copies are given independent random bits. Then 
the following conditions hold: 

1. For every x E {0, 1}n, if 1rn(x) = 1, then D~3)(x) = 1 with probability at 
least (1 - 2-n2 )n ~ 1 - n2-n2

• This is more than 1 - 2-n for n ~ 3. 

2. For every x E·{o, 1}n, if 7rn(x) = 0, then D~3)(x) = 1 with probability at 
most (n- 2 )n. This is less than 2-n for n ~ 2. 

3. depth(D~3)) = d + 7 and size(D~3)) = O(n3a+l(s(n) + n) logn). 

Thus, D~3) computes 11"n with probability greater than 1 - 2-n. For each 
x E {0, 1}n, let R(x) be the set of all assignments to the random bits that 

make D~3) err on input x. Since D~3) makes an error with probability less 
than 2-n, 

II U R(x)ll < 2n2-n = 1. 
xE{O,l}n 

This implies that there is an assignment to the random bits not belonging to 
R(x) for any x E {0, 1}n. Let r be such an assignment. Define En to be the 

deterministic circuit constructed from D~3) by assigning r to the random bits. 
Then En correctly computes 1rn(x) for all x E {0, l}n, depth( En) = d+ 7, and 
size(En) = O(n3a+l(s(n) +n) logn) = O(n3a+2 (s(n) +n)) = O(n3a+2s(n) + 
n 3a+3 ) as desired. This proves the lemma. D 

Now we are ready to prove Theorem 8.15. Define W(A) to be the test 
language we considered in Sect. 8.2; that is, W(A) is the set of all on such 
that 11{0, 1}n n All is odd. Recall that we have constructed an enumera­
tion K 1, K 2, . . . of relativized predicates specifying alternating quantifica­
tions such that, for every Land A, L E PHA if and only if for some s ~ 1 it 
holds that L = Ks(A). 

The following proposition, which we present without a proof, is useful. 

Proposition 8.17 If there exists E > 0 such that, for every s ~ 1, 
IJ.({A I W(A) -=f. Ks(A)}) > E, then IJ.(C) ~ 1. 

We obtain the following corollary from Proposition 8.17. 

Corollary 8.18 If 11-(C) = 0, then there exist E > 0 and s ~ 1 such that, 
for every n ~ 1, IJ.( {A I on E W(A) {:::==}on E Ks(A)}) > ! +E. 

Proof of Corollary 8.18 Suppose that ~J.(C) = 0. Then by taking the 
contrapositive of Proposition 8.17, we have 

(VE > 0) (3s ~ 1) [IJ.( {A I W(A) -=f. K 8 (A)}) ~ E]. 

This is equivalent to 

(VE: 0 < E < 1/2) (3s ~ 1) [~J.({A I W(A) = K 8 (A)}) ~ 1- E]. 
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This implies 

1 
(3f: 0 < f < 1/2) (3s ~ 1) [J.L({A I W(A) = Ks(A)}) > 2 + f]. 

The condition W(A) = Ks(A) implies that for every n ~ 1, onE W(A) {:::=:} 
onE Ks(A). So, if J.t({A I W(A) = Ks(A)}) ~ 1- f then, for every n ~ 1, 
J.t( {A I on E W(A) {:::=:} on E Ks(A)}) > ~+f. Thus, the statement of the 
corollary holds. 0 Corollary 8.18 

Now the rest of the proof is reminiscent of that of Theorem 8.11. 
Assume, to the contrary, that PHA = PSPACEA with probability 1; that 

is, J.L(C) = 0. By Corollary 8.18, there exist some real f > 0 and some integer 
s ~ 1 such that for every n ~ 1 

1 
J.t( {A I onE W(A) {:::=:}onE Ks(A)}) > 2 +f. 

Select such f and s. Let n ~ 1 and let 'D = {A I on E W(A) {:::=:} on E 
Ks(A)}. Let Q be the set of all strings queried by Ks on input on. Note that 
for every language A whether on E Ks (A) depends only on how A partitions 
Q and whether on E W(A) and depends only on how A partitions En. We 
claim that En ~ Q. To see why, assume En Sb Q. Divide En into two parts, 
8 1 =En\ Q and 82 =En n Q. By assumption, 8 1 is nonempty. Since for 
every A, onE W(A) if and only if the number of elements in An En is odd, 
for every H ~ 82, the number of H' ~ 81 such that HUH' E 'Dis equal to 
the number of H' ~ 81 such that HUH' rj_ 'D. This implies that J.L('D) = ~. 
a contradiction. So, En ~ Q. 

Let m = 2n- 1 and let V = {Oyl y E En-1}. Then IJVII = m. For each 
H ~ Q - V, count for how many H' ~ V does it hold that H U H' E 'D. 
Since J.L('D) > 4 + f, by the Pigeonhole Principle there is some H ~ Q - V 
such that for more than ~ + f of H' ~ V, HUH' E 'D. Pick such an H. 

Construct Cm from the circuit representing the computation of Ks on on 
by assigning values to some input variables as follows: 

• For each wE H, assign 1 to the input w and 0 to the input w. 
• For each wE (Q- V)- H, assign 0 to the input wand 1 to the input w. 
Then the proportion of the inputs of length m for which Cm computes 11'm 
correctly is more than ~+f. This family, by Lemma 8.16, can be converted 
to a family of depth-(k+7), superpolynomial-size circuits that correctly com­
putes the parity function. However, this is impossible by Theorem 8.3. Thus, 
J.L(C) = 1. This proves the theorem. 

8.4 Oracles That Make the Polynomial Hierarchy 
Infinite 

In this section our major concern is whether there is an oracle relative to 
which the polynomial hierarchy is infinite. Our viewpoint has been that the 
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relativized polynomial hierarchy is essentially a collection of constant-depth 
circuits. So, if we can prove that for each k 2: 2 there exists a series of 
functions computable by depth-k, polynomial-size circuits but not by depth­
(k- 1), superpolynomial-size circuits with small fan-in depth-1 subcircuits, 
then by using a method similar to that in the proof of Theorem 8.11, we 
can construct for each k 2: 2 an oracle A(k) separating E~ from E~_ 1 . In 
the oracle construction for Theorem 8.11 we basically kill each PH machine 
by identifying a large enough length and then putting some strings of that 
length in the oracle as well as putting some strings of that length outside the 
oracle. The procedure can be done in such a way that the lengths that are 
chosen are widely spaced. Then we can interleave separation procedures of 
all levels to construct an oracle that separates all the levels of the hierarchy, 
thereby making the hierarchy infinite. 

The following are the magic functions that we use for circuit lower bounds. 

Definition 8.19 Let k 2: 2 and m 2: 1. Define h~ to be 
function of mk variables x 17 ••• , Xmk: 

h~(x17 · · · ,Xmk) = (\ii1 : 1 :S i1 :S m) (3i2: 1 :S i2 :S m) 
·· · (Qkik: 1 :S ik :S m) [x(i1, ... ,ik) = 1], 

the following 

(8.8) 

where Q k = \i if k is odd and 3 otherwise and ( i 1 , ... , ik) denotes the unique 
number i, 1 ::; i ::; mk, whose m-adic representation is equal to i 1 · • • ik. 
(Here we use the numbers 1, · · · , m instead of 0, · · · , m- 1.} 

It is obvious that for each k 2: 2, and each m 2: 1, a circuit H~ for 
computing h~ can be constructed in a straightforward manner by replacing 
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each occurrence of V in the formula by an I\ and each occurrence of 3 in 
the formula by an V. The circuit H!. has size 1 + m + m 2 + · · · + mk and 
this is less than mk+l. In order to prove the impossibility result, can we 
use the distribution Rp we used for the parity case? We doubt that that is 
possible. Why? Basically, Rp is designed to destroy all the depth-2 circuits 
and so, with high probability, a random restriction under Rp will not only 
weaken the superpolynomial size depth-(k- 1) circuits but also h!;.. Thus, 
we introduce a new kind of probability distribution for restrictions, in which 
the probability of assigning 0 can be different from that of assigning 1. 

Definition 8.20 Let 3 be a set of n variables with a fixed enumeration 
x 1, ... ,xn. Let r, 1 ::::; r ::=:; n, be an integer. Let B = {B1, ... ,Br} be a 
partition of 3 into nonempty sets. Let 8 = { s1, ... , Sr} be a set of variables 
each varying over the values 0, 1, and*· Let q, 0 < q < 1, be a real number. 

1. R:,8 is the distribution of restrictions p over 3 U 8 that are chosen as 
follows: 
a) For each i, 1 ::::; i ::=:; r, si = * with probability q and 0 with probability 

1- q. 
b) Then for each i, 1 ::::; i ::::; r, and each Xj E Bi, p(xi) = p(si) with 

probability q and 1 with probability 1 - q. 
2. For a restriction p E R:,8 , g(p) is the restriction a determined from p as 

follows: For each i, 1 ::=:; i ::::; r, and each Xj E Bi, 
• if p(xj) = * and for some k > j it holds that Xk E Bi and p(xk) = *• 

then a(xj) = 1; 
• otherwise, a(xi) = *· 

3. R-;,8 is defined similarly except that the roles ofO and 1 are interchanged. 

4. For a restriction p E R-;,8 , g(p) is defined similarly except that the roles 
of 0 and 1 are interchanged. 

Here the sets B 1, ... , Br correspond to the blocks of input bits that 
are fed to the depth-1 subcircuits of h!;.. Note that for all p E R:,8 and i, 
1 ::::; i ::=:; r, the restriction product pg(p) assigns* to at most one variable in 
Bi, and if the product assigns * to exactly one variable, then all the other 
variables in Bi are assigned 1. The same property holds for R;;,8 with 0 in 
place of 1. 

The following lemma parallels Lemma 8.4. The interested reader may refer 
to the references we provide at the end of the chapter for its proof. 

Lemma 8.21 Lett ~ 1, let s ~ 1, and let q be such that 0 < q < 1. Let 
G be an 1\-V circuit (respectively, an V-I\ circuit) with bottom fan-in at most 
t. For a random restriction p chosen from R:,8 (respectively, from R-;,8 ), 

the probability that ar pg(p) can be rewritten as an V-I\ (respectively, an 1\-V 
circuit) of bottom fan-in less than s is at least 1 - a 8 , where 

4q 4qt 
a = - 1- 1 < -1 - < 6qt. 

2•- og2 
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Theorem 8.22 Let k?: 2. For all but finitely many m, and for every depth­
k circuit C, C -I h!;, if C satisfies the following two conditions: 

s-k 
1. size(C) ~2m . 
2. Each depth-! subcircuit of C is of fan-in at most m 3-k. 

Proof The proof is by induction on k. For the base case, let k = 2. Let 
m ?: 2. Suppose C is a depth-2 circuit satisfying properties 1 and 2 of the 
theorem. Then m 1132 < m, so there is a restriction a that forces C to a 
constant while keeping h!;, nonconstant. This implies that C -:f h!;.. Thus, 
the claim holds for k = 2. 

For the induction step, let k ?: 3 and suppose that the claim holds 
for all k', 2 ~ k' < k. Let m ?: 1 be fixed and let C be a depth-k 
circuitsatisfying properties 1 and 2 of the theorem. The circuit H~ is built 
from h!;. by translating the formula defining the function. For simplicity, let 
h = {1, ... , mk-1} and let /2 = {1, ... , mk-2}. Let A1, ... , Amk-1 be an 
enumeration of all depth-1 subcircuits of H~ and let D 1, ... , Dmk-2 be an 
enumeration of all depth-2 subcircuits of H~. Note for every k ?: 2 and ev­
ery i E 11 that Ai is an /\-circuit if k is odd and an V-circuit if k is even. 
For each j E /2, let T(j) be the set of all i E 11 such that Ai is a sub­
circuit of Dj. Then, for every j E h T(j) = {m(j- 1) + 1, ... , mj} and 
IIT(j)ll = m. For each i E /1, let Bi be the set of all variables appearing in 
Ai and B = {B1, ... ,Bmk-1}. Let q = Tm and p be a random restriction 

chosen under distribution R:,8 if k is odd and R;,8 if k is even. 

Fact 8.23 If m is sufficiently large, with probability greater than ~, the 
following holds for all i E /1: Either 

1. p( si) = * and A r pg(p) = X! for some unique variable X! E Bi or 
2. p(si) E {0, 1} and Airpg(p) = p(si)· 

Proof of Fact 8.23 By symmetry we have only to consider the case 
in which k is odd. If k is odd, then A1, ... , Amk-1 are /\-circuits and the 
distribution to be used is R:,8 . Let i E h. Suppose p(si) = *· Then, exactly 
one of the following is true: Air pg(p) = 1 and for some Xz E Bi, Air pg(p) = 
xz. The former holds with probability (1- q)IIB;II, so the latter holds with 
probability 1-(1-q)IIB•II. Next suppose p(si) = 0. Then either Airpg(p) = 1 
or Airpg(p) = 0. Since Ai is an 1\ circuit and p(si) = 0, Airpg(p) = 1 if 
and only if every variable in Bi is assigned 1. This occurs with probability 
(1- q)IIB•II, so Airpg(p) = 0 with probability 1- (1- q)ll 8 •11. 

Thus, either property 1 or property 2 holds with probability 1-(1-q)IIB•II. 
Since III1II = mk- 1, the probability that for every i E 11 one of the two 
conditions holds is 

(1- (1- q)IIBdl)mk-1 

= (1- (1- m-1/2)m)mk-1 
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~ (1 - e-y'ffi)mk-1 

~ 1- mk-1(2-rm) 

5 
>6 

for sufficiently large m. This proves the fact. 0 Fact 8.23 

Fact 8.24 If m is sufficiently large, with probability greater than ~, 

ll{i E T(j) I p(si) =*}II~ l.;m > rm113l (8.9) 
nm 

holds for all j E h 

Proof of Fact 8.24 Again, by symmetry we have only to consider the case 
in which k is odd. Let j E h For each i E T(j), p(si) = *with probability 
q = m- 112 . For each d, 0 $ d $ m, let Pd be the probability that for exactly 
d of the i E T(j), p(s,) = *• i.e., ll{i E T(j) I p(si) =*}II =d. Then 

Pd = (;)(m-1/2)d(1 -m-1/2)m-d. 

The probability that equation 8.9 does not hold for j is Po+ · · · + p11 , where 
v = L~J - 1. For all m ~ 2 and d such that 2 $ d $ m/2, 

~ = (m _ d+ 1) ( m-1/2 ) < (~) (m-1/2) = m. 
Pd-1 d 1 - m-1/ 2 - 2 ! Vm 

Also, for every m ~ 1, 

Po = (1 _ m-1/2)m $ (1 _ m-1/2)m-1 

and 
p1 = m(m-1/2)(1 _ m-1/2)m-1 = Vm(1 _ m-1/2)m-1. 

Thus, for every m ~ 2 and d such that 0 $ d $ m/2, 

Pd $ (1- m-1/2)m-1(Vm)d. 

For all m ~ 2, v = L1;(5J - 1 < m/2. Thus, 

Po+··· +Pv 
$ (1 - m-1;2)m-1 L (vm)d 

$ (1-m-1/2)m-1(v+ 1)(vmt 
( t:=)y'ffi/lnm 

$ (1 _ m-1/2)m-1-'-Y:...."m--:-·---
lnm 

$ (1- m-1/2)m-1(Jffl)Vm!lnm 

= o(e-C!+•)Vme!(Inm)y'ffi/lnm) 
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for some constant t:, 0 < f <~-Since e-C!+•)Vme!Clnm)y'm/lnm = e-•vm, 

Po+ ... + Pv = o(e-•Vm). 

Since lll2ll = mk-2 , the probability that equation 8.9 does not hold for some 
j E /2 is 

Note that 

for some t:1 > 0. So, the probability that equation 8.9 does not hold for some 
j E /2 is 

Thus, the probability in question is less than ~ if m is large enough. 
0 Fact 8.24 

Fact 8.25 For every k 2: 2, and form sufficiently large, with probability at 
least~~ pg(p) can be extended to a restriction a such that H::,fa is equivalent 

to H!,-; 1 , where m' = f m 1131. 

Proof of Fact 8.25 By Facts 8.23 and 8.24, with probability greater than 
0, for every j E h, D;fpg(p) is dependent on at least ..,;mjlnm > fm1131 
depth-1 subcircuits, each of which is equivalent to a unique variable. So there 
is some p that makes this happen. Pick such a p. Since H::, is a tree and since 
for all but finitely many m, ..,;mjlnm > fm1131, we can extend pg(p), by 
fixing more variables, to a restriction a in such a way that a leaves exactly 
m' branches at every nonleaf node. Since the fan-in of every level-1 gate is 1, 
the bottom two levels of this reduced circuit can be collapsed into 1. Thus, 
a reduces H::, to H!,-; 1 . 0 Fact 8.25 

Now we are at the final stage of the proof. Suppose that m is large, and 
apply Lemma 8.21 to C with s = t = m 113k. Then with probability greater 
than or equal to 1 - a 8 , pg(p) can be extended to a restriction a such that 
each depth-2 sub circuit E of C fa can be rewritten as a circuit E' satisfying 
the following conditions: 

1. E is an 1\-V circuit if and only if E' is an V-1\ circuit. 
2. Each depth-1 subcircuit of E' is of fan-in at most m 3-k. 

Since a < 6qt = 6m-112 m3 -k < m-1/4, the probability that the event occurs 
for all depth-2 subcircuits inC is at least 

1- (m-1/4)ms-k 2ms-k 

logm. a-le a-k 
= 1-2- 4 m +m 

s-k 
= 1-w(Tm ). 
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So, the probability is more than j. Thus, with probability greater than ~, 
there is a restriction a depending on p such that 

1. Hf;. I a is equivalent to H;:,.-; 1 and 

2. CIa can be converted to a depth k -1 circuit C' of size at most 2m3
-k :5 

I 3-(k-1) -k 

2(m) , each of whose depth-1 subcircuits is offan-in at most m 3 :5 
(m')3-(k-t). 

By our induction hypothesis, H;:,.-; 1 is not equivalent to Cf a. So, C cannot 
compute Hf;.. This proves the theorem. 0 

Theorem 8.26 There is a relativized world A in which PHA is infinite. 

Proof For each k 2:: 2 and each language A, define Lk(A) as follows: 

where x 1 , ••• , x 2kn is an enumeration of all strings of length kn in increasing 
lexicographic order. More precisely, for every k 2:: 2, every language A, and 
every n 2:: 1 , 

on E Lk(A) {::::::::} (Q1Y1 : Y1 E En) (Q2Y2 : Y2 E En) 

· · · (QkYk : Yk E En)[y1 · · · Yk E A], 

where y 1 • · · Yk denotes the concatenation of y1 , ... , Yk and for each i, 
1 :5 i :5 k, Qi = V if i is odd and :3 if i is even. It is clear from the def­
inition that for every oracle A and every k 2:: 2, Lk(A) E IT1. We construct 
an oracle A such that, for every k 2:: 2, Lk(A) ¢ E1_ 1 . Since for every 
k 2:: 2, E1 = EL 1 implies IT1 = ELl' this oracle separates E1 from EL 1 

for all k 2:: 2, and thus makes the polynomial hierarchy infinite. We use 
the same enumeration p 1 , P2, ... of polynomials and the same enumeration 
/ 1 , f2, ... of polynomial-time computable functions as we did in the proof of 
Theorem 8.11. Recall, by Proposition 8.12 that, for every k 2:: 1 and for every 
all A ~ E*, if a language L belongs to E1'A, then there exist a polynomial Pi 
and a polynomial-time computable function /j such that, for every x, 

X E L {::::::::} (QIYI : Y1 E EP<(Ixl)) · · · (QkYk: Yk E EPi(lxl)) 

(Qk+Iz: z E {1, · · · ,pi(lxl)}) 
[fj(x, YI, ... , Yk, z) E AE9A], 

(8.10) 

where for every l, 1 :5 l :5 k + 1, Ql = :3 if l is odd and Ql = V if l is even. For 
triples s = (i, j, k) and oracle A, let Ks(A) denote the set of all x satisfying 
the condition on the right-hand side. 

The language A is constructed in stages. At stage s = (i, j, k) we will 
identity an integer is and extend A as well as A up to length is, so that there 
exists some integer n 2:: 0 such that on E Lk+ 1(A) {::::::::} on ¢ Ks(A). We 
assume that for all i,j,k 2::1, (i,j,k) 2::1 and that (1,1,1) = 1. Let io = 0. 
We put the empty string in A. 
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Lets= (i,j, k}. Suppose that we are at the beginning of the stages. Let 
Ao (respectively, A 1 ) be the set of all strings put in A (respectively, A) prior 
to stage s. It holds that Ao n A1 = 0 and Ao U A1 = (E*)~e.- 1 • Consider 
the following three conditions: 

n > ls-1 1 

n s-(k+l) 
(k + 1)2(k+ 1)p;(n) < 2<2 ) , and 

Pi(n) < (2n)a-<k+t). 

(8.11) 

(8.12) 

(8.13) 

Since Pi is a polynomial and k is fixed at stage s, there exists an integer n 0 

such that for all n ~ no n satisfies all the three conditions. We claim that for 
some n ~ no there exists a partition (Bo, B1) of (E*)~n such that B 0 2 A 0 , 

B1 2 A1, and 
onE LkH(Bi) {::::::::} on¢ Ks(Bi). 

We prove the claim by way of contradiction. Assume that the claim does 
not hold, i.e., for all n ~ no and all partitions (Bo, Bi) of (E*)~n such that 
Bo 2 Ao and B1 2 A1, it holds that 

(8.14) 

For each n ~ 1, let p.( n) denote the smallest integer l such that l ~ £8 _ 1 + 1 
and 21 ~ n. For each n ~ 1, the circuit Cn is constructed from the formula 
for K 8 on input OJL(n). Let ¢o be the formula 

x E L {::::::::} (Q1Y1 : Y1 E EP•(Ixll) · · · (QkYk: Yk E EP•(Ixll) 

(Qk+1z : z E {1, · · · ,pi(ixi)}) [fi(x, Yi! · · ·, Yk, z) E A E9 A], 

where for every l, 1 ::; l ::; k + 1, Qt = :3 if l is odd and Qt = V if lis even. For 
each r, 1 ::; r ::; k, and each Yl! ... , Yr E EP• (JL(n)), let ¢r [Y1, ... , Yr] denote 
the formula 

(QrHYr+1 : Yr+1 E EP;(JL(n))) · · · (QkYk: Yk E EP•(JL(n))) 

(Qk+1t: 1::; t ::;pi(p.(n))) [fi((OJL(nl,y1, · · · ,yk,t}) E AE9A]. 

For each t, 1 ::; t ::; Pi(p.(n)), and each Y1 1 ••• 1 Yr E EP•(JL(n)), let 
¢k+dY11 ••• , Yr. t] denote the formula 

To construct Cn, for each of the ¢'s defined in the above, introduce a gate 
corresponding to it. The type of the gates is determined as follows: 

• The node corresponding to ¢ 0 is the output gate. The output gate is an V 
gate. 

• Each node corresponding to a ¢k+l formula is an input gate. 
• Let 1 ::; r ::; k. Each node corresponding to a ¢r formula is an I\ gate if 

r + 1 is even and an V gate if r + 1 is odd. 
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The inputs to the nonleaf gates are determined as follows: 

• The inputs of the output gate are the gates corresponding to {¢I [yl] I YI E 
EP<(J<(n))}. 

• Let 1 :5 r :5 k - 1. Let g be a gate corresponding to ¢r [YI, . . . , Yr] for some 
Yb ... ,Yr E EP<(J<(n)). The inputs of g are {¢r+I[YI 1 ••• ,Yr+IJI Yr+l E 
EP<(J<(n)) }. 

• Let g be a gate corresponding to ¢r[YI, ... , Yk] for some YI, ... , Yk E 
EP•(J<(n)). The inputs of g are {¢k+dYI, ... ,yk, tJI1 :5 t :5 Pi(J.t(n))}. 

Let Wn = {wi, ... , Wnk+l} be the smallest nk+I strings oflength (k+1)p.(n). 
Let YI, ... , Yk E EP<(J<(n)) and 1 :5 t :5 Pi(J.t(n)). Let g be the input gate cor­
responding to lPk+dYI, ... ,yk,t]. Let z = /j(O~<(n),yi, ... ,yk,t). The label 
of g is determined as follows: 

• If for some l, 1 :5l :5 nk+I, z = 1wz, then g is labeled wz. 
• If for some l, 1 :5 l :5 nk+I, z = Owz, then g is labeled wz. 
• If for some u E E*- Wn it holds that z = 1u, then g is assigned 1 if u E AI 

and is assigned 0 otherwise. 
• If for some u E E* - Wn it holds that z = Ou, then g is assigned 0 if u E AI 

and is assigned 1 otherwise. 
• If z is the empty sting, g is assigned 0. 

Then work from the input level to eliminate all subcircuits whose output is 
a cot;tstant regardless of the values of WI, ... , Wnk+l. This is Cn. The circuit 
Cn clearly has depth k + 1. 

By assumption, for every B ~ {w1, · · · ,WnHt}, 

Since 

and 
on E Ks(AI u B) <===> Cn(XB(wl) · · · XB(Wnk+t)) = 1, 

Cn computes h~+l. For all but finitely many n ~ n0 , both (8.12) and (8.13) 
3 -(k+l) 

hold. So, for all but finitely many n, the size of Cn is smaller than 2m 
and each depth-1 subcircuit of Cn has fan-in smaller than n 3 -(k+ll. Thus, by 
Theorem 8.22, Cn cannot compute h~+I. So, there exists an assignment to 
WI, ... , Wnk+l with respect to which Cn disagrees with h~+I. This implies 
that there is a set Y ~ {WI, ... , Wnk+t} such that 

This is equivalent to 
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where B 1 = A1 U Y. Let r be the smallest integer such that for all 
Yt. ... ,Yk E Ep,(n) and t, 1 ~ t ~ Pi(n), IJ;((on,yl, ... ,yk,t))l ~rand 
B0 = (E*):::;r- B 1 . Then (Bo,Bl) is an extension of (A0 ,A1 ), which con­
tradicts our assumption that equation 8.14 holds for every extension. This 
proves our claim. So, there is an extension (B0 , Bl) of (A0 , At) such that equa­
tion 8.14 does not hold. Pick such an extension. Set is be the smallest integer 
r such that r ~ ls-1 and for all Y1, ... ,yk E EP•(n) and t, 1 ~ t ~ Pi(n), 
If;( (On, Yl, ... , Yk, t) )I ~ r. We will set A1 to B1 and set Ao to (E*):::;r- B1. 
Then the property Lt+l =/= Ks(A) will be preserved in the future stages. This 
proves the theorem. 0 

Corollary 8.27 There is a relativized world in which PSPACE =/=PH and 
PH is infinite. 

8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite 
with Probability One? 

Does a "probability-one" separation hold for infiniteness of the polynomial 
hierarchy? Proving such a result seems out of reach as long as we use the 
function family {h~h,m~l· In order to apply the method in Sect. 8.3, the 
function family :F must possess the following property: 

Any deterministic circuit computing :F with bounded error can be 
converted, at the cost of constant increase in depth and polynomial 
increase in size, to a probabilistic circuit computing :F with bounded 
error probability. 

Our function family {h~}k,m~l seems to lack this property. Can we find an­
other family with this property? The question is subtle. Functions with the 
property are more or less symmetric, in the sense that the outcome is heavily 
dependent on the number of 1s in the input bits. In general, symmetric func­
tions, such as the parity function, are "provably" harder than constant-depth, 
polynomial-size circuits. So, a family endowed with the property seemingly 
cannot be used to separate the polynomial hierarchy. 
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The random restriction technique was invented independently by Furst, 
Saxe, and Sipser [FSS84] and by Ajtai [Ajt83]. Both groups proved 
Theorem 8.1. The exponential-size lower bound for depth-2 circuits, men­
tioned in the proof of Theorem 8.1, is due to Lupanov [Lup61]. 

An exponential-size lower bound for parity as well as an oracle separation 
of PSPACE from PH was first proved by Yao [Yao85]. These two results were 
improved by Hastad [Has87,Has89]. Our presentation in Sect. 8.2 is based on 
the approach of Hastad. 

The notion of random oracles was pioneered in the study by Bennett 
and Gill [BG81]. They showed that P =f. NP with probability 1. Proposi­
tions 8.17 and 8.13 are from their paper. The probability-one separation 
of PSPACE from PH is due to Cai [Cai89]. Babai [Bab87] presents a sim­
pler proof built on Hastad's result. Our presentation is based on Babai's 
proof [Bab87]. Lemma 8.16 is due to Ajtai and Ben-Or [AB084]. 

The function h~ of Sect. 8.4 and the biased restriction scheme presented in 
Sect. 8.4 are both due to Sipser [Sip83]. Using these techniques, Sipser proves 
a polynomial-size lower bound for constant-depth circuits computing h~. He 
conjectured that it is possible to strengthen the result to superpolynomial­
size. Yao [Yao85] proves an exponential-size lower bound, but the paper did 
not contain a proof. Based on this lower bound, Yao constructs an oracle 
making PH infinite. Hastad provides a complete proof of Yao's lower bound. 
Actually, Hastad's result [Has87] significantly improves upon Yao's result. 
Lemma 8.21 is taken from Hastad's thesis [Has87]. Our presentation is based 
on the function proposed by Sipser. This function gives a size lower bound 
weaker than that of Hastad [Has87]. 

The random restriction technique has been widely used as a tool for prov­
ing lower bounds and constructing oracles separating complexity classes. For 
example, Ko [Ko89] constructs, for each k 2:: 1, an oracle that makes the 
polynomial hierarchy separate up to exactly E~ while making PSPACE dif­
ferent from (or equal to) the polynomial hierarchy. Sheu and Long [SL94] 
show that there exists an oracle relative to which, for all k 2:: 2, ~~ ~ E~ and 
e~ ~ ~~- They also prove that the extended low hierarchy is indeed infinite. 
Bruschi [Bru92] constructs, for every k 2:: 1, an oracle relative to which there 
exists a set in E~ that is immune to ~~. 

A perceptron [MP88] is an AND-OR circuit with a threshold gate at the 
top. Improving upon Hastad's switching lemma, Green [Gre91] proves an 
exponential lower bound on the size of constant-depth perceptrons comput­
ing parity. Based on the lower bound he proves that there is a relativized 
world in which EBP ~ ppPH. Berg and Ulfberg [BU98] construct functions 
that are computable by linear-size, depth-k boolean circuits and that for no 
k < logn/(6loglogn) can be computed by polynomial-size, depth-(k- 1) 
perceptrons. Based on the lower bound they show that there is an oracle A 
relative to which, for all k 2:: 2, E~·A ~ ppEt~2. 
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Pitassi, Beame, and Impagliazzo [PBI93] obtain an exponential lower 
bound on the size of bounded-depth Frege proofs for the Pigeonhole Principle 
and an O(log log n) lower bound on the depth of polynomial-size Frege proofs 
for the Pigeonhole Principle. Beame, Impagliazzo, and Pitassi [BIP98] show 
that for no functions k(n) can the problem of determining whether a given 
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9. The Polynomial Technique 

One way of understanding the computational flexibility inherent in a com­
plexity class, C, is to determine the closure properties the class possesses and 
lacks. Under which operations is the class closed: complementation? union? 
intersection? symmetric difference? And under which reducibilities is the class 
closed? That is, for a class C, we may naturally ask: For which reductions :::;r 
does it hold that Rr(C) ~ C? Answering such a question can give insight not 
just into the computational flexibility of a class but also into the identity of 
the class. If C is closed? under some operation and V is not, then C =f. V. 
And, more typically in the world of complexity, if C is closed under some 
operation and V has to date defeated all efforts to prove it closed under that 
operation, then we may take this as one piece of evidence that may suggest 
that the classes may differ. 

The focus of this chapter is on proving closure properties of PP (and 
related classes) via construction of low-degree multivariate polynomials of a 
special kind of counting function, the gap functions. Gap functions are those 
that count the difference between the number of accepting and rejecting com­
putation paths of nondeterministic Turing machines. The breakthrough on 
these difficult problems came from a novel polynomial construction technique 
for approximating the sign function. Combining this technique with gap func­
tions gives us relatively easy proofs of the properties. 

This chapter is organized as follows. In Sect. 9.1 we introduce GapP and 
show its closure properties. We demonstrate the usefulness of GapP functions 
by presenting some simple closure properties of PP and C=P. In Sect. 9.2 we 
introduce an approximation formula for the sign function and use it to prove 
closure properties of PP. In particular, we prove that PP is closed under 
intersection and under polynomial-time truth-table reductions. In Sect. 9.3 
we introduce GapL, the logarithmic space version of GapP, and we show 
that the probabilistic logspace hierarchy collapses. In Sect. 9.4 we discuss an 
important open issue. 
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9.1 GEM: The Polynomial Technique 

A GapP function counts the difference between the number of accepting and 
rejecting computation paths of a nondeterministic Turing machine. 

Definition 9.1 Let M be a halting nondeterministic Turing machine, i.e., 
one that halts on all inputs and along all computation paths. The gap function 
of M, denoted by #gapM, is a mapping from E* to Z defined for all x E E* 
by 

#gapM(x) = #accM(x)- #rejM(x). 

GapP is the collection of all gap functions of polynomial time-bounded non­
deterministic Turing machines. 

GapP offers the following new characterization of PP. 

Proposition 9.2 Let L be a language. L belongs to PP if and only if there 
exists some total function f E GapP such that, for every x E E*, x E L if 
and only if f(x) ~ 0. 

Proof Let L be an arbitrary language. Suppose that L is in PP. So there 
exist a polynomial p, a language A E P, and a total function f E FP such that, 
for every x E E*, x E L if and only if ll{y IIYI = p(lxl) 1\ (x, y) E A}ll ~ f(x). 
Define M to be the nondeterministic Turing machine that, on input x E E*, 
guesses bE {0, 1} and y E EP(Ixl), and accepts x if either (b = 0 and (x, y) E 
A) or (b = 1 and the rank of yin EP(Ixl)_i.e., {xI z E EP(Ixl) 1\ y ~lex z}-is 
at most 2P(Ixl)- f(x)) and rejects otherwise. The machine M can be made to 
run in polynomial time. For every x E E*, M on input x has exactly 2P(Ixi)+I 
computation paths and #accM(x) is equal to 

2P(Ixl) - f(x) + ll{y E EP(Ixl) I (x, y) E A }II· 

This is at least 2P(Ixl) if x E L and is less than 2p(lxl) otherwise. Since 2p(lxl) is 
exactly half of 2p(lxl)+l, for every x E E*, x E L if and only if #gapM(x) ~ 0. 

Conversely, suppose that L is a language and f is a GapP function such 
that, for every x E E*, x E L if and only if f(x) ~ 0. Let M be a nonde­
terministic Turing machine such that f = #gap M and let p be a polynomial 
bounding the runtime of M. Define N to be the nondeterministic Turing ma­
chine that, on input x E E*, operates as follows: N simulates M on input x 
while counting in a variable C the number of nondeterministic moves that M 
makes along the simulated path. When M halts, N guesses a binary string 
z of length p(lxl)- C using exactly length p(lxl) - C bits and also guesses a 
single bit b. Then N accepts if and only if either 

• z E 0* and the simulation path was accepting, or 
• z fj. 0* and b = 0. 
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For every input x E :E*, the number of computation paths of N on input x 
is exactly 2p(ixl)+1, and the number of its accepting computation paths is 

2#accM(x) + (2P(Ixi) - #accM(x)- #rejM(x)) 

= #accM(x)- #rejM(x) + 2P(Ixll. 

So for every x E :E*, x E L if and only if #accN(x) ;::: 2P(Ixl). Let A = 

{(x,y) IIYI = p(ixi)+li\N on input x along path y accepts}. Then, for every 
x, x E L if and only if the number of y E :EP(Ixl)+l such that (x, y) E A is at 
least 2P(Ixl). Since the function f(x) = 2P(Ixl) is polynomial-time computable, 
this implies that L E PP. This proves the proposition. 0 

The above characterization simplifies the process of proving containment 
of languages in PP; we now have only to construct a GapP function that 
is nonnegative on all members and negative on all nonmembers. It is thus 
meaningful to know what functions belong to GapP. 

Proposition 9.3 

1. Every total mapping in FP from :E* to Z is a member of GapP. 
2. Every function in #P is a member of GapP. 
3. Let f E GapP and let total function g : :E* --+ :E* be a member of FP. 

Let h : :E* --+ Z be defined for all x E :E* by 

h(x) = f(g(x)). 

Then hE GapP. 
4. Let f and g be GapP functions. Let h : :E* --+ Z be defined for all x E :E* 

by 
h(x) = f(x) + g(x). 

Then h E GapP. 
In general, for each polynomial p and each f E GapP, let h : :E* --+ Z be 
defined for all x E :E* by 

h(x) = L f((x, w)). 
lwi=P(Ixl) 

5. Let f and g be GapP functions. Let h : :E* --+ Z be defined for all x E :E* 
by 

h(x) = f(x)g(x). 

Then h E GapP. 
In general, for each polynomial p and each f E GapP, let h : :E* --+ Z be 
defined for all x E :E* by 

h(x) = IT f( (x, i) ), 
I:::;i:::;p(lxl) 

where the symbol i appearing as the second argument on the pairing is a 
binary encoding ofi. Then hE GapP. 
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Proof (1) Let f : E* --+ Z be a total function in FP. There exists a 
polynomial p such that, for every x E E*, the absolute value of f(x) is 
less than 2P(Ixl). Pick such a p. Define M to be the nondeterministic Turing 
machine that, on input x E E*, computes f(x), guesses y E EP(Ixll, and 
executes one of the following depending on the sign of f(x): 

• In the case where f(x) ;::: 0, if the rank of y in EP(Ixl) is no greater than 
f(x) then M accepts x; otherwise, M guesses a bit band accepts x if and 
only if b = 0; 

• In the case where f(x) < 0, if the rank of y in Ep(lxl) is no greater than 
- f(x) then M rejects x; otherwise, M guesses a bit band accepts x if and 
only if b = 0. 

Recall that the rank of a string y E EP(Ixl) is the number of strings in Ep(lxl) 

that are lexicographically less than or equal to y. The process of guessing a bit 
b and accepting if and only if the bit is a 0 generates precisely one accepting 
path and one rejecting path each time it is applied. Hence the paths that go 
through this process contribute a sum of 0 to the gap of M. This implies that 
for every x E E*, #gapM(x) is precisely f(x) if f(x) ;::: 0, and is precisely -1 
times the absolute value of f(x) if f(x) < 0. Thus #gapM =f. 
(2) We use the same "contribution canceling" technique as in the proof of 
part 1. Let f = #accM be a function in #P, where M is some nondeter­
ministic polynomial-time Turing machine. Define N to be the machine that, 
on input x E E*, nondeterministically guesses and simulates a path of M on 
input x, and then executes the following: 

• If M on the path has accepted then N on that path accepts x; otherwise, 
N on that path guesses a bit b and accepts if and only if b is a 0. 

Then, for every x E E*, #accN(x) = #accM(x) + #rejM(x) and #rejN(x) = 
#rejM(x), so #gapN(x) = #accM(x). Since M is polynomial time-bounded, 
N can be made to run in polynomial time. Thus f E GapP. 
(3) Let f = #gapM for some nondeterministic polynomial-time Turing ma­
chine M. Let g be a total function in FP. Define N to be the machine that, 
on input x E E*, computes y = g(x), guesses and simulates a path of M 
on input y, and accepts on the guessed path if and only if M accepted y 
on the guessed path. Then for every x E E* #gapN(x) = f(g(x)). Since g 
is polynomial-time computable, g is polynomially length-bounded, and so N 
can be made to run in polynomial time. Thus hE GapP. 
( 4) We prove the general statement only. Let f = #gap M for some nonde­
terministic polynomial-time Turing machine M. Define N to be the nonde­
terministic machine that, on input x E E*, guesses w E {0, 1 }P(Ixl), guesses 
and simulates a path of M on input (x,w), and then accepts on its current 
path if M has accepted on that path and rejects on its current path other­
wise. Then for every x E E* #gapN(x) = h(x). Since pis a polynomial and 
M is polynomial time-bounded, N can be made to run in polynomial time. 
Thus hE GapP. 
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(5) We prove the general statement only. Let f = #gapM for some non­
deterministic polynomial-time Turing machine M. For each x E E* and i, 
1 :5 i :5 p(jxl), let S(x, i) denote the set of all computation paths of f on 
input (x, i) and, furthermore, for each 7r E S(x, i), define a(x, i, 7r) = 1 if 7r 
is an accepting computation path and -1 otherwise. Then for each x E E* 

h(x) = L a(x, 1, 7ri) · · · a(x,p(jxl), 1l"p(jxl)). 
11"1ES(x,l) 

Define N to be the nondeterministic Turing machine that, on input x E E*, 
behaves as follows: N nondeterministically guesses and simulates a path of 
M on input (x, i) for all i, 1 :5 i :5 p(ixi). In the course of doing this, N 
computes the parity of the number of values of i, 1 :5 i :5 p(jxi), such that 
M on input (x, i) rejects. When all the simulations have been completed, N 
accepts x on its current path if and only if this value is even. Note that, for 
every x E E*, on the path of N on input x corresponding to the guesses 
(7ri,7r2, ... ,7l"p(jxl)), the product a(x,1,7ri) ... a(x,p(jxl),1l"p(jxl)) is 1 if and 
only if N accepts along that path and that the product is -1 if and only if 
N rejects along that path. Thus, for every x E E*, #gapN(x) = h(x). Since 
p is a polynomial and M is polynomial time-bounded, N can be made to run 
in polynomial time. This implies h E GapP. Q 

Proposition 9.3 gives an alternative characterization of PP. Let f be a 
function in GapP witnessing that a language L belongs to PP. Define g for 
all x E E* by g(x) = 2f(x) + 1. The constant functions 2 and 1 are both 
FP functions, so they are GapP functions by part 1 of Proposition 9.3. So 
by parts 4 and 5, g belongs to GapP. For every x E E*, g(x) is always odd 
and so never equals zero. Also, for every x E E*, g(x) > 0 if and only if 
f(x) :;:: 0. Hence, g also witnesses that L E PP. Thus we have proved the 
following result. 

Proposition 9.4 For every language L, L belongs to PP if and only if there 
exists a function f E GapP such that, for every x E E*, f(x) :;:: 1 if x E L 
and f(x) :5. -1 otherwise. 

Based on the above proposition, it is easy to prove that the class PP is 
closed under complementation. Take an arbitrary language L in PP. Let f be 
a GapP function witnessing the membership of L in PP as stated in Propo­
sition 9.4. Define f' = -f. Then f' E GapP (by part 5 of Proposition 9.3, 
via the constant GapP function g(x) = -1) and witnesses that L E PP in 
the sense of Proposition 9.4. 

Proposition 9.5 PP is closed under complementation. 

The following proposition follows immediately from part 3 of Proposi­
tion 9.3. 

Proposition 9.6 PP is closed under polynomial-time many-one reductions. 
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In the next section we will prove various closure properties of PP, pro­
ceeding from intersection and union towards polynomial-time constant-round 
truth-table reductions. In the rest of this section, we demonstrate the use­
fulness of GapP-based characterizations of complexity classes by presenting 
some closure properties of C=P. 

Recall that C=P is the class of languages L for which there exist a poly­
nomial p and a language A E P such that, for every x E E*, x E L if and 
only if the number of y E EP(Ixl) such that (x, y) E A is exactly 2P(Ixll- 1 . 

By a proof similar to that of Proposition 9.2, we can obtain the following 
characterization of C=P in terms of GapP functions. 

Proposition 9. 7 Let L be any language. L belongs to C=P if and only if 
there exists some f E GapP such that, for every x E E*, x E L if and only if 
f(x) = 0. 

A simple tweak-squaring the function f in the above-gives us the 
strengthened direction of the following proposition. 

Proposition 9.8 A language L belongs to C=P if and only if there exists 
a nonnegative function f E GapP such that, for every x E E*, x E L if and 
only if f(x) = 0. 

A perceptive reader may notice the similarity between C=P and coNP; 
by replacing GapP by #P we obtain a definition of coNP. Indeed, to the best 
of our knowledge every closure property possessed by coNP is possessed by 
C=P, and vice versa, and every collapse of reducibility degrees that holds for 
coNP also holds for C=P and vice versa. We now give some examples. It is 
well-known that coNP is closed under polynomial-time disjunctive truth-table 
reductions and under polynomial-time conjunctive truth-table reductions. We 
show below that these closures hold for C=P. 

Theorem 9.9 C=P is closed under polynomial-time disjunctive truth-table 
reductions and under polynomial-time conjunctive truth-table reductions. 

Proof Let A E C=P and take f to be a GapP function witnessing, in 
the sense of Proposition 9.8, that A E C=P. Suppose that a language L is 
reducible to A via a polynomial-time disjunctive truth-table reduction. That 
reduction maps each x E E* to a list of strings, g(x), such that x E L if and 
only if at least one member of the list belongs to A. Define the function h for 
all X E E* by 

h(x) = IT f(yj), 
I::;j::;m 

where (y1, ... , Ym) is the list g(x). Recall that by convention TI1::;j<O f(yj) = 
1. By parts 3 and 5 of Proposition 9.3, h E GapP. Let x E ~* and let 
g(x) = (y1 , ... , Ym). If x E L, then there exists some i, 1 ~ i ~ m, such that 
Yi EA. For this i we have f(Yi) = 0, and this implies h(x) = 0. If x E L, then 
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there is no i, 1 ~ i ~ m, such that Yi </. A, and so there is no i, 1 ~ i ~ m, 
such that f(Yi) = 0. So h(x) =f. 0. Hence g witnesses that L E C=P in the 
sense of Proposition 9.8. 

For the conjunctive reducibility case, suppose that a language L is re­
ducible to A via a polynomial-time conjunctive truth-table reduction. That 
reduction maps each x E E* to a list of strings, g(x), such that x E L if and 
only if all the members in the list belong to A. Define the function h for all 
X E E* by 

h(x) = L f(YJ), 
l~j~m 

where (y1, ... , Ym} is the list g(x). By parts 3 and 4 of Proposition 9.3, 
hE GapP. Let x E E* and let g(x) = (Yl, ... , Ym}· Suppose x E L. Then 
there is no i, 1 ~ i ~ m, such that Yi E A, so there is no i, 1 ~ i ~ m, 
such that f(Yi) > 0. Since f ;:::: 0, this implies that h(x) = 0. Suppose x E L. 
Then there is some i, 1 ~ i ~ m, such that Yi E A, so there is some i, 
1 ~ i ~ m, such that f(Yi) > 0. Since f ;:::: 0 this implies that h(x) > 0. Thus 
LEC=P. 0 

A language A is coNP-many-one reducible to B, denoted by A~~np B, if 
there exist a polynomial p and a polynomial-time computable total func­
tion g such that for all x E E*, x E A if and only if it holds that 
(Vy E I;P(Ixl))[g((x, y}) E B]. It is well known that coNP is closed under 
coNP-many-one reductions. We show below that the closure holds for C=P· 

Theorem 9.10 C=P is closed under coNP-many-one reductions. 

Proof Let A E C=P and take f to be a GapP function witnessing, in 
the sense of Proposition 9.8, that A E C=P. Suppose that a language L is 
reducible to A via coNP-many-one reduction. Let p be a polynomial and let 
g be a polynomial-time computable total function witnessing that L~~np A. 
So for every x E E*, x E L and only if (Vy E EP(Ixl))[g((x, y}) E A]. Define 
the function h for all x by 

h(x) = L f((x, y} ). 
IYI=P(Ixl) 

Then h is in GapP by part 4 of Proposition 9.3. Suppose x E L. Then, 
for all y E EP(Ixl), (x, y} E A, so, for all y E EP(Ixl), f((x, y}) = 0. Thus, 
h(x) = 0. Suppose x E £. Then, for some y E EP(Ixl), (x, y} E A, so, for some 
y E EP(Ixl), f((x, y}) =f. 0. Since f is nonnegative, this implies that h(x) > 0. 
Thus, h witnesses that L E C=P in the sense of Proposition 9.8. 0 

9.2 Closure Properties of PP 

The goal of this section is to prove essential closure properties of PP. We first 
prove the closure of PP under intersection. Then we prove its closure under 
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polynomial-time truth-table reductions and under polynomial-time constant­
round truth-table reductions. 

To show that PP is closed under intersection, it would suffice to have a 
two-variable polynomial q having only positive coefficients such that, for all 
integers z1, z2, q(z1 , z2) > 0 if and only if (z1 > 0 and z2 > 0). Then using 
as arguments to q the GapP representations of £ 1 and £2 would yield a 
GapP representation of £ 1 n £ 2 • Unfortunately, no such polynomial exists. 
However, we only need this property to hold for Jzd and Jz2J up to 2p(n) for 
some appropriate polynomial p. The following lemma, which is the basis of 
all the results we prove in this section, addresses this issue. Below, we assume 
that {0,1} ~E. 

Lemma 9.11 For every L E PP and every polynomial r, there exist GapP 
functions g : E* --+ N and h : E* --+ N+ such that, for all x E E*, h( x) > 0 
and, for all x E E* and bE {0,1}, 

1. ifXL(x) = b, then 1- 2-r(jxl) ~ g(A(~~)) ~ 1, and 

2. if XL(x) = 1 - b, then 0 ~ g(Af~~)) ~ 2-r(jxl). 

Here XL is the characteristic function of L, i.e., for every x E E*, XL(x) = 1 
if x E L and XL(x) = 0 otherwise. 

The proof of Lemma 9.11 makes uses of a formula that approximates the 
sign function of integers, i.e., the function that maps all positive integers to 
+ 1 and all negative integers to -1. 

Definition 9.12 (Low-Degree Polynomials to Approximate the Sign 
Function) Let m and r be positive integers. Define: 

Qm(z) = -Pm(z)- Pm( -z). 

Am,r(z) = (Qm(z))2r. 

Bm,r(z) = (Qm(z)2r) + (2Pm(z))2r. 

n ( ) = (2Pm(z)) 2r 
m,r Z Qm(z) 

Sm,r(z) = (1+Rm,r(z))-1 . 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

Rm,r(z) and Sm,r(z) are two auxiliary functions that will help us under­
stand the properties of Am,r(z) and Bm,r(z). In the next lemma we explore 
properties of Am,r(z), Bm,r(z), and Sm,r(z). 

Lemma 9.13 

1. For all positive integers m and r, Sm r(z) = A13"'·rfz~. 
t 1n,r Z 
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2. For every positive integers m and r, both Am,r(z) and Bm,r(z) are poly­
nomials in z of degree O(rm). 

3. For all integers m, r ;:::: 1 and every integer z, 
a) if 1 ~ z ~ 2m, then 1 - 2-r ~ Sm,r ~ 1, and 
b) if -2m ~ Z ~ -1, then 0 ~ Sm,r(z) ~ 2-r. 

Proof The proofs of (1) and (2) are by routine calculation. We leave them 
to the reader. To prove (3), let m and r be positive integers. First consider 
the case when 1 ~ z ~2m. In this case Pm(z) ;:::: 0 and Pm(-z) < 0. We 
prove the following claim. 

Claim 9.14 If 1 ~ z ~2m, then 0 ~ Pm(z) <- 'P .... ~-z). 

Proof of Claim 9.14 The claim clearly holds for z = 1. So suppose 
2 ~ z ~2m. There is a unique i, 1 ~ i ~ m, such that 2i ~ z < 2i+l. Lett 
be that i. Then (i) 2t ~ z and (ii) z/2 < 2t. By combining (i) and (ii) we get 
0 ~ (z- 2t) < ~. and from (ii) we get z + 2t > 3;, and thus, ~ < 1- z- 2tl/3. 

By combing the two inequalities, we have (z- 2t)2 < (-z~ 2·) 2 • Note that 
z- 1 < z + 1 and iz- 2il ~ z + 2i for every i, 1 ~ i ~ m. Thus, in light of 
the definition of Pm, Pm(z) < - 'P .... ~-z). D Claim 9.14 

Now by the above claim 0 ~ Pm(z) < - 'P .... ~-z). Combining this with 

Pm( -z) ~ 0 yields Qm(z) > B'P .... J-z) > 0. Thus 

0 < R (z) < 9 m -z = - < 2-r. ( 2(-l)P ( ))2r (1)2r 
- m,r -~Pm(-z) 4 

Since Rm,r(z) ;:::: 0 and since for every 8;:::: 0, (1 + 8) > 0 and (1 + 8)(1- 8) = 
1 - 82 ~ 1, we have 

1;:::: Sm,r(z) = 1 + R~,r(z) > 1- Rm,r(z) > 1- 2-r. 

Hence (3a) holds. 
Next consider the case when -2m ~ z ~ -1. For this range of values 

of z, in light of Claim 9.14 we have 0 ~ Pm( -z) < - 'P .... 9(z). This implies 
0 < Qm,r(z) < -Pm(z). Thus 

,.., ( ) ( 2'Pm(z) ) 2r r r 
'~m,r Z ;:::: -Pm(z) = 4 > 2 . 

This implies 
S ( ) 1 1 -r 

m,r Z = 1 + Rm,r(z) < Rm,r(z) < 2 . 

Hence (3b) holds. D Lemma 9.13 
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Proof of Lemma 9.11 Now we turn to proving Lemma 9.11. Let L E PP 
and f be a GapP function witnessing, in the sense of Proposition 9.4, the 
membership of Lin PP. Then, for every x E E*, the absolute value of f(x) is 
at least one. Let m be a polynomial such that, for every x E E*, the absolute 
value of f(x) is at most 2m(lxl). Let r be an arbitrary polynomial. Define: 

h(x) = Bm(lxl),r(lxl)(f(x)), 

g((x, 1}) = Am(lxl),r(lxl)(f(x)), and 

g( (x, 0}) = Bm(lxl),r(lxl) (f(x))- Am(lxl),r(lxl) (f(x) ). 

Then, for every x E E", g((x,O}) + g((x, 1}) = h(x). For every x E E", by 
part 1 of Lemma 9.13, Sm(lxl),r(lxl)(f(x)) = g(~(~))) and since g( (x, 0}) + 
g( (x, 1}) = h(x), 1- Sm(lxl),r(lxl) (f(x)) = 9L(~~). So, by Lemma 9.13 and the 

first claim of the previous sentence, 1 - 2-r(lxl) _::; g(~(~))) _::; 1 if f(x) > 0 

and 2-r(lxl) > ~ > 0 if f(x) < 0. Since ~ = 1 - g((('))) we have 
- li"{X) - li"{X) h X ' 

1 - 2-r(lxl) < ~ < 1 if f(x) < 0 and 2-r(lxl) > ~ > 0 if f(x) > 0. 
- h(x) - ' - h(x) -

Now it remains to prove that both g and h are in GapP, but this is easy to 
prove because we have Proposition 9.3. We will leave that verification as an 
exercise for the reader. 0 Lemma 9.11 

9.2.1 PP Is Closed Under Intersection 

All the groundwork has now been done, and so we may give the proof of the 
closure of PP under intersection. 

Theorem 9.15 PP is closed under intersection. 

Proof Let L and L' be arbitrary languages in PP. Let r be the constant 
polynomial 2. Let g and h be the two functions given by Lemma 9.11 for L 
and r and let g' and h' be those for L' and r. For every x E E*, the following 
conditions hold: 

• ;! < g( x,l)) < 1 if x E L and 0 < g((x,l)) < ! otherwise. 
4- hx - -h(x)-4 

• ;! < g' x,l)) < 1 if x E L' and 0 < g'((x,l)) < ! otherwise. 
4 - h'(x - - h'(x) - 4 

Define 
( ) _g((x,1}) g'((x,1})_~ 

p x - h(x) + h'(x) 2· 

For every X E E*' if X E L n £', then the first two terms of p(x) are both 
greater than or equal to ~ so p(x) ~ 2(~) - ~ = 0; and if either x r/. L 
or x r/. L', then one of the two is at most ~ and both are at most 1, so 
p(x) .::; ~- ~ < 0. So for every X E E*' X E L n L' if and only if p(x) ~ 0. 
Define the function T by T(x) = 2h(x)h'(x)p(x). So 

T(x) = 2(g((x, 1})h'(x) + g'((x, 1})h(x))- 3h(x)h'(x). 
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Since h and h' are both positive, for every X E E*' X E L n L' if and 
only if T(x) ~ 0. By Proposition 9.3, T E GapP. Thus, by Proposition 9.2, 
L n L' E PP. 0 

For every Land L', L U L' = L nIl. Thus, in light of Proposition 9.5, 
we have the following corollary to Theorem 9.15. 

Corollary 9.16 PP is closed under union. 

Corollary 9.17 extends these results to obtain a much stronger conclusion 
than closure under union or intersection. The reason that Corollary 9.17 
implies closure under union and intersection is that PP is closed under disjoint 
union, and clearly AU B ~~-tt A EBB and An B ~~-tt A EBB. 

Coropary 9.17 PP is closed under polynomial-time bounded-truth-table re­
ductions. 

Proof Let A E PP and L be ~~-tt-reducible to A for some k ~ 1. It 
follows, via augmenting Appendix B's definition with the fact that we can 
add on ignored queries in such a way as to make a k-tt reduction always ask 
exactly k queries, that there is a polynomial time-bounded Turing machine 
M such that on each input x E E*, M generates a list of strings (y1, ... , Yk) 
and a k-ary boolean function a, such that x E L if and only if 

The y's and a are functions of x. For each k-bit string b = b1 · • · bk, define 
sb to be the set of all X E E* such that the boolean function a that M 
generates on X has the value 1 at b. For each i, 1 ~ i ~ k, define rp> to be 
the set of all x E E* such that the ith string that M on input x generates 
belongs to A. Similarly, define r?> with A in place of A. By Proposition 9.6 

PP is closed under ~~-reductions, so for every i, 1 ~ i ~ k, rp> belongs 
to PP. Furthermore, since PP is closed under complementation, for every i, 
1 ~ i ~ k, Ti(o) is in PP. Now 

Since PP is closed under intersection and k is a constant, each 8&1 ... bk n 
nl<i<k Ti(b,) is in PP. So since PP is closed under union and 2k is a constant, 
L EPP. 0 

9.2.2 PP Is Closed Under Truth-Table Reductions 

The following result is so general that it implies, as each consequences, all 
the results of Sect. 9.2.1. 

Theorem 9.18 PP is closed under polynomial-time truth-table reductions. 
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Some preparation is necessary for the proof of Theorem 9.18. Below, we 
assume that {0, 1} ~ E. We fix a scheme for encoding any nonempty list of 
strings into a string. Let # be a symbol not in E and let E = E U { #}. For 
each integer k ~ 1, and k strings Yl, ... , Yk, let 

Note that Ak is a mapping from (E*)k to (E)* and is polynomial-time com­
putable and polynomial-time invertible. For each k ~ 1, Let Uk be the range 
of Ak, i.e., {w I wEE* and for some Y1, ... , Yk E E*, w = Ak(YI. ... , Yk)}. 
Note that for all positive integers k, l, k 1- l, each element in Uk has exactly 
k - 1 occurrences of # and each element in U1 has exactly l - 1 occurrences 
of#, and thus, Uk and U1 are disjoint. So, given a string w E Uk>l Uk one 
can compute in polynomial time the integer k ~ 1 such that w E U/. and the 
unique list of strings [YI, ... , Yk] such that w = Ak(YI, ... , Yk)· 

A query generator is a Turing machine that maps each input string to 
a nonempty list of strings encoded using A. A query generator g is length­
increasing if for all x E E* each element in the list that g(x) encodes has 
at least !xi bits. For a query generator g and a language A, define r: to 
be the function that maps each x E E* to XA(y 1) • • • XA(Yk), where g(x) = 
Ak(YI, ... , Yk)· 

Let M be a polynomial-time machine computing a truth-table reduction 
of some language L to some language A. Then there is a polynomial-time 
machine computing a truth-table reduction of L to A that makes at least one 
query for each input. To see this, define N to be the oracle Turing machine 
that on each input x does the following: N simulates M on input x and then 
accepts x if M accepts and rejects otherwise, but just before accepting or 
rejecting N checks whether a query is made during the current simulation, 
and if no query is made, N makes a query about the empty string and ignores 
the oracle's answer. Since N makes the additional ignored query exactly in 
the case when M does not make a query, N computes a truth-table reduction. 
Furthermore, N is clearly polynomial time-bounded, makes at least one query 
for each input, and for each oracle, accepts the same language as M does with 
the oracle. In particular, L(NA) = L(MA). The addition of one query may 
deprive N of some properties about the queries M, but this is fine. 

The following proposition summarizes the above discussion. 

Proposition 9.19 If a language L is polynomial-time truth-table reducible 
to a language A, then there exists a polynomial-time oracle Turing machine 
M computing a truth-table reduction from L to A such that for each input 
x E E*, M makes at least one query to its oracle. 

Let M be a polynomial-time oracle Turing machine computing a truth­
table reduction from a language L to a language A in the sense of Propo­
sition 9.19. Since M makes at least one query for each input, we can split 
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the program of M into two parts, query generation and evaluation of oracle 
answers. More precisely, we have the following proposition. 

Proposition 9.20 lf a language L is polynomial-time truth-table reducible 
to a language A, then there exist some polynomial-time query generator g 
and some polynomial-time computable evaluator e : E* x E* --+ {0, 1} such 
that, for each x E E*, 

Below is a key technical lemma that is used to prove Theorem 9.18. 

Lemma 9.21 Let g be a polynomial-time computable, length-increasing 
query generator and let A be a language in PP. For every polynomial r there 
exist GapP functions s : E* --+ N and t : E* --+ N+ such that, for every 
x, w E E*, the following two conditions hold: 

• Jiw = rA then 1- 2-r(lxl) < ~ < 1. 
J g' - t(x) -

• Ji W ...J. rA then 0 < s((x,))) < 2-r(lxl). 
J -r g' - t(x -

Throughout this and the following sections we will use the term natural 
polynomials to refer to univariate polynomials with positive coefficients. For 
every univariate polynomial p that is not natural there is a natural polynomial 
p' such that, for every n, p(n) ~ p'(n). Note that every natural polynomial is 
strictly increasing on domain [0, oo); i.e., for every integer n ~ 0, the value of 
the polynomial at n is less than the value of the polynomial at n+l. Note also 
that the class of natural polynomials is closed under addition, multiplication, 
and composition. More precisely, for all natural polynomials p and q, the 
polynomials p(n) + q(n), p(n)q(n), and p(q(n)) are natural polynomials. 

Proof of Lemma 9.21 Let g and A be as in the statement of the lemma. 
Define m to be the function that maps each x E E* to the number of elements 
(not necessarily distinct) in the list that g(x) encodes. Let p be a polynomial 
such that, for all x E E*, m(x) ~ p(lxl). Let r be an arbitrary polynomial. 
Define q to be a natural polynomial such that, for all n, q(n) ~ p(n) + r(n). 
By Lemma 9.11, there exist GapP functions s0 : E* --+Nand to : E* --+ N+ 
such that, for all y E E* and b E {0, 1 }, 

• 1 - 2-q(lyl) < so((y,b)) < 1 if X (y) = b and 
- to(y) - A ' 

• 0 < so((y,b)) < 2-q(lyl) otherwise. - to(y) -

Defines: E* X E*--+ N for all x,w E E* by 

• if lwl-1- m(x) then s((x,w)) = 0, and 
• if lwl = m(x) then s((x,w)) = Ih~i::;m(x) so((yi>wi)); 

and then define t : E* --+ N+ for all x E E* by 
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t(x) = IT to(Yi), 
l~i~m(x) 

where g(x) = Am(x)(Yt. ... , Ym(x))· Then for all strings x, w E E* the fol­
lowing conditions hold: 

• s((x,w)) ~ 0 and t(x) > 0. 
• If lwl-:f. m(x), then s(l(~'))) = 0 . 

• If lwl = m(x) and w I- r:(x), then 0 < s(~(~))) < 
2-min{q(IYtl) •... ,q(IY ... <.,ll)}. Since q is natural the upper bound is at most 
2-q(min{IYtl •... ,ly...,<.,>l}). Since g is length-increasing and q is natural, this 
bound is at most 2-q(lxl) < 2-r(lxl). 

• If w = rA then 1 > s((x,w)) > 1-m(x)2- min{q(ly1 1), ···• q(IY ... <zli)}. Since q is 
g' - t(x) -

natural the lower bound is at least 1-m(x)2-q(mln{IYtl, ···· IY"'<"'l I}). Since g 
is length-increasing and q is natural, the bound is at least 1-p(lxl)2-q(lxl). 
Since q(n) = p(n) + r(n) and p(n) < 2p(n) for all n, the lower bound is at 
least 1 - 2-r(lxl). 

This proves the lemma. D Lemma 9.21 
Now we turn to proving Theorem 9.18. 

Proof of Theorem 9.18 Let A E PP. Let L be ~fcreducible to A. By 
Proposition 9.19 there is a polynomial-time machine, M, computing a truth­
table reduction from L to A that makes at least one query for each input, and 
by Proposition 9.20, there exist some polynomial-time query generator g and 
some polynomial-time evaluator e that jointly achieve the same effect as M. 
Without loss of generality, we may assume that g is length-increasing. If not 
we will replace A by A'= {Oily I i ~ 0 1\ yEA} and, for all x E E*, replace 
the value of g(x) by Ak(OI"'Ilyt. ... , olxllyk), where g(x) = Ak(Yt. ... , Yk)· 
A' is in PP, and this altered analog of g remains polynomial-time computable 
and is a length-:increasing query generator. 

Define m to be the function that maps each x E E* to the number of 
(not necessarily distinct) elements in the list g(x) encodes. Let p be a natural 
polynomial such that, for every x E E*, m(x) ~ p(lxl). Define r(n) = p(n)+2. 
By Lemma 9.21, there exist GapP functions s : E* X E* --+ Nand t : E* --+ N+ 
such that, for all x, w E E*, the following two conditions hold: 

• The fraction s(l(~j>> is between 1 - 2-r(lxD and 1 if w = r:. 
• The fraction s(l(~'))) is between 0 and 2-r(lxl) otherwise. 

Define s* : E* --+ N for all x E E* by 

s*(x) = L e(x,w)s((x,w)). 
lwl=m(x) 
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Then for every x E E* the following conditions hold: 

• If X E L, then e(x, r:) = 1, so that st·(~J) is at least 1 - 2-r(txt) = 1 -

2-P(IxiJ+2 > l 
• If X rt L then e(x, r:) = 0 and for every w =1- r:' s(W~i)) is between 0 

and 2-r(txtl. Since there are at most 2P(Ixt) many w of length m(x), st·(~J) 
is between 0 and 2P(txt)2-r(lxl) = ~· 

Thus, for every x E E*, x E L if and only if st·(w ~ !· Now define H(x) = 

2s*(x)- t(x). Then, for every x E E*, x E L if and only if H(x) ~ 0. It is 
easy to see that H(x) is in GapP. Hence L E PP. This concludes the proof 
of Theorem 9.18. D Theorem 9.18 

9.2.3 PP Is Closed Under Constant-Round Truth-Table 
Reductions 

We finally extend the closure property of PP to its strongest known form. 
Let k ~ 1 be an integer. A language A is polynomial-time k-round truth­

table reducible to a language B (write A srt[kJ B) if there exists a polynomial 
time-bounded oracle Turing machine M such that M makes exactly k rounds 
of parallel queries to its oracle and such that, for every x E E*, x E A if 
and only if M B on input x accepts. Let M be a machine that computes a 
polynomial-time k-round truth-table reduction. We envision that M executes 
a query round as follows: 

• Let [y1 , .•• , Ym] be the list of queries to be made. The machine M writes 
on the query tape Yl # · · · #Ym#, where # is a symbol not in E. Then the 
machine M enters the query state. 

• Let b = b1 • • • bm, where for every i, 1 S i S m, bi = 1 if Yi is a member of 
the oracle and bi = 0 otherwise. In the next computation step, the following 
two things occur. (i) The word on the query tape is (by magic) replaced 
by b so that the first letter of b is stored in cell1 of the tape. (ii) The head 
on the query tape is moved to cell 1. 

Now we prove the theorem that states the closure property of PP in its 
strongest form. 

Theorem 9.22 For every k > 1, PP is closed under polynomial-time k­
round truth-table reductions. 

Proof of Theorem 9.22 The proof is by induction on k. The base case 
is k = 1, which we have already proven as Theorem 9.18. For the induction 
step, let k = ko > 1 and suppose that the claim holds for all values of k less 
than ko. Let L be srt!krreducible to A E PP via a polynomial-time Turing 
machine M. We may assume that for every x E E*, M on input x makes 
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exactly k rounds of queries regardless of its oracle. We will replace M by 
a new machine, M', that on each input x simulates M on input x with the 
following two additional tasks: (1) If M enters the query state for the (k+ 1)st 
time, then M' rejects x without executing the current step of M. (2) If M 
halts and if M made fewer than k query rounds, M' executes additional 
ignored query rounds so as to make the total number of query rounds on 
input x equal to k, and then accepts or rejects according to the outcome of 
the simulation of M on input x. The two additional tasks do not increase 
the computation time significantly. Since M is polynomial time-bounded the 
new machine M' can be made polynomial time-bounded. 

By "configuration" of M' we mean an object consisting of the contents of 
its tapes, the position of its heads, and its state. A configuration describes 
the exact condition the machine M' is in. Suppose that M' has h work tapes. 
Let r be the union of the tape alphabets of M', which includes {0, 1 }. Let $ 
be a symbol not in r and r' = r U {$}. Let d be the smallest integer such 
that the cardinality of r' is at most 2d. Fix ad-bit encoding of the symbols 
in r'. Take any configuration s of the machine M', where M' has X on the 
input tape with the head located on cell r 1, for each i, 1 :::;; i _::;; h, wi on the 
ith work tape with the located on cell Pi, and y on the query tape with the 
head located on cell r2. This configuration S is encoded by replacing each 
symbol of r' appearing in the word 

by its d-bit encoding. Since M' is polynomial time-bounded, there is a poly­
nomial p such that, for every x E "E*, and for every configuration S of M' on 
input x, the encoding length of Sis at most p(lxl). 

Define C to be the set of all strings (x, i, b) that satisfy the following two 
conditions: 

• xE"E*,i;:::1,andbE{0,1}. 
• The binary encoding of the configuration of M' on input x relative to A 

when its (k- 1)st round of queries has length at least i and b is equal to 
the ith bit of the encoding. 

Then Cis polynomial-time (k-1)-round truth-table reducible to A, so by our 
induction hypothesis, C belongs to PP. We claim that L is polynomial-time 
two-round truth-table reducible to A EB C. To prove this claim, note that the 
configuration of M' on an input x E "E* with oracle A can be computed via 
parallel queries 

(x, 1,0), ... , (x,p(lxi),O), (x, 1, 1), ... , (x,p(lxl), 1) 

to the C part of the oracle, where p is a polynomial such that, for every 
x E "E* and every oracle Q, MQ on input x halts within p(lxl) steps. If the 
encoding length of the configuration is d, then the oracle gives a positive 
answer to precisely one of (x, i, 0) and (x, i, 1) for each i, 1 :::;; i :::;; d, and to 
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neither of them for any i, d + 1 ~ i ~ p(Jxi). Once the configuration has 
been computed, the query strings in the kth round can be computed in time 
polynomial in JxJ. Then the rest of the computation of M' can be simulated 
with a single parallel query round to the A part of the oracle. 

We have proven the conclusion inductively for k > 2, but not for k = 2. 
We need to show that PP is closed under polynomial-time two-round truth­
table reductions. Let L be ~ft!2rreducible to some set A E PP via machine 
M. As discussed in the first part of the proof, we may assume that for every 
x E E*, M on input x makes precisely two rounds of queries regardless of 
its oracle. Furthermore, we may assume that there is a natural polynomial 
p such that, for every x E E*, M on input x makes at each round precisely 
p(Jxi) queries, each of length p(Jxl), regardless of its oracle. To see why, let p 
be a natural polynomial strictly bounding the runtime of M. We will replace 
A by its padded version A' = {On1x In;::: 0 1\ x E A}. Then, for each input 
x E E*, a query y to A can be replaced by the query OP(Ixl)-lyl- 11y to A' (we 
here are tacitly using the fact that p(Jxl) ;::: JyJ + 1 for each such query y). 
Then we modify M so that before entering the query state M checks whether 
the number of query strings currently placed on the query tape is p(Jxl). If 
not, M appends sufficiently many copies of a dummy query OP(Ixl) to the list 
to make the number equal to p(Jxl). Call this new machine M'. 

Define B = { (x, i} I x E E* 1\ 1 ~ i ~ p(Jxi) 1\ and the ith query of M' on 
input x with oracle A' at the second round is in A'}. Then Lis ~it-reducible 
to A' EB B. Since A E PP, A' belongs to PP. Thus it suffices to show that 
BEPP. 

Since A' is in PP there exist a polynomial time-bounded nondeterministic 
Turing machine N and a natural polynomial q such that, for every x E E*, N 
on input x has precisely 2q(lxl) computation paths and N is such that x E A' 
if and only if #accN(x) ;::: 2q(lxl)-l. Define r(n) = p(n) + q(p(n)) + 1. Let 
g be the query generator corresponding to the first query round of M'. By 
Lemma 9.21, there exist GapP functions s ;::: 0 and t > 0 such that for all 
strings x and w, x, w E E*, the fraction s(i{~j)) is between 1 and 1 - 2-r(lxl) 

if w = r:' and is between 0 and 2-r(lxl) otherwise. Define, for all X E E* and 
i, 1 ~ i ~ p(Jxl), 

*( ') "" # ( ( . )) s((x,w}) s x,t = ~ accN z x,t,w t(x) . 
lwl=p(lxl) 

Here z(x,i,w) denotes the ith query that would be made by M' on input x 
in the second round in the case when the answers to the first round queries 
are provided by the string w. Put another way, for each j, 1 ~ j ~ p(Jxl), 
the answer to the jth query is treated as being affirmative if the jth bit of w 
is 1 and treated as being negative otherwise. 

We claim that for all x E E* and i, 1 ~ i ~ p(JxJ), (x, i} E B if and 
only if s:~=)i) ;::: 2q(p(lxl))-l_ !·To prove this claim suppose (x,i} E B. Since 
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z(x, i, r{) is precisely the ith query in the second round of M' on input 

X with A' as the oracle, #accN(z(x, i, r{)) is at least 2q(iz(x,i,r:')l)-l = 
A' 

2q(p(lxi))-I Since s((x,rv (x))) > 1- 2-r(lxi) and all the terms appearing in 
· t(x) -

s* are nonnegative, s*(x,i) 2: 2q(p(lxi))-I(1- 2-r(ixD). This is equal to 

2 q(p(lxl))-1 _ 2q(p(ixi))-p(ixi)-q(p(ixi))-l = 2q(p(lxl))-l _ 2-p(lxl)-1, 

and this is more than 2q(p(ixi))-I- ~-On the other hand, suppose {x,i) ¢B. 
Then #accN(z(x, i, r:(x))) ~ 2q(p(lxi))-I - 1. For every w =f. r: of length 

p(ixi), #accN(z(x, i, w)) is at most 2q(p(lxl)) and sw~>) is at most Tr(ixi). 

Since the number of w =f. r: is 2P(Ixl) - 1, s:~~)i) is at most 

(2q(p(lxl))-1 _ 1) + (2P(ixl) _ 1)2q(p(lxi))2-r(ixl) 

< 2q(p(ixl))-l _ 1 + 2p(ixi)2q(p(ixi))Tr(ixi) 

= 2q(p(lxl))-l _ 1 + 2p(ixi)+q(p(ixi))-p(ixi)-q(p(ixi))-l 

= 2q(p(lxl))-l _ ~-
2 

Thus the claim holds. 
Now define 

H( {x i)) = { 2s*(x, i)- t(x) if 1 ~ i_ ~ p(lxi), 
' 0 otherwise. 

Then by the above claim, for every x E E* and i, 1 ~ i ~ p(lxi), {x, i) E B if 
and only if H( {x, i)) 2: 0. It is easy to see that H is a GapP function. Hence 
BE PP. This proves the theorem. 0 Theorem 9.22 

Does PP have even stronger closure properties than that expressed as 
Theorem 9.22? The logical next step would be for Theorem 9.22 to extend 
to nonconstant k, perhaps k = O(logn). If k can be outright arbitrary then 
we are in effect asking whether PP is closed under polynomial-time Turing 
reductions, i.e., whether PP = pPP. This is an open question, and asserts 
that two classes in the "counting hierarchy" P, PP, pPP, ppPP, PppPP, ... 
are equal, i.e., pPP = PP (which is not known to imply other equalities 
in that hierarchy). Nonetheless, we show in the following section that the 
analogous hierarchy based on logspace does collapse. 

9.3 The Probabilistic Logspace Hierarchy Collapses 

9.3.1 GapL Functions and PL 

Recall that a language L belongs to PL if and only if there is a logarithmic 
space-bounded, polynomial time-bounded probabilistic Turing machine M 
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such that, for every x E E*, x E L if and only if the probability that M on 
input x accepts is at least ! . Recall also that #L is the class of all functions 
f such that for some logarithmic space-bounded, polynomial time-bounded 
nondeterministic 'lUring machine M it holds that f = #accM. We define the 
logarithmic-space version of GapP, namely, GapL. 

Definition 9.23 GapL = {#gapM IM is a logarithmic space-bounded, poly­
nomial time-bounded nondeterministic Turing machine}. 

Proposition 9.24 and Lemma 9.25 are analogous to Proposition 9.3 and 
Lemma 9.11, respectively. Note, however, that part 4 of Proposition 9.24 
deals with only polynomially many terms. The proofs of Proposition 9.24 
and Lemma 9.25 are quite similar to those of their polynomial-time versions, 
and thus are omitted. 

Proposition 9.24 

1. Let f : E* --+ Z be a logspace-computable, total function. Then f belongs 
to GapL. 

2. #L ~ GapL. 
3. Let f E GapL and let g : E* --+ E* be a logspace-computable function. 

Define h for all x E E* by 

h(x) = f(g(x)). 

Then hE GapL. 
4. Let f and g be GapL functions. Define h for all x E E* by 

h(x) = f(x) + g(x). 

Then h E GapL. In general, for each polynomial p and f E GapL, define 
h for all x E E* by 

h(x) = L f((x, i)). 
l~i~p(lxl) 

Then h E GapL. 
5. Let g and g be GapL functions. Define h for all x E E* by 

h(x) = f(x)g(x). 

Then h E GapL. In general, for each polynomial p and f E GapL, define 
h for all x E E* by 

h(x) = IT f((x, i)). 
l~i~p(lxl) 

Then h E GapL. 
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Lemma 9.25 For each L E PL and each polynomial r, there exist GapL 
functions g : E* -+ N and h : E* -+ N+ such that, for all x E E*, 

1 if XL(x) = b then 1 - 2-r(lxl) < g((x,b)) < 1 and 
• ' - h(x) - ' 

2. if XL(x) f. b, then 0 S g(~(~))) S 2-r(lxl). 

The PL hierarchy is defined under a restriction, called the Ruzzo-Simon­
Tompa relativization (the RST relativization), that stipulates that nondeter­
ministic space-bounded oracle Turing machines must behave deterministically 
during query generation. We call a logarithmic space-bounded, polynomial 
time-bounded machine working under that restriction an RSTNL machine. 

Definition 9.26 A language L belongs to PL relative to an oracle A if there 
exists an RSTNL machine M such that, for every x E E*, 

x E L <===> #gapMA(x) 2:0. 

For any class C, PLc ={PLAIA E C}. 

Definition 9.27 The PL hierarchy PLH is defined as follows, where rela­
tivization is interpreted in the sense of Definition 9.26. 

(9.7) 

This hierarchy collapses to PL. 

Theorem 9.28 PLH = PL. 

To prove the theorem it suffices to show that the second level of the hierar­
chy, PLPL, collapses to PL. The proof is reminiscent of that of Theorem 9.22, 
but more careful treatment is required because of the space bounds imposed 
on RSTNL machines. 

9.3.2 Oblivious Oracle NL Machines 

We say that an oracle Turing machine is oblivious if its queries are dependent 
solely on the input, not on the oracle. Let M be any RSTNL machine. We 
can turn M into an equivalent oblivious RSTNL machine as follows. 

Without loss of generality, we may assume that M has exactly one work 
tape. Let c be an integer constant such that, for every nonempty x E E*, 
M on x uses cells 1, ... , clog lxl on the work tape for storage. Here log lxl is 
shorthand for flog2 lxll, and we will use this notation throughout this section. 
Cells 0 and clog lxl + 1 hold special delimiters to caution M's finite control 
not to move the head out of that region; thus the position of M's head ranges 
from 0 to clog lxl + 1. We assume that the same treatment is applied to the 
input tape so that the range of the input-tape head is between 0 and lxl + 1. 
We also assume that the query tape of M is write only, that the cells of the 
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query tape are numbered 0, 1, ... , and that each time M enters the query 
state, the word written on the query tape is submitted to the oracle, the tape 
is blanked (by magic), the head is moved to cell 0, and then M enters the 
state qy ES if the word belongs to the oracle and the state qNo otherwise. 

Now we modify the behavior of M in three steps. First we require that 
there is a polynomial p such that, for all n ~ 0, p(n) > 1, and such that, for 
each x E E*, M on input x makes precisely p(Jxl) queries on every compu­
tation path. To meet this requirement let p(n) be a natural polynomial with 
a positive constant term such that M is p(n) time-bounded. Since p(n) is 
natural, for all n ~ 0, p(n) ~ p(O). Since the constant term of p(n) is posi­
tive, p(n) > 0. Thus, for all n ~ 0, p(n) > 0. We modify M so that it counts 
the number of queries that it has made so far and adds dummy queries (e.g., 
about the empty string) just before halting to make the number of queries 
equal to p(Jxl). Call this new machine M1. Since pis a polynomial, counting 
the number of queries requires only O(log Jxl) space. Thus M1 is an RSTNL 
machine. 

Next we require that M1 have a special state qgen such that M1 enters 
qgen exactly when it is about to begin generation of a query. To meet this 
requirement we modify M1 so that it keeps track of the position of the query 
tape head and, whenever the action it is about to take involves shifting of 
that head from cell 0 to 1 it puts off the move for one step and gets in and 
out of qgen· Call this new machine M2. Then M2 is an RSTNL machine. 

Finally we replace each query of M2 by a sequence of queries consisting of 
all potential queries of M2. For each natural number n ~ 1, let In be the set 
of all query IDs (instantaneous descriptions) of Min which the state is qgen· 

More precisely, In is the set of all triples (i,j,w) such that 0 ~ i ~ Jxl + 1, 
0 ~ j ~ clog JxJ + 1, and w E yc!oglxl, where Y is the set of all symbols 
(including "blank") that may appear on cells 1, ... , clog Jxl of M. A query 
ID (i,j,w) represents the situation in which M2 is in state qgen and its input­
tape head is positioned on cell i, its work-tape head is positioned on cell j, 
and the contents of the work tape on cells 1, ... , clog Jxl are w. Since M2 
generates its query deterministically, for every x E E*, all possible queries 
of M2 on x can be generated one after another by cycling through all IDs 
I E Ilxl and simulating M2 on x from I until M2 enters the query state. Such 
an enumeration requires only O(log n) tape cells. 

So, we now modify M2 to construct a new, two-tape machine N that 
behaves as follows on an input x E E*: N simulates M2 on x using tape 1 
while keeping track of M2's state q, input-tape head positiun i, work-tape 
head position j, and work-tape contents w on tape 2. When M2 accepts 
or rejects N does the same. Whenever M2 enters state qgen, N does the 
following: 

Step 1 N records the current values of i, j, and won tape 2. These values 
will be referred to as into imem, Jmem, and Wmem, respectively. 
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Step 2 N continues the simulation until M2 enters the query state, but N 
avoids writing on the query tape by keeping the head on cell 0. 

Step 3 Instead of immediately entering the query state, N suspends the 
simulation of M2 and makes all the potential queries of M2 on input x. 
This is carried out by simulating M2 on input x from each query ID in 
Ilxl: For each i, 0 ~ i ~ lxl + 1, each j, 0 ~ j ~ clog lxl + 1, and each 
WE ycioglxl, 
(a) N simulates M2 on input x from ID (i,j, w) until M2 enters the query 

state to generate the query string corresponding to that ID; and 
(b) if i = imem 1 j = Jmem 1 and w = Wmem 1 then N records the answer 

from the oracle into a variable ans. 
Step 4 N returns to the simulation of M2 on x that had been suspended 

at the beginning of Step 3 with ans as the oracle answer. 

Note that in Step 3b there is always exactly one combination of i, j, and w 
that passes the three equality tests, and that generates the same query that 
M2 would have made during the simulation in Step 2. Hence the value of ans 
is precisely the answer that M2 would have obtained. As there is no extra 
nondeterministic move that N makes, the only difference between M2 and 
N is that N inflates its query sequence. Thus, for every x E E* and every 
oracle A, #gapNA(x) = #gapMA(x). Define m(n) = p(n)IIInll· Then m is 
bounded by some polynomial. For every x E E*, the number of queries that 
N on x makes is precisely m(lxl) and the query sequence is the same on all 
computation paths. Thus, N is an oblivious RSTNL machine. 

9.3.3 Collapsing the PL Hierarchy 

Theorem 9.28 follows immediately from the following claim. 

Proposition 9.29 PLPL =PL. 

Proof Let L E PLPL via an oblivious oracle machine N and an oracle 
A E PL. As we did in the proof of Theorem 9.18, we can assume that N's 
query strings are longer than its input. Let p be a polynomial bounding the 
runtime of N. Let q be a natural polynomial such that, for every x E E*, 

• #accNA(x) ~ 2q(lxD, and 
• x E L {::::::=:} #acCNA(x) ~ 2q(lxi)-l. 

Let m be a polynomially bounde.d function, as defined above, that maps each 
integer n to the number of queries that N makes on each input of length n. 
Then m(n) ~ p(n) for all n. For each x E E* and i, 1 ~ i ~ m(lxl), let Yx,i 
denote the ith query string of N on x. Pick a natural polynomial r such that 
r(n) ~ p(n) + q(n). For each x E E* and w, lwl = m(lxl), let a(x, w) denote 
the number of accepting computation paths that M on input x would have 
if for every i, 1 ~ i ~ m(lxl), the oracle answer to the ith query of N on 
input x is taken to be affirmative if the ith bit of w is a 1 and otherwise is 
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taken to be negative. Then, for every x E E*, a(x,r~(x)) = #accNA(x), and 
for every wE r;m(l:z:D, a(x,r~(x)) ~ 2q{l:z:D. Since N is an oblivious RSTNL 
machine we can view it as a query generator, so we may use r~(x) to denote 
the answer sequence that the oracle A provides toN on input x. 

By Lemma 9.25, there exist nonnegative function g E GapL and a strictly 
positive function hE GapL such that, for all x E E* and bE {0, 1}, 

• 1 > g(((,b)) > 1 - Tr{l:z:J) if XA(x) = b and 
- h~ - ' 

• 0 < ~ < 2-r(l:z:J) otherwise. - h"(X)-

Define, for each x E E*, 

s(x) = L a(x, w) II 
lwl=m(l:z:l) l~i~m{l:z:J) 

and 
t(x) = II h(Y:z:,i)· 

19~m{l:z:J) 

We claim that, for every x E E*, 

x E L <===? s(x) > 2q(l:z:J)-l - ~ 
t(x)- 4' 

To prove the claim let X E E*. First suppose X E L. For w = r~. the fraction 

( ) _ f1l<i<m(l:z:l) g( (Y:z:,i, wi)) 
K-X,W- t(x) 

is at least 
1- m(!xi)T min{r(IY.,,tl), ... , r(IY.,,m<I.,IJI)}. 

Because m is bounded by p, because r is a natural polynomial, and because 
the machine N is a length-increasing query generator, the above amount is 
at least 

1 _ P(!xi)2-P(I:z:l)-q(l:z:J)-l > 1 _ 2-q(l:z:l)-1. 

Thus the fraction ~ is at least 

Next suppose that x (j. L. For w = r~, K-(x, w) ~ 1 and a(x, w) = 
#accNA(x) ~ 2q{l:z:J)- 1. For other w of length m(!xl), a(x,w) < 2q(l:z:l) 
and 

K-(x, w) ~ 2- min{r(IY.,,l 1), ... , r(IY.,,m(l.,lll)}. 

Because m is bounded by p, because r is a natural polynomial, and be­
cause the machine N is a length-increasing query generator, this is at most 
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TP(I:r:l)-q(l:r:l)-l. Since the number of w, lwl = m(lxl), such that w =f r~(x) 
is 2m(l:r:l) - 1 < 2P(I:r:l), Itxt is less than 

2q(l:r:l)-l -1 + 2p(l:r:l)2-p(l:r:l)-q(l:r:l)-l 

= 2q(l:r:l)-l - 1 + 2-q(l:r:l)-1 

< 2q(l:r:l)-l- ~-
- 2 

Thus the claim holds. 
Now define 

d(x) = 4s(x)- (2q(l:r:l)+l -1)t(x). 

Then, for every x E E*, x E L if and only if d(x) ~ 0. We claim that 
d E GapL. Proving this may seem easy at first glance, for we have already 
done something similar for GapP to prove Theorem 9.22. However, the ma­
chines here are logarithmic space-bounded and, for all x E E*, s(x) is defined 
as a sum of 2m(l:r:l) terms that are indexed by w of length m(lxl). So, for a 
nondeterministic machine to produce s as its gap function, it may seem nec­
essary that the machine has space to store w. This is obviously impossible 
here, since the machines need to be logarithmic space-bounded. Hence we 
need a trick. 

By Proposition 9.24 the second term of d is in GapL. We thus concentrate 
on proving that s E GapL. Let G be a logarithmic space-bounded machine 
such that g = #gap0 . For every x E E*, s(x) can be written as 

L a(x,w) 
lwl=m(l:r:l) 

Define T to be the machine that, on input x E E*, simulates N on x as follows: 
For each i, 1 ::=; i ::=; p(lxl), when N enters the query state for the ith time, 
instead of making the query, it guesses a bit wi, simulates G on (Y:r:,i, wi), 
and returns to the simulation of N with Wi as the oracle answer. During the 
entire simulation the machine N counts using a variable R the number of i, 
1 ::=; i ::=; p(lxl), such that G rejected. At the end of the simulation, if N has 
accepted then T accepts if and only if R is even; on the other hand, if N has 
rejected then T guesses one bit b and accepts if and only if b = 0. 

Let x be fixed. For simplicity, let m denote m(lxl) and for each i, 1 ::=; i ::=; 
m, let Yi denote Yx,i· Each computation path 7r ofT on x is divided into the 
components 

Here w corresponds to the bits w1 , ••• , Wm, 7ro corresponds to the nondeter­
ministic moves of N on input x with w as the oracle answers, 7ri corresponds 
to the nondeterministic moves of G on input (Yi, wi) for all i, 1 ::=; i ::; m, 
and b corresponds to the guess b at the end in the case when N's simulation 
is rejecting. Write E(1r) = 1 if N has accepted along the path 1r ofT and 
E(1r) = 0 otherwise. For each i, 1 ::; i ::=; m, write Fi(7r) = 1 if G on (yi, wi) 
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accepts along the path 1r ofT and Fi(7r) = -1 otherwise, where the value of 
wi is the ith bit of the w-component of 7r. Since the process of guessing the 
bit b and accepting if and only if b = 1 has the effect of canceling the contri­
bution to the gap ofT of the paths passing through the process, #gapT(x) 
is the sum of 

E(~) ( c{<IF<(•)~)II • - 1) - c{<IF•(•l~lll;. odd I)) , 
where 1r ranges over all computation paths ofT on input x. Since the product 
of terms chosen from {+1,-1} is +1 if the number of -1's appearing in the 
product is even and is -1 otherwise, the second term in the above is equal 
to 

II Fi(7r), 
19~m 

and so #gapT(x) equals 

L E(7r) II Fi(7r). 
11' l~i~m 

For each u E Em, let Q(u) denote the set of all computation paths ofT on 
input x whose w-component is equal to u. Then #gapT(x) can be written as 

lwl=m 11'EQ(w) 

Since the paths for N and those for the simulation of G are pairwise inde­
pendent for each fixed w, this is the same as 

Thus s(x) = #gapT(x). It is easy to see that Tis logarithmic space-bounded 
and polynomial time-bounded. Hence T witnesses that s E GapP. D 

9.4 OPEN ISSUE: Is PP Closed Under 
Polynomial-Time Turing Reductions? 

Is PP closed under polynomial-time Turing reductions? The question is sub­
tle. By Toda's Theorem (Theorem 4.12), PH~ pPP. Also, EBP is included in 
pPP. If PP is closed under Turing reductions, then PP includes both PH and 
EBP. However, it is known that there exist oracles relative to which PH~ PP 
and oracles relative to which EBP ~ PP. These results indicate that rela­
tivizable proof techniques, such as machine simulations, cannot settle the 
PP = pPP question. 
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9.5 Bibliographic Notes 

Gill [Gil77] and Simon [Sim75] independently introduced the class PP (Si­
mon used different notation for the class, though). The definition of Gill is 
via probabilistic Turing machines, while Simon's definition employs nondeter­
ministic Turing machines. They both observed that the class is closed under 
complementation (Proposition 9.5). They left open the question of whether 
the class is closed under union. Russo [Rus85] and Beigel, Hemachandra, and 
Wechsung [BHW91] made progress on the problem by showing the closure 
of the class under symmetric difference and under polynomial-time parity re­
ductions, respectively. Beigel, Reingold, and Spielman [BRS95] affirmatively 
resolved the problem (Theorem 9.15). 

The approximation scheme (Definition 9.12) that Beigel, Reingold, and 
Spielman used in the proof is based on a formula of Newman [New64]. Pa­
turi and Saks [PS94] applied Newman's Formula to show approximations of 
threshold circuits by parity circuits. 

In addition to the closure property under intersection, Beigel, Reingold, 
and Spielman shoyved a number of closure properties of PP, including clo­
sure under polynomial-time O(log n) Turing reductions, but they left open 
the question of whether the class is closed under ~it-reductions. Fortnow 
and Reingold [FR96] gave an affirmative answer to the question by prov­
ing Theorem 9.18. They also proved Theorem 9.22. Later, using a different 
technique, Beigel and Fu [BFOO] showed that PP and PL are closed under 
P-uniform NC1-reductions and under logspace-uniform NC1-reductions, re­
spectively. Caussinus et al. [CMTV98] use Newman's formula to prove that 
the class probabilistic-NC1 is closed under intersection. 

Gupta [Gup95] and Fenner, Fortnow, and Kurtz [FFK94] were the first to 
formulate the concept of gap functions. Fenner, Fortnow, and Kurtz defined 
the class GapP, and Proposition 9.3 is from their paper. 

The class PL is due to Gill [Gil77], but his definition does not require 
that the probabilistic machines be polynomial time-bounded. Jung [Jun85] 
proved that the two versions are identical. Allender and Ogihara [A096] 
show that this equality holds with respect to any oracle under the RST 
restriction. The RST restriction first appears in a paper by Ruzzo, Simon, 
and Tompa [RST84]. The collapse of the PL hierarchy (Theorem 9.28) is due 
to Ogihara [Ogi98]. 

The class C=P is due to Simon [Sim75], who first proved (using different 
notation) C=P ~ PP. Wagner [Wag86] rediscovered this class, introduced the 
name C=P, and proved its closure under ~~tcreductions. A paper by Beigel, 
Chang, and Ogiwara [BC093] presents the folklore "squaring technique" 
(see Proposition 9.8). This paper also proves Theorem 9.10. Gundermann, 
Nasser, and Wechsung [GNW90] show that C=P is closed under polynomial­
time positive truth-table reductions. Ogiwara [Ogi94b] shows that C=P and 
coC=P are both closed (downward) under polynomial-time positive Turing 
reductions. Ogihara [Ogi95a] shows that its closure under ~fcreductions, its 



9.5 Bibliographic Notes 261 

closure under P-uniform NC1-reductions, and its closure under P-uniform 
AC0 -reductions are all equal. 

Allender and Ogihara [A096] define C=L, the logarithmic-space version 
of C=P, and prove a number of its closure properties. Allender, Beals, and 
Ogihara [AB099] show that the C=L hierarchy collapses. 





A. A Rogues' Gallery of Complexity Classes 

The form is the meaning, and indeed the classic Greek mind, with 
an integrity of perception lost by later cultures which separated the 

two, firmly identified them. 
-Vincent Scully, The Earth, the Temple, and the Gods [Scu62] 

To the computer scientist, structure is meaning. Seeking to understand na­
ture's diverse problems with man's humble resources, we simplify our task 
by grouping similarly structured problems. The resulting complexity classes, 
such as P, NP, and PSPACE, are simply families of problems that can be 
solved with a certain underlying computational power. The range of interest­
ing computational powers is broad-deterministic, nondeterministic, proba­
bilistic, unique, table lookup, etc.-and a suitably rich palette has been de­
veloped to reflect these powers-P, NP, PP, UP, Pjpoly, etc. These classes 
can themselves be studied in terms of their internal structure and behavior. 
This chapter briefly reviews the definitions, meanings, and histories of the 
central complexity classes covered in this book. 

The "selected facts and theorems" lists in the tables that follow when 
possible give references for their facts and theorems. However, in those cases 
where the facts are presented in this book, the citation in the right margin is 
merely to the chapter that presents the result. This should not be interpreted 
as in any way claiming that such results are due to this book. Rather, the 
Bibliographic Notes section of the appropriate chapter should be consulted 
to learn the history and source of the result. 

Complexity theory is so broad and rich that in an appendix of this size it 
would be impossible to define or collect the field's most important theorems. 
Thus, the choice of theorems here is eclectic, with the goal simply of giv­
ing a resource pointing towards some of the results known for these classes. 
However, to making the theorem lists below more useful as starting points 
into the original literature, we have in some cases included theorems whose 
statements involve concepts or classes are not discussed or defined in this 
book. 
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A.l P: Determinism 

P = UDTIME[nk] 
k 

= { L I L is accepted by a polynomial-time deterministic 

'lUring machine}. 

P, deterministic polynomial time, is the class that is widely thought to 
embody the power of reasonable computation. In the 1930s, Godel, Church, 
'lUring, and Post [God31,Chu36,Thr36,Chu41,Pos46,Dav58] asked what could 
be effectively solved by computing machines-that is, what problems are 
recursive? In fact, these founding figures went beyond that. In a rediscovered 
1956 letter to von Neumann, Godel focused not only on the importance of 
the number of steps a 'lUring machine may need to perform a certain task 
(deciding whether a formula has a proof of a given length), but also used two 
particular polynomial bounds (linear and quadratic) as examples of efficient 
computation, in contrast with exhaustive search (see [Har89,Sip92] for more 
on this letter). Von Neumann was dying at the time, and it does not seem 
that he or Godel ever followed up on the issues that Godel had raised. 

Starting in the 1960s, computer scientists, unaware of Godel's letter and 
its musings in this direction, began to ask which problems can be efficiently 
solved by computers. The theory of P and NP, and indeed complexity theory 
itself, sprang from this desire to understand the limits of feasible computation. 
The notion that polynomial time, Uk DTIME[nk], is the right class to repre­
sent feasible computation was suggested by Cobham and Edmonds [Cob64, 
Edm65] (who, again, were unaware of Godel's letter). Note that polynomi­
als grow slowly and are closed under composition (thus allowing subroutine 
calls in the sense that a polynomial-time machine making subroutine calls to 
polynomial-time subroutines yields an overall polynomial-time procedure). 
These features support the claim that P is a reasonable resource bound. The 
view that p loosely characterizes "feasibility" is widely accerted. 

One might argue that an algorithm that runs for 10101 n 10100 steps on 
inputs of size n is not practical. Problems are known that provably require 
high-degree polynomial algorithms (artificial problems must exist via the de­
terministic time hierarchy theorem [HS65] [HU79, Theorem 12.9], and some­
what artificial cat-and-mouse games and pebbling problems [KAI79,AIK84]), 
and natural problems are known that may require high-degree polynomial 
algorithms (permutation group membership from generators [Hof82,FHL80], 
robotics configuration space problems [SS83]). 1 

1 Of course, many natural problems are known to have superpolynomial lower 
bounds. For example, Meyer and Stockmeyer [MS72] and Fischer and Rabin 
[FR74] show, respectively, problems that require exponential space and double 
exponential nondeterministic time. The problems listed here are natural, fun­
damental polynomial-time problems that may require high-degree polynomial 
algorithms. 



P - Polynomial Time 

Power 
Feasible computation. 

Definition 
P = Uk DTIME[nk]. 

Background 

A.l P: Determinism 265 

P was described as embodying the power of feasible computation by Cob­
ham [Cob64] and Edmonds [Edm65]. The field of design and analysis of algo­
rithms attempts to place as many problems as possible in P. 

Complete Languages 
P has countless well-known complete languages under ~:;, reductions (see 
the list compiled by Greenlaw, Hoover, and Ruzzo [GHR95]). Typical P­
complete problems include determining whether a given context-free grammar 
is empty [JL76] and determining whether a given output bit of a given circuit 
on a given input is on [Lad75a]. Kasai, Adachi, and Iwata [KAI79] have shown 
combinatorial games providing additional natural complete problems for P. 

Sample Problem 
In a fixed, reasonable proof system, asking if x is a proof of T is a polynomial­
time question. In particular, in polynomial time we can check whether assign­
ment x satisfies boolean formula F. 

Selected Facts and Theorems 
1. For each k, there are relatively natural problems, having to do with games 

of pursuit and evasion, whose deterministic time requirements are O(nk). 
[AIK84] 

2. P = L <==> P has sparse hard sets with respect to logspace many-one 
reductions (or even logspace bounded-truth-table reductions). 

([CS99,vM96], see also [Ogi96b,CNS96]) 
3. All P sets are rankable (i.e., have a polynomial-time computable function 

that, given any string x, computes the number of strings in the set that 
are lexicographically less than or equal to x) <==> P = P #P. 

([GS91], see also [HR90]) 
4. All infinite P sets are compressible (i.e., each P set A has a polynomial-time 

computable, one-to-one function f such that f(A) = E*) if E = NENP. 
([GHK92], see also [GH96]) 

5. If every dense P set has at most a sparse subset of Kolmogorov-easy strings, 
then all polynomial-time pseudorandom generators are insecure. 

[ All89c,HH96] 

Fig. A.l P 
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Nonetheless, there is a widely held feeling that fundamental natural prob­
lems belonging to P will have polynomial-time algorithms of low degree. The 
field of design and analysis of algorithms attempts to prove that key problems 
are in P, and then to show that they have algorithms of low time complexity 
(there exist many books on the analysis of algorithms, e.g., [AHU74,CLRS01, 
Koz92]). 

A.2 NP: Nondeterminism 

NP = UNTIME[nk] 
k 

Two roads diverged in a yellow wood, 
And sorry I could not travel both 

And be one traveler ... 
-Robert Frost, The Road Not Taken 

= { L I L is accepted by a polynomial-time nondeterministic 

'lUring machine}. 

P contains the problems we can solve. NP symbolizes the problems man 
needs to solve to efficiently structure and optimize his world. The P=NP 
question asks whether the computers built by man's ingenuity have the power 
to solve the problems formed by nature's complexity. 

NP is the class of languages accepted by nondeterministic polynomial­
time Turing machines [HU79]. Intuitively, a nondeterministic machine is one 
that is allowed to make guesses during its computation, and always guesses 
correctly. Equivalently, a language L is in NP if there exists a polynomial-time 
computable relation R(·, ·) and a polynomial q such that 

L ={xI (3y: IYI ~ q(lxl)) [R(x,y)]}. 

In the early 1970s, the work of Cook and Karp [Coo71,Kar72] showed 
that NP has natural complete, or "hardest," languages-languages to which 
every other NP problem can be polynomial-time many-one reduced. These 
problems stand or fall together: If one NP-complete problem is in P then all 
NP-complete problems are in P. During the past quarter century, hundreds of 
problems from all areas of mathematics, computer science, and operations re­
search have been shown NP-complete. If P=NP then these and many crucial 
optimization problems can be solved in polynomial time. And, just as impor­
tantly, if P =J. NP then no NP-complete problem can be solved in polynomial 
time. 

However, the implications of P = NP are even more profound. An NP ma­
chine can answer the question, in a fixed formal system, "Does this theorem 
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Power 
Guessing. Nondeterminism. 

Definition 
NP = Uk NTIME[nk]. 

Alternate Definition 
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A language L is in NP if there exists a polynomial q and a polynomial-time 
predicate R such that, for each x, 

x E L -¢==} (3y: IYI ~ q(lxl)) [R(x,y)]. 

Background 
In the early 1970s, Cook [Coo71] and Levin [Lev75], followed by a key paper 
by Karp [Kar72], initiated the study of NP and its complete problems. Many 
NP-complete problems are now known, and the study of NP's structure is a 
unifying theme of complexity theory. 

Complete Problems 
NP has hundreds of ~~-complete (polynomial-time many-one complete) prob­
lems [GJ79]. 

The most studied NP-complete problem is satisfiability. SAT = { F I boolean 
formula F is satisfiable} was shown to be Thring-complete for NP by Cook. 
Karp showed that SAT and many other problems are ~~-complete for NP. 

There are a few problems that are known to be in NP, yet have been neither 
proven to be NP-complete nor proven to be in P. Examples of such problems 
are graph isomorphism (i.e., {( G, H) I G and Hare isomorphic}) and primality. 

Fig. A.2 NP-part I 

have a proof (of reasonable size)?" Thus NP embodies the power of guess­
ing, or creating, mathematical proofs. P embodies the mechanical process 
of verifying whether a proof is correct. Asking whether P =f:. NP is another 
way of asking whether the creative process in mathematics rises above the 
complexity of mere mechanical verification. Since men are likely to create 
mathematical proof structures only of small size, asking whether P = NP is 
one way of asking whether machines can usurp man's role in mathematical 
discovery. Breakthroughs during the 1990s in the theory of probabilistically 
checkable proofs have given alternative new insights into the power of NP and 
the nonapproximability of NP optimization problems (see, for example, the 
treatments in [Aro94,Sud92,ACG+99]). NPNP is the most extensively stud­
ied computational complexity class, and many insights into NP's structure 
have been found during the past decade. Nonetheless, our understanding of 
NP is fragmented, incomplete, and unsatisfying. 
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NP - Nondeterministic Polynomial Time 

Selected Facts and Theorems 
1. P ~ NP. 
2. The following are equivalent: 

a) P=NP. 
b) Some NP-complete problem is in P. 
c) All NP-complete problems are in P. 

3. [Cook's Theorem] Let N; be a standard enumeration of NPTMs (non­
deterministic polynomial-time Turing machines). There is a polynomial­
time computable function !cooK, mapping from machine-string pairs to 
boolean formulas, such that 

a) ('v'i)('v'x)[N;(x) accepts ¢=:::? fcooK(N;,x) is satisfiable], 
b) (3 polynomial-time computable function gcooK)('v'i)('v'x) 

[gcooK(fcooK(N;,x)) = (N;,x}], and 
c) (3hcooK E FP) ('v'i) ('v'x) ('v'a) (if a is a satisfying assignment of 

fcooK(N;, x), then hcooK(N;, x, a) outputs an accepting computa­
tion path of N;(x)]. 

In particular, SAT is ~~-complete for NP. (Coo71,Lev75] 
4. NP is closed under union and intersection. 
5. NP is closed downward under positive Turing reductions. 

((Sel82b], see also (HJ91]) 
6. P =/; NP ==> NP - P contains sets that are not NP-complete. (Lad75b] 
7. If NP has sparse ::;~-hard sets, or even sparse ~~tt-hard sets then P = NP. 

(see Chap. 1) 
8. If NP has sparse ~~-complete sets, then the polynomial hierarchy collapses 

to 8~. (see Chap. 1) 
9. If NP has sparse ~~tt-hard sets, then RP = NP and P =UP. 

(see the Bibliographic Notes of Chap. 1) 
10. If NP has sparse ~~-hard sets, the polynomial hierarchy collapses to NPNP 

(and even to zppNP, and even to S~). 
(see the text and Bibliographic Notes of Chap. 1) 

11. NP- P contains sparse sets if and only if E =/; NE. (see Chap. 1) 
12. Many-one one-way functions exist if and only if P =/; NP. (see Chap. 2) 
13. Many-one one-way functions exist if and only if strongly noninvertible, 

total, commutative, associative, 2-ary, many-one one-way functions exist. 
(see Chap. 2) 

14. ('v' L E NP)[L~randomized USAT]. (see Chap. 4) 

Fig. A.3 NP-part II 

A.3 Oracles and Relativized Worlds 

All is for the best in the best of all possible words. 
-Voltaire, Candide 

The seminal paper on oracles was by Baker, Gill, and Solovay [BGS75]. Since 
then oracles have been discussed extensively in the literature (see, just as 
a few examples, the seminal paper by Bennett and Gill on random ora­
cles [BG81], the insightful leaf-language/oracle connection work of Bovet, 
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NP- Nondeterministic Polynomial Time 

Selected Facts and Theorems (Continued) 
15. (3 A)[PA = NPA]. (3 B)(P8 ~ NP8 ]. Indeed, with probability one rela-

tive to a random oracle, P and NP differ. (BGS75,BG81] 
16. All paddable NP-complete sets are p-isomorphic to SAT. [BH77,MY85] 
17. With probability one relative to a random oracle, there are NP-complete 

sets that are not P-isomorphic. [KMR95] 
18. There is a relativized world in which all NP-complete sets are P-

isomorphic. [FFK96] 
19. If P = NP and Sis sparse then 

where K[·, ·]represents time-bounded Kolmogorov complexity. (HH88b] 
20. If the graph isomorphism problem is NP-complete, then the polynomial 

hierarchy collapses. (GS89,BHZ87,GMW91,Sch88] 
21. If P ~ NP n coNP then there is a set S so (1) S E P and S ~ SAT, 

and (2) no P machine can find solutions for all formulas in 8-that is, for 
any polynomial-time computable function g, there will be a formula f E S 
such that g(f) is not a satisfying assignment of f. (BD76] 

22. For each k > 0, Rt-T(NP) = R~k-l-tt(NP). (Bei91a] 
23. NP n coNP has ~~-complete sets if and only if NP n coNP has ~~-

complete sets. (Gur83,HI85] 
24. SAT is iteratively enumerable, i.e., there is an honest, polynomial-time 

function f and a string xo such that SAT= {xo, f(xo), f(f(xo)), .. . }. 
(HHSY91] 

25. e~ = NC1(NP) (Got95,0gi95a] 
26. NP = PCP(O(logn),0(1)), i.e., NP is the class of languages L for which 

there exists a probabilistic polynomial-time oracle protocol V that uses 
O(log n) coin tosses, makes 0(1) queries, and, for all x E E*, satisfies the 
following two conditions: 
• if x E L, then there is an oracle A relative to which V on input x accepts 

with probability 1, 
• if x ~ L, then, for every oracle A, V on input x relative to A accepts 

with probability less than ~- (ALM+98] 

Fig. A.4 NP-part III 

Crescenzi, and Silvestri [BCS95], and Vereshchagin [Ver94], and the open­
questions paper by Hemaspaandra, Ramachandran, and Zimand [HRZ95]). 
We may think of an oracle B as a unit-cost subroutine for the set B. For 
example, P8 (NP8 ) is the class of languages computable by deterministic 
(nondeterministic) polynomial-time Turing machines given unit-cost subrou­
tines (i.e., subroutines that return in one time unit) that test membership 
in B. We may think of such a subroutine as changing the ground rules of 
computation under which the machines operate. 

We can also define what it means to relativize a complexity class not with 
a single set but with another complexity class: 
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For example, NPNP = UAENP NPA = NPSAT. We may think of cv as the 
class of languages recognized by C machines given free access to the power of 
some member of V. 

Though the issue is controversial, many have argued that oracles are a 
useful tool in understanding possibilities for complexity classes (see, e.g., 
Allender's and Fortnow's eloquent discussions [All90,For94]). Certainly, if we 
show that some complexity result T holds in a relativized world (that is, 
with some oracle B), we know that relativizable proof techniques cannot 
disprove T. This is because a relativizable disproof ofT would disprove T 
in all relativized worlds, but we know that Tis true in the world relativized 
by B. 

Many crucial results in complexity theory can be relativized in conflicting 
ways. For example, there are oracles A and B so that pA = NPA yet pB =/:. 
NPB [BGS75]. Since most known mathematical proof techniques seem to 
relativize, such techniques cannot resolve such central questions as P = NP. 
However, starting around 1990 (but see Hartmanis et al. [HCC+92] for a 
discussion suggesting that nonrelativizable techniques have a much longer 
history than is commonly realized), the field has witnessed the emergence of 
some quite nontrivial nonrelativizable proof techniques (for example, those 
of [LFKN92,Sha92]). Chap. 6 is devoted to the discussion of a key technique of 
this sort. The breadth of the applicability of these techniques to complexity­
theoretic issues is an active research topic [Har85,All90,HCRR90,HCC+92, 
For94]. 

Though oracles exist to certify many unlikely situations--e.g., there is an 
oracle A for which pA = NPA = PSPACEA, we should not think of oracles 
as telling us what is the case in the world of computation. Rather, we should 
think of oracles as suggesting the limitations of relativizable proof techniques. 

A.4 The Polynomial Hierarchy and Polynomial Space: 
The Power of Quantifiers 

A.4.1 The Polynomial Hierarchy 

A deck of cards was built like the purest of hierarchies, with every 
card a master to those below it and a lackey to those above it. 

-Ely Culbertson, Total Peace 

The polynomial hierarchy was defined by Meyer and Stockmeyer [MS72, 
Sto76] as a time-bounded analogue of the Kleene hierarchy (also known as 
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PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy 
and Polynomial Space 

Power 
Alternating polynomially bounded existential and universal quantifiers. 

Definition 

El; =II!; P. 

8f+t = R6(togn)-T(Ef}, i 2: 0. 
P E~ 

Lli+! = p • ' i 2: 0. 

~p N E~ 
L.oi+! = p • ' i 2: 0. 

IIf+t = coEf+t = {L I L E Ef+1 }, i 2: 0. 

PH= UEf. 

·PSPACE = UDSPACE[nk]. 
k 

Alternate Definition 
L is in Ef if there is a polynomial q and a polynomial-time predicate R such 
that, for all x it holds that 

x E L {=} (3w, : lwtl $ q(lxl)) (Vw2 : lw2l $ q(lxl)) · · · 
(QiWi: lw•l $q(lxi))[R(x,w,,···,w•)], 

where Qi is 3 if i is odd and V if i is even. 

Background 
The polynomial hierarchy was defined by Meyer and Stockmeyer [MS72,Sto76]. 
Researchers later introduced refined, intermediate levels, namely, the 81levels 
(see [PZ83,Wag90]). 

Fig. A.5 The polynomial hierarchy and PSPACE-part I 

the arithmetical hierarchy) from recursive function theory [Rog67]. The defi­
nitions of the polynomial hierarchy appear in Fig. A.5. In particular, Eb = P, 
Ei = NP, IIi = coNP, 8~ = R~(logn)-T(NP), .6.~ = pNP, and E~ = NpNP. 

The levels of the polynomial hierarchy have natural descriptions in terms 
both of Turing machines and logical formulas. Just as the Kleene hierarchy's 
levels are characterized by quantifier alternation, so also are the levels of 
the polynomial hierarchy characterized by alternating polynomially bounded 
quantifiers [Sto76,Wra76]. For example, 

NP = { L I (3k) (3 polynomial-time predicate P) 

[x E L {=:::} (3y : IYI .$ lxlk) [P(x, y)]]}, and 

II~ = { L I (3k) (3 polynomial-time predicate P) 

[x E L {=:::} (Vy: IYI .$ lxlk) (3z : lzl .$ lxlk) [P(x, y, z)]]}. 
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PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy 
and Polynomial Space 

Complete Languages 
Canonical complete languages exist for each level of the hierarchy ([Wra76], 
and the techniques of [Har78]) and for PSPACE [Sto76]. 

NP has many well-known natural complete problems (see [GJ79]). PSPACE 
also has many natural complete problems. For example, Fraenkel et 
al. [FGJ+78] showed that generalized checkers is PSPACE-complete, and Iwata 
and Kasai [IK94] showed that generalized Othello is PSPACE-complete. 

I:~ also has some interesting, natural complete problems. Some date as far 
back as the 1970's, when the early work of Meyer and Stockmeyer showed 
that Integer Expression lnequivalence is :E~-complete. Other :E~-completeness 
results include Huynh's [Huy84] work on inequivalence of certain types of 
context-free grammars, Schaefer's [SchOlb] work on Ramsey-type problems, 
and Umana's [Uma98] work on boolean formula minimization problems. I:~ 
has natural complete problems, for example, Schaefer's [Sch99,Sch00] work on 
the VC-dimension. Schaefer has written a nice compendium of natural complete 
problems for I:~, II~, I:~, II~, etc. [SchOla]. 

Papadimitriou [Pap84] showed that natural problems are complete for ~~, 
including Unique Optimal Traveling Salesperson. Hemaspaandra, Hemaspaan­
dra, and Rothe [HHR97] showed that it is 8~-complete. to check who the 
winner is in the election system developed in 1876 by Lewis Carroll. 

Problems asking when greedy algorithms perform well are also known to be 8~­
complete [HR98]. Wagner[Wag87] provided a valuable framework for proving 
8~-completeness results. 

Fig. A.6 The polynomial hierarchy and PSPACE-part II 

This characterization by alternating quantifiers is handy. When asked the 
complexity of MINIMAL-FORMULAS = {F I F is a boolean formula 
and no equivalent boolean formula is shorter than F}, we can reflect for 
a moment on the underlying quantifier structure and quickly note that 
MINIMAL-FORMULAS E II~. That is, MINIMAL-FORMULAS is the set of 
all F such that for every shorter formula F' there exists a variable assignment 
on which F and F' differ. 

The work of Chandra, Kozen, and Stockmeyer [CKS81] develops machines 
that accept the languages at each level of the polynomial hierarchy. Known 
as alternating Turing machines, the action of these machines alternates be­
tween existential and universal blocks, and mirrors the underlying quantifier 
structure of the classes. 

We say that the polynomial hierarchy collapses if, for some k, E~ = II~ 
(thus E~ = PH). A crucial open question is, does the polynomial hierarchy 
collapse? That is, is some fixed number of quantifiers powerful enough to 
simulate all fixed arrangements of quantifiers? Oracles are known for which 
the hierarchy collapses [BGS75] and for which the hierarchy does not col-
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PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy 
and Polynomial Space 

Selected Facts and Theorems 
1. For k ~ 0, I:~ U II~ ~ 8~+ 1 ~ 6.~+ 1 ~ I:~+ 1 n II~+ 1 . 
2. PH ~ PSPACE. 
3. PH = PSPACE ===} PH collapses. 
4. For any k?. 1, I:~= II~ ===} I:~ =PH (Downward Separation). [Sto76] 
5. For any k?. 0, I:~ = I:~+ 1 ===} I:~ =PH (Downward Separation). [Sto76] 
6. pNP n coNP = NP n coNP. NpNP n coNP = NP. 

7. 8~ = Rft(NP). 
([Sel79,Sch83], see also [Sel74,Lon78,Sel78]) 

[Hem89] 
8. (3A)[PA = PSPACEA]. 
9. EBPPH c BPPEllP c ppEllP c p#P[l] c p#P. 

10. ppPH ~ p#P. - - -

11. IP = PSPACE. 
12. (3 A)[PA 'I NPA 'I NPNPA 'I ... 'I PSPACEA]. 
13. The following are equivalent: 

a) PH collapses. 
b) There is a sparse set S such that PHs collapses. 

[BGS75] 
(see Chap. 4) 
(see Chap. 4) 
(see Chap. 6) 

(see Chap. 8) 

c) For all sparse sets S, PHs collapses. ([BBS86], see also [LS86]) 
14. The following are equivalent: 

a) PH= PSPACE. 
b) There is a sparse set S such that PHs = PSP ACEs. 
c) For all sparse sets S, PHs= PSPACEs. ([BBS86], see also [LS86]) 

15. ProbA (PHA ~ PSPACEA) = 1. ([Cai89], see also [Bab87] 
16. PSPACE = NPSPACE = Probabilistic-PSPACE. [Sav70,Sim77b] 
17. For each j there is an oracle A such that (I:})A 'I (I:}+ 1)A = PSPACEA. 

[Ko89] 
18. There is an oracle relative to which, for all j ~ 2, 8} ~ 6.} ~ I:}. 

(see the text and Bibliographic Notes of Chap. 8) 
19. pNPSPARSE n NP = pNP. (KS851 

NPNP 8 NPSEBSAT 
20. If Sis sparse set, then P = P . [Sch86a] 
21. If the polynomial hierarchy collapses with probability one relative to a 

random oracle, then the polynomial hierarchy collapses. [Boo94] 
22. E 'I PSPACE. [Boo74a] 
23. For each k > 1 it holds that: Rf-T(I:n = R~-T(I:n ===} I:~ n II~ = PH. 

([BF99], see also [HHH99a] 

Open Problems 
• Does the polynomial hierarchy collapse? 
• ProbA (PA 'I NPA 'I NPNPA 'I · . -) = 1? 
• ProbA (PA 'I NPA n coNPA) = 1? 

Fig. A. 7 The polynomial hierarchy and PSPACE-part III 
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lapse (Chap. 8). An exponential analog of the polynomial hierarchy col­
lapses (Hem89]. 

A.4.2 Polynomial Space 

To me every hour of the light and dark is a miracle, 
Every cubic inch of space is a miracle. 

-Walt Whitman, Miracles 

PSPACE is the class of languages accepted by polynomial-space Turing ma­
chines. PSPACE embodies the power of polynomially bounded quantifiers. A 
quantified boolean formula is an expression of the form 

where f is a quantifier-free boolean formula and the Xi are boolean vari­
ables. QBF, the set of true quantified boolean formulas, is a well-known 
PSPACE-complete problem, and shows how PSPACE embodies the power of 
alternating quantifiers (Sto76]. 

There are many PSPACE-complete problems. Adversary (game) prob­
lems are often PSPACE-complete. For example, the generalized versions of 
GO (LS80] and Othello (IK94] are PSPACE-complete. In a fixed formal sys­
tem, whether a theorem has a polynomial "proof presentation" -basically, 
whether given an eraser and a polynomial-sized blackboard one can convince 
an uncreative, deterministic actor of the truth of the theorem-can be deter­
mined in PSPACE (HY84]. 

A.5 E, NE, EXP, and NEXP 

E = Uc>O DTIME(2cn] and NE = Uc>O NTIME(2cn] are exponential-time 
analogs of P and NP. The structure of these exponential-time classes is linked 
to the structure of polynomial-time classes. In particular, the complexity of 
tally2 and sparse sets within NP is tied to the structure of E and NE (Boo74b, 
HH7 4,HY84,IDS85,CGH+ 88,CGH+ 89]. 

EXP = Uc>O DTIME[2nc] and NEXP = Uc>O NTIME[2nc] are alternate 
exponential-time analogs of P and NP. They are particularly useful in clas­
sifying the complexity of logics. For example, the satisfiability problem of 
propositional dynamic logic is EXP-complete [Pra79,FL79], as are the sat­
isfiability problems of various attribute-value description formalisms (BS93] 
and various branching time logics [EH85]. Various logic problems are also 
known that are complete for NEXP (see (Pap94, Chap. 20]). NEXP has also 
proven central in understanding the complexity of interactive proof systems 
(see Chap. 6). 

2 Tis a tally set if T ~ 1* = {~:, 1, 11, 111, ... }. 
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E, NE, EXP, and NEXP- Exponential-Time Classes 

Power 
Exponential-time deterministic and nondeterministic computation. 

Definitions 

E = U DTIME[2cn]. 
c 

NE = U NTIME[2c"]. 
c 

EXP = U DTIME[2nc]. 
c 

c 

Background 
The complexity of sparse sets in the polynomial hierarchy is closely re­
lated to the structure of exponential-time cla..o:;ses [Boo74b,HH74,HY84,HIS85, 
CGH+89]. 

Complete Languages 
All these classes have straightforward canonical complete languages that cap­
ture the actions of generic machines (see the techniques of [Har78]). The sat­
isfiability problem of propositional dynamic logic is EXP-complete. Various 
problems from logic (e.g., whether a given Schonfinkel-Bernays expression has 
a model) known to be complete for NEXP (see [Pap94, Chap. 20]). 

Selected Facts and Theorems 
1. E ~ NE. PSPACE ~ EXP ~ NEXP. 
2. E =/; NP. [Boo72] 
3. E <;; EXP. NP <;; NE <;; NEXP. [HS65,Coo73,SFM78] 
4. The strong exponential hierarchy collapses, i.e., pNE 

E U NE U NPNE U NPNpNE U · · ·. [Hem89] 
5. MIP = NEXP. (see Chap. 6) 
6. E = NE if and only ifthere are no tally sets in NP- P. [Boo74b,HH74] 
7. E = NE if and only if there are no sparse sets in NP - P. [HIS85] 
8. NE = coNE if and only if every sparse set in NP is NP-printable. [HY84] 
9. All ~~-complete sets for EXP have infinite P subsets. [Ber76] 

10. E =/; PSPACE. [Boo74a] 
11. All ~i-tt-complete sets forE are ~~-complete for E. [HKR93] 
12. All ~i-tt-complete sets for NE are ~~-complete for NE. [BST93] 
13. If EXP ~ P /poly, then EXP = MA. 

{see the Bibliographic Notes of Chap. 6) 

Fig. A.8 E, NE, EXP, and NEXP 
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P fpoly - Nonuniform Polynomial Time 

Power 
Small circuits. Table lookup. 

Definition 
P /poly denotes { L I (30 E P) (3 polynomial f) [L E 0/ f]}, where 0/ f denotes 
the class of all sets such that for some function h satisfying ('v'n) [lh(n}l = f(n)) 
it holds that L = {xI (x, h(lxl)) E 0}. 

Selected Facts and Theorems 
1. P /poly= {L I (3 sparse S)[L E P 8 ]}. (see [BH77)) 
2. P/poly = {LI (30 E P}(3polynomialf)[L E 0/*f]}, where Oj*f 

denotes the class of all sets such that for some function h satisfying 
('v'n} [lh(n}l ~ f(n}) it holds that L ={xI (x, h(lxl}) E 0}. 

3. pP/poly /poly= Pjpoly. 
4. NP ~ P /poly ~ PH = zppNP. 

5. BPPaW ~ p#P(l[. 

6. BPP ~ P /poly. 
7. P-sel ~ P /poly (indeed, even P-sel ~ P /quadratic). 

[KW98) 
(see Chap. 4} 
(see Chap. 4) 
(see Chap. 3} 

NPNPA NPAEllSAT 
8. If A E P /poly, then P ~ P . In particular, 

NPP /poly n NP NP 
pNP pNP • The analogous inclusions hold for 
(NP n coNP)/poly. ([Kob94), see also [Gav95,Kob95)} 

NPNPA NPAEllSAT 
9. If A E NP /poly n coNP /poly, then NP ~ NP . In particu-

NPNpcoNP /poly n NP NPNP 
lar, NP = NP . 

10. P /poly # EHSPARSE}. 

Fig. A.9 P /Poly 

A.6 P /Poly: Small Circuits 

[HNOS96b) 
[GW93) 

L is in P jpoly if and only if L has small circuits, i.e., there is a family of 
"representations" (see [Sav72,Sch86b]) of boolean circuits 0 1 , 0 2 , ... and an 
integer k such that: 

• IOil ~ ik + k, and 
• X E L {:::=::} Olxl accepts X [KL80). 

More typically, and more generally, this is formalized as follows. 

Definition A.l [KLBO} 

1. For any set A and any function f, A/ f denotes the class of all sets L 
such that for some junction h satisfYing ('v'n) [lh(n)l = f(n)] it holds that 

L ={xI (x, h(lxl)) E A}. 

2. For any class C and any junction f, C / f denotes 

{L I (30 E C) [L E Off)}. 
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3. For any set A and any class of functions :F, A/ :F denotes 

{L I (3f E :F) [L E A/f]}. 

4. For any class C and any class of functions :F, Cf:F denotes 

{L I (3C E C) (3f E :F) [L E C/ f]}. 

Equivalently, a language L is in P /poly if and only if there is a sparse3 

set S so that L E P8 (this equivalence is due to Meyer, see [BH77, p. 307] 
and [KL80]). 

Intuitively, sets in P /poly are "close" to being in polynomial time. With a 
small amount of advice (e.g., the circuit description), a polynomial machine 
can recognize these sets. However, the advice may be terribly hard to com­
pute; thus it is not surprising that P /poly contains sets arbitrarily high in 
the Kleene hierarchy. 

Some important natural sets that are not known to be in P are known to 
have small circuits. For example, the set of primes is not known to be in P, but 
has small circuits and belongs to the class ZPP (which itself implies possession 
of small circuits) (Rab76,Adl78,APR83,GK99]. More generally, any set in the 
probabilistic class BPP has small circuits. 

Karp and Lipton show it unlikely that all NP sets have small circuits: 
If NP has small circuits (i.e., if NP ~ P8 for some sparse set S) then the 
polynomial hierarchy collapses to its second level. In the wake of their result, 
a flurry of related research has extended our knowledge of the implications 
of "NP ~ P8 , S sparse," and of "NP ~ P8 , S sparse, S E NP" (see the sur­
veys (HOW92,You92] or the papers (AHH+93,KW98]). This line of research 
is discussed in Chap. 1. 

A.7 L, NL, etc.: Logspace Classes 

Much of the polynomial-time world (of P, NP, EDP, etc.) is echoed in the 
world of logspace computation. L and NL denote the languages acceptable 
by Turing machines running in, respectively, deterministic and nondeter­
ministic logspace. (DL is the logspace analog of (DP. The study of logspace 
analogs of modulo classes was initiated by Buntrock et al. ([BDHM92], see 
also (HRVOO]). 

The logspace world provides only a partial analogy to the polynomial­
time world. For example, NP = coNP is a major open question. Nonetheless, 
the beautiful logspace analog of this, NL = coNL, is known to hold, due to 
work of Immerman (Imm88] and Szelepcsenyi (Sze88]. 

3 A set S is sparse if there are at most polynomially many elements of length at 
most n inS, i.e., (3k)('v'n ~ l}[j{x I xES 1\ ixi ~ n}l ~ nk). 
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L, NL, etc.: Logspace Classes 

Power 
Various types of logspace-bounded computation. 

Definition 
L and NL denote the sets acceptable by, respectively, deterministic and non­
deterministic logspace computation. 

{ I there is a nondeterministic logspace Turing machine N } 
UL = L such that L = L(N) and, for all x, the computation tree . 

of N on input x has at most one accepting path 

{ 
there is a nondeterministic logspace Turing machine N and } 
a (deterministic) logspace-computable function f so that 

C=L = L for each x it holds that x E L if and only if #accN(x) = · 
f(x) 

{ I there is a probabilistic logspace-bounded Turing machine} 
PL = L N so that for each x it holds that x E L if and only if . 

Pr[N on input x accepts] ;::: 1/2 

Background 
PL was introduced by Gill [Gil77]. Gill defined PL as the class of all languages 
L for which there exists a probabilistic logarithmic space-bounded machine M 
with unlimited computation time such that, for all x, x E L if and only if 
the probability that M on input x accepts is at least t. Jung [Jun85] proves 
that a definition in which the machines are required to additionally run in 
polynomial time in fact gives the same class. C=L was first studied by Allender 
and Ogihara [A096]. UL was first studied by Buntrock et al. [BJLR91]. 

Complete Languages 
It is well known that PL and C=L have canonical complete languages. The 
language {(G,s,t,m) I G is a topologically sorted directed graph 1\ s,t are 
nodes in G 1\ m is an integer 1\ the number of paths in G from s to t is 
at least m} is logspace many-one complete for PL. With "equal to" in place 
of "at least," this language becomes logspace many-one complete for C=L· 
Jung [Jun85] presents a PL-complete problem that is related to the evaluation 
of polynomials over integer matrices. Allender and Ogihara [A096] show the 
problem of testing singularity of a given integer matrix is complete for C=L· It 
is unknown whether UL has a complete language. 

Selected Facts and Theorems 
1. NL = coNL. [Imm88,Sze88] 
2. NL/poly ~ UL/poly (and so NL/poly = UL/poly). (see Chap. 4) 
3. The class of languages accepted by probabilistic logspace machines that 

are required to run in polynomial time exactly equals PL. [Jun85] 
4. PL = PLPL. (see Chap. 9) 
5. LC=L = C=LC=L. [AB099] 
6. RL ~ SC2 • [Nis94] 
7. All sets that are complete for NL with respect to 1-L (one-way-logspace) 

reductions reductions are polynomial-time isomorphic. (Analogous results 
hold for NP and many other classes.) [All88] 

Fig. A.lO L, NL, and other logspace classes 
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The class PL was defined by Gill [Gil77] as a logarithmic space, unlimited­
computation-time version of PP. Jung [Jun85] showed that the polynomial­
time version of PL is identical to the unlimited-time version. Various models 
of relativized nondeterministic/probabilistic logspace computation have been 
studied in the literature [LL76,Sim77a,RS8l,RST84]. A widely used model 
is the Ruzzo-Simon-Tompa model [RST84], in which the logspace oracle 
machines are required to behave deterministically whenever query strings are 
generated. Allender and Ogihara [A096] showed that Jung's result relativizes 
under the Ruzzo-Simon-Tompa model. They also considered the logspace 
analog of the counting hierarchy. 

The oracle hierarchies of PL and C=L are known to collapse [Ogi98, 
AB099]. Damm [Dam91], Toda [Tod9la], Valiant [Val92], and Vinay [Vin91] 
independently observed that the determinant function is complete for #L. 
Since the determinant function is in NC2 [BCP83], this implies that the vari­
ous logspace classes are in NC2 . Nisan [Nis94] show that randomized logspace, 
RL, is contained in SC2 , the class of languages accepted by polynomial-time 
machines that use O(log2 n) space. Allender, Beals, and Ogihara [AB099], 
Santha and Tan [ST98], and Hoang and Thierauf [HTOO] present algebraic 
problems that are complete for reducibility closures of C=L. 

A.8 NC, AC, LOGCFL: Circuit Classes 

LOGCFL is the logspace many-one reducibility closure of the context-free 
languages. 

A boolean circuit Cn with n inputs is a labeled, directed acyclic graph 
with nodes having in-degree zero or at least two. Nodes with in-degree zero 
are labeled from the set { 0, 1, x 1, ... , Xn, x 1, ... , Xn} and all other nodes 
are labeled by either 1\ or V and compute 1\ or V, respectively. A language 
L is accepted by a family F = { Cn}n~1 of boolean circuits if, for every x, 
x E L if and only if Clxl on x evaluates to 1. A family {Cn}n~1 is logspace­
uniform (P-uniform) if there exists a logarithmic space-bounded (polynomial 
time-bounded) Turing machine that computes the description of Cn given 
ln. 

For k 2: 1, NCk [Pip79] is the class of languages accepted by logspace­
uniform, O(logk n)-depth, polynomial-size, bounded fan-in (all 1\ and V 

gates have in-degree two) circuit families. NC = Uk> 1 Nck. For k ~ 
0, Ack [Coo85,CSV84] is the class of languages accepted by logspace­
uniform, O(logk n)-depth, polynomial-size, unbounded fan-in (no restriction 
on the fan-in) circuit families. AC = Uk>o Ack. Moreover, SAck [BcD+sg] 

is the class of languages accepted by logspace-uniform, O(lol n)-depth, 
polynomial-size, semi-unbounded fan-in (all 1\ have in-degree two) circuit 
families. 
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NC, AC, and LOGCFL - Polynomial-Size, Polylog-Depth Circuits 

Power 
Boolean operations. 

Definition 

LOGCFL = {L IL is logspace many-one reducible to a context-free} . 
language 

{ I
L is accepted by a logspace-uniform family of} 

NCk = L p_oly~omial-size, O(logk n)-depth, bounded fan-in . 
CirCUit 

{ I
L is accepted by a logspace-uniform family of} 

ACk = L p_ol~omial-size, O(logk n)-depth, unbounded fan-in . 
c1rcmt 

Alternate Definition 

NCk _ {L IL is accepted by a deterministic polynomial-time} 
- Turing machine with 0( c logk n) reversal · 

ACk _ {L IL is accepted by a logspace bounded alternating Tur-} 
-. ing machine with O(clogk n) alternation · 

LOGCFL = SAC1. 

Selected Facts and Theorems 
1. ACk ~ NCk+1, k ~ 0. [Ruz80] 
2. Sorting can be done in NC1, so the parity function is in NC1. [AKS83] 
3. The parity function is not in ACb, and thus, AC0 I NC1. Even stronger, no 

family of constant-depth, superpolynomial-size unbounded-fan-in circuits 
can compute the parity function. (see Chap. 8) 

4. For each k ~ 1, there is a family of functions F = {fn}n;o:I such that 
F can be computed by a family of depth-k, polynomial-size unbounded­
fan-in circuits but cannot be computed by a family of depth-(k - 1), 
superpolynomial-size unbounded-fan-in circuits. (see Chap. 8) 

5. PL U EBL ~ NC2 • [BCP83] 
6. NL ~ LOGCFL. [Sud78] 
7. LOGCFL is closed under complement. [BCD+89] 
8. SAC0 is not closed under complement. However, for each k ~ 1, SACk is 

closed under complement. [Ven91,BCD+89] 

Fig. A.ll NC, AC, and LOGCFL 
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Cook [Coo85] proposed to use notation NCk in the honor of Pippenger, 
who characterized NCk as the languages accepted by reversal bounded Tur­
ing machines [Pip79]. Chandra, Stockmeyer, and Vishkin [CSV84] studied 
the nonuniform version of AC. Cook [Coo85] proposed notation ACk for 
the languages accepted by logspace alternating Turing machines with alter­
nation bound O(logk n). Cook pointed out (attributed to Cook and Ruzzo 
in [Coo85]) that the class is the same as the uniform version of the class 
studied by Chandra, Stockmeyer, and Vishkin. The letter "A" in AC thus 
stands for "alternating." Ruzzo [Ruz80] showed that ACk ~ Nck+I for all 
k ~ 0. Hence, AC = NC. Sudborough [Sud78] gave a complete character­
ization of LOGCFL as the languages accepted by nondeterministic auxil­
iary pushdown automata in logspace and polynomial-time, which character­
ization yields NL ~ LOGCFL. Ruzzo [Ruz80] showed that the pushdown 
automata class by Sudborough is included in AC 1 thereby showing that 
LOGCFL ~ AC 1• Venkateswaran [Ven9l] strengthened the upper bound by 
showing that LOGCFL = SAC1• 

Though we have used logspace-uniformity as the default uniformity type 
of NCk, ACk, and SACk, many other types of uniformity are also important 
in the literature, ranging from P-uniformity down to extremely restrictive 
notions of uniformity. Regarding the former, see for example Allender's pa­
per [All89b]. Regarding the latter, we mention that UE•-uniformity, which 
was introduced by Ruzzo ([Ruz81J, see also [Coo85]), is an attempt at captur­
ing what one would mean by "NC -uniformity," and is often used when study­
ing NC 1 . Uniformity types that are even more restrictive have been proposed 
and studied by Barrington, Immerman, and Straubing [BIS90]. Ruzzo [Ruz81J 
has compared various logspace-uniformity conditions and shown that NC 
with k ~ 2 is robust under the choice of logspace-uniformity conditions. 

A.9 UP, FewP, and US: Ambiguity-Bounded 
Computation and Unique Computation 

{ I 
there is a nondeterministic polynomial-time Turing} 

UP = L machine N such that L = L(N) and, for all x, N(x) . 
has at most one accepting path 

{ lthere is a nondeterministic polynomial-time Turing } 
US= L machine N such that, for all x, x E L {=::::} N(x) . 

has exactly one accepting path 

Above, the N ( x) is used to denote the computation of machine Non input 
x, and in particular is denoting above, as a shorthand, the computation tree 
of Non input x. 

The classes UP and US capture the power of uniqueness (for UP, some 
prefer the term unambiguity). Given a boolean formula fa typical US ques­
tion would be, "Does f have exactly one solution?" UP has a related but 
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subtly different nature. UP is the class of problems that have (on some NP 
machine) unique witnesses. That is, if there is an NP machine M accepting 
L and for every input x the computation M(x) has at most one accepting 
path, then we say L E UP. We call NP machines that accept on at most one 
path for all inputs categorical machines. Valiant started the study of UP and 
categorical machines [Val76]. 

UP has come to play a crucial role in both cryptography and complexity 
theory. In cryptography theory, Grollmann and Selman [GS88] prove that 
one-to-one one-way functions4 exist if and only if P =f UP, and one-to-one 
one-way functions whose range is in P exist if and only if P =I UP n coUP. 
Thus we suspect that P =f UP because we suspect that one-to-one one-way 
functions exist. 

A central question in complexity theory, first asked by Berman and Hart­
manis [BH77], is "How many NP-complete problems are there?" Berman and 
Hartmanis conjectured that there is only one NP-complete problem, which 
appears in many guises. That is, they conjectured that all NP-complete sets 
are polynomial-time isomorphic (P-isomorphic). Indeed, they showed that 
all then-known and all paddable NP-complete sets are P-isomorphic ([BH77] 
and Mahaney and Young [MY85]). Note that the conjectured P-isomorphism 
of NP-c~mplete sets implies P =f NP. 

Kurtz, Mahaney, and Royer [KMR95] have shown that relative to a ran­
dom oracle there are NP-complete sets that are not P-isomorphic. Fenner, 
Fortnow, and Kurtz [FFK96] have shown that there is an oracle world in 
which all NP-complete sets are P-isomorphic. 

Joseph and Young found NP-complete "k-creative" sets that are not ob­
viously P-isomorphic to SAT. However, if no one-to-one one-way functions 
exist then these sets are isomorphic to SAT. This led to the following conjec­
ture (see [JY85,KLD86,KMR88,KMR95,Rog97]). Since one-to-one one-way 
functions exist if and only if P =f UP, this conjecture links P = UP to the 
structure of NP. 

One-Way Conjecture One-to-one one-way functions exist if and only if 
non-P-isomorphic NP-complete sets exist. 

This coupling between UP and NP has been weakened. Hartmanis and 
Hemachandra [HH91a] show that there is a relativized world in which the 
One-way Conjecture fails. That is, there is a world in which there are no one­
to-one one-way functions yet there are non-P-isomorphic NP-complete sets. 

4 By range(!) we denote UieE• f(i). A function f is honest if (3 polynomial q) 
(Vy E range(f))(:Jx)[lxl ~ q(IYI) A f(x) = y]. A one-to-one one-way function is 
a total, single-valued, one-to-one honest, polynomial-time computable function 
f such that rl (which will be a partial function if range(!) i= I:*) is not 
computable in polynomial time [GS88]. 
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UP, FewP, and US - Unambiguous Polynomial Time, Polynomial­
Ambiguity Polynomial Time, Unique Polynomial Time 

Power 
Categorical acceptance. Unambiguity; polynomial-bounded ambiguity; unique­
ness. 

Definition 

{ I there is a nondeterministic polynomial-time Thring rna-} 
UP = L chine N such that L = L(N) and, for all x, N(x) has at . 

most one accepting path 

{ lthere is a nondeterministic polynomial-time Thring rna-} 
FewP = L chine Nand a polynomial q such that L = L(N) and, . 

for all x, N(x) has at most q(ixl) accepting paths 

{ I there is a nondeterministic polynomial-time Thring rna-} 
US = L chine N such that, for all x, x E L ¢::::> N(x) has . 

exactly one accepting path 

Alternate Definition 

{ 

there is a polynomial-time predicate P and a polynomial } 
q such that, for all x, 

UP = L 1. x rf. L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 0, and · 

2. x E L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 1 

FewP = L 1. x rf. L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 0, and . { 

there is a polynomial-time predicate P, a polynomial q,} 
and a polynomial q' such that, for all x, 

2. x E L ~ 1 ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll ~ 
q' (I xi) 

{ 
there is a polynomial-time predicate P and a polynomial } 

US = L q such that, for all x, x E L ¢::::> II{Y I IYI ~ q(ixl) 1\ · 
P(x, y)}ll = 1 

Background 
UP was defined by Valiant (Val76]. US was defined by Blass and Gure­
vich (BG82]. FewP was defined by Allender and Rubinstein (All86,AR88]. UP 
is related to cryptography (GS88] and some think it central to conjectures in 
complexity theory ((JY85,KMR88], but see also [HH91a]). 

Complete Problems 
UP and FewP may not have complete languages. There are relativized worlds 
in which they do not have complete languages (and indeed in which FewP 
lacks ~~-hard sets for UP) [HH88a,HJV93]. On the other hand, there are 
relativized worlds in which pA # upA # NPA yet upA does have complete 
languages [HH88a]. 

USAT ={!If has exactly one satisfying assignment} is complete for US. 

Fig. A.12 UP, FewP, and US-part I 
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UP, FewP, and US - Unambiguous Polynomial Time, Polynomial­
Ambiguity Polynomial Time, Unique Polynomial Time 

Selected Facts and Theorems 
1. P ~ UP ~ NP n US ~ NP ~ coUS. 
2. UP is closed under intersection. 
3. FewP ~ SPP = sppFewP. (KSTT92,FFK94,FFL96] 
4. If UP has sparse ~~-hard sets, then all UP sets are Lowa, i.e., for each set 

L in UP it holds that NPNPL = NPNP. (HR97] 
5. P ~ UP <==:::? one-to-one one-way functions exist. {see Chap. 2) 
6. Unambiguous (i.e., one-to-one) one-way functions exist if and only if 

bounded-ambiguity one-way functions exist. Equivalently, P ~ UP <==:::? 
P ~ UP<k· (see Chap. 2) 

7. P ~ FewP <==:::? polynomial-to-one one-way functions exist. 
{see the Bibliographic Notes of Chap. 2) 

8. P ~UP n coUP <==:::? one-to-one one-way functions whose range is in P 
exist. (GS88] 

9. P = FewP if and only if all sparse sets in P are P-printable. (AR88] 
10. If UP has complete languages then it has a complete language of the form 

L =SAT n A, A E P. (HH88a] 
11. (3A)[PA ~ upA = NPA]. (Rac82] 
12. (3A)[PA = upA A NP = EXP] (and so relative to this oracle A, NPA not 

only differs from UPA but even is pA_immune, as a side effect of the known 
fact that EXP contains P-immune sets). (BBF98] 

13. (3A)[PA = FewPA ~ NPA]. (3B)[PB ~ upB ~ FewPB ~ NPB]. (Rub88] 
14. (3A)[UPA has no complete languages]. [HH88a] 
15. (3A)[PA ~ upA ~ NPA and upA has complete languages]. [HH88a] 
16. (VA)[NiA is categorical] =* (VA)[L(NiA) E pNPEM]. (HH90] 
17. There is a reasonable {i.e., pA ~ NPA) oracle A for which pA = UPA 

(that is, there are no one-to-one one-way functions) yet there are sets that 
are ~~A -complete for NPA and are non-PA-isomorphic. [HH91a] 

18. P ~UP n coUP if and only if there is a setS so {1) S E P and S ~SAT, 
and {2) f E S =* f has exactly one solution, and {3) no P machine can 
find solutions for all formulas in 8-that is, 

g(f) = { ~he unique satisfying assignment of f 
ff/.8 
/ES 

is not a polynomial-time computable function. [HH88a] 
19. P, UP, and NP all differ with probability one relative to a random oracle. 

(Bei89,NRRS98] 
20. Primes E UP n coUP. (FK92] 

Fig. A.13 UP, FewP, and US-part II 
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Their oracle consists of a collapsing component (PSPACE) unioned with an 
extraordinarily sparse diagonalizing component. 

Theorem A.2 There is a reasonable (i.e., pA f. NPA) oracle A for which 
pA = UPA (that is, there are no one-to-one one-way functions) yet there are 
sets that are :5~ A -complete for NPA and are non-pA -isomorphic. 

This does not imply that the One-Way Conjecture is false, though it does 
open that possibility. This theorem, however, suggests that the conjecture is 
unlikely to be proved by standard techniques. 

There is a "promise" in the definition of UP. In particular, a UP machine 
must have the property that on each input, its number of accepting paths is 
either one or zero. There is no known way to enumerate all machines having 
this property without also enumerating machines not having this property. 
Since such enumerations are a central tool in proving the existence of com­
plete sets [Sip82,HH88a,BCS92,Bor94), this precludes the standard method of 
proving that the class has complete sets. In fact, there are relativized worlds 
in which UP lacks complete sets ([HH88a), see also [HJV93)). 

Attempts to find an NP analog of Rice's Theorem have instead led to 
analogs of Rice's Theorem for UP (unainbiguous polynomial-time) and its 
constant-ambiguity cousins. In p~U"ticular, all nontrivial counting properties 
of circuits are hard for these classes ([BSOO,HROOJ, see also [HT)). 

The class FewP, defined by Allender and Rubinstein [All86,AR88), is an 
analogue of UP that restricts machines not to one accepting path but to at 
most polynomially many accepting paths. Clearly, P ~UP ~ FewP ~ NP, 
and Allender and Rubinstein [AR88) show that P = FewP if and only if all 
sparse sets in P are P-printable.5 

Definition A.3 L E FewP if there is a nondeterministic polynomial-time 
Turing machine N so that N accepts language L and for some polynomial q, 

(Vx) [N(x) has at most q(lxl) accepting paths]. 

Many authors prefer to use the term unambiguous computation to refer 
to UP, and reserve the term unique computation for the class US. Note 
that there is a key difference between UP and Few P on one hand, and US 
on the other hand. UP and FewP are indeed about computation that has 
a limit on the ambiguity (the number of solutions, i.e., accepting paths, of 
the underlying machine). In contrast, though the machine for a US set by 
definition accepts exactly when there is exactly one accepting computation 
path, it is legal for the machine on some inputs to have huge numbers of 
accepting paths-it merely is the case that such inputs are not members of 
the set. 

5 A set Sis ?-printable if there is a polynomial-time Turing machine M such that 
for each n, M(ln) prints all elements of S of length at most n [HY84]. 
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#P- Sharp P (Counting Solutions) 

Power 
Counting solutions. 

Definition 

#P = {f I (3 nondeterministic polynomial-time Thring machine N) ('v'x) 
[f(x) = #accN(x)]}. 

Background 
#P was first studied by Valiant (Val79a], who showed that counting versions 
not only of NP-complete problems but also of some P problems can be #P­
complete. 

Complete Problems 
#SAT, the function mapping from boolean formulas to their numbers of solu­
tions, is a representative #P function: p#P(l) = p#SAT[ll. 

Fig. A.14 #P-part I 

A.lO #P: Counting Solutions 

One potato, two potato, three potato, four, 
Five potato, six potato, seven potato, more. 

-Children's Rhyme 

#P = {!I (3 nondeterministic polynomial-time Turing machine N) (\lx) 

[f(x) = #accN(x)]}, 

where #accN(x) denotes the number of accepting paths of N(x). 
#P is the class of functions that count the accepting paths of nondeter­

ministic polynomial-time Turing machines. For example, the function that 
maps any boolean formula to its number of satisfying assignments is a #P 
function. To create a language class, as opposed to a function class, we usually 
discuss p#P. Toda [Tod9lc] has shown that p#P 2 ppPH (Chap. 4). 

#P is closely related to PP, probabilistic polynomial time: pPP = 
p#P [BBS86]. 

The possibility of approximating #P functions has been much studied. 
Stockmeyer [Sto85] shows that 6.~ machines can approximate #P functions 
within a tight factor. Cai and Hemachandra ([CH91], see also [CH89]) and, in­
dependently, Amir, Beigel, and Gasarch [ABGOO], show that the range of #P 
functions cannot be reduced to polynomial size unless P = p#P (Chap. 6). 

#P is intimately connected to the complexity of ranking-determining 
the position of elements in a set [GS91,HR90,Huy90,BGS91]. 

Though #P intuitively is the counting analog of NP, there are some cu­
rious flaws in the analogy. Valiant [Val79a] has shown that even some P 
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#P- Sharp P (Counting Solutions) 

Selected Facts and Theorems 
1. ppPH C p#P c PSPACE. (see Chap. 4) 
2. pPP = p#P. - (BBS86) 
3. If #SAT has a polynomial-time computable enumerator then P = p#P. 

(see Chap. 6) 
4. If there is an NP-complete set L that with respect to some polynomial­

time witnessing relation for it, RL, is not #P-complete, then P =f. p#P. 
(FHT97) 

5. If P =f. p#P and FewP = NP, then each NP-complete set has some 
polynomial-time witnessing relation with respect to which it fails to be 
#P-complete. (FHT97) 

6. ppa'lP ~ p#P(lJ. (see Chap. 4) 
7. #P is closed under addition and multiplication. (see Chap. 5) 
8. The following are equivalent: 

a) UP= PP. 
b) #P is closed under proper subtraction. 
c) #P is closed under integer division. 
d) #P is closed under every polynomial-time computable operation. 

(see Chap. 5) 
9. If #P is closed under proper decrement, then coNP ~ SPP and NP ~ 

FTMkP. (see the text and Bibliographic Notes of Chap. 5) 
10. If UP = NP, then #P is closed under proper decrement. (see Chap. 5) 
11. If #P is closed under integer division by two, then EBP = SPP (and so 

PH~ PP). (see Chap. 5) 
12. If #P is closed under minimum, then NP = UP and C=P = SPP. 

(see Chap. 5) 
13. If #Pis closed under maximum, then C=P = SPP. (see Chap. 5) 
14. If #P is closed under integer division by two, then EBP = SPP (and so 

PH~ PP). (see Chap. 5) 

Open Problems 
• p#P(l) = p#P? 
• p#P = PSP ACE? 
• Find a complexity class equality that completely characterizes whether #P 

is closed under proper decrement. 

Fig. A.15 #P-part II 

sets have #P-complete counting versions, at least under some reducibilities. 
And Fischer, Hemaspaandra, and Torenvliet [FHT97] have shown that un­
der certain complexity-theoretic assumptions, not all counting versions of 
NP-complete sets are ~i-T-complete for #P. 

Goldsmith, Ogihara, and Rothe [GOROO] have studied the complexity of 
#P1 [Val79b], the tally analog of #P. 
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ZPP, RP, coRP, and BPP - Error-Bounded Probabilism 

Power 
Error-bounded probabilism. 

Definition 

{ 
there is a probabilistic polynomial-time Turing machine } 

BPP _ L M so that for each x it holds that (a) if x E L then 
- Pr[M(x) accepts] ~ 3/4, and (b) if x ¢. L then Pr[M(x) · 

rejects] ~ 3/4 

{ 
there is a probabilistic polynomial-time Turing machine} 

RP _ L M so that for each x it holds that (a) if x E L then 
- Pr[M(x) accepts] ~ 1/2, and (b) if x ¢. L then Pr[M(x) · 

rejects]= 1 

coRP= {L I L E RP}. 

ZPP = RP n coRP. 

Alternate Definition 

{ 

there is a polynomial-time predicate P and a polynomial } 
q such that, for all x, 

BPP = L 1. X rf. L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ t2q(Jzl), · 
and 

2. X E L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ ~2q(izl) 

{ 

there is a polynomial-time predicate P and a polynomial } 
q such that, for all x, 

RP = L 1. x ¢. L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll = 0, and · 
2. X E L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ 2q(Jzl)-l 

Background 
Gill [Gi177] wrote the seminal paper on error-bounded probabilistic computa­
tion. 

Complete Languages 
No complete sets are known for any of these classes. There are relativized 
worlds in which ZPP has no ~~-hard set in BPP (or even IP), and thus in 
which none of these classes have complete sets ([HJV93], see also [Sip82]). 

Fig. A.16 ZPP, RP, coRP, and BPP-part I 

A.ll ZPP, RP, coRP, and BPP: Error-Bounded 
Probabilism 

A language L is in BPP if there is a probabilistic polynomial-time Turing 
machine M (essentially, a Turing machine that can flip an unbiased coin) 
such that for each x E Lit holds that M(x) accepts with probability at least 
3/4, and for each x fl. Lit holds that M(x) rejects with probability at least 
3/4. 
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ZPP, RP, coRP, and BPP - Error-Bounded Probabilism 

Selected Facts and Theorems 
1. P ~ ZPP = RP n coRP c~~:.~c ~ BPP. [Gil77] 
2. RP ~ NP. - - [Gil77] 
3. NPBPP ~ zppNP. [ZF87J 
4. zppNPBPP = zppNP. ([AK01], see also [ZH86,GZ97]) 
5. BPPBPP = BPP. [Ko82,Zac82] 
6. zppZPP = ZPP. [Zac82] 
7. BPP ~ P /poly. (see Chap. 4) 
8. BPPEilP ~ p#P(I(_ (see Chap. 4) 
9. PH ~ BPPEilP. (see Chap. 4) 

10. NP ~ BPP ===? RP = NP. [Ko82] 
11. NP ~ BPP ===? PH ~ BPP. [Zac88] 
12. Primes E ZPP. [AH92] 
13. If A E BPP, then NPNPA ~ NPAE!)SAT. In particular, NPNpBPP n NP = 

NPNP. [Sch86b] 
14. If #GA, the function counting the number of automorphisms of graphs 

has a polynomial-time computable enumerator then the Graph Isomor­
phism Problem, { ( G, H) I G and H are isomorphic graphs}, belongs to the 
class RP. [BCGT99] 

Fig. A.17 ZPP, RP, coRP, and BPP-part II 

Most computer scientists, if stopped on the street and asked for a defi­
nition of "feasible computation," would say "P" and walk on. Yet, there is 
another possibility: BPP. Suppose the error probability of the machine de­
scribed above is, on each input x, bounded not by 1/4 but rather by 1/21"'1. 
(It is not hard to show-simply by taking polynomially many trials and re­
jecting or accepting as the majority do-that each BPP language does have 
such low-error machines.) For all sufficiently large x (and, after all, for all 
other x we can in theory just use table lookup), the probability the answer 
is wrong due to this 1j21xl error probability is less in practise than the prob­
ability that an earthquake levels the building or that the physical parts of 
the computer suddenly fail. Thus, many people accept low-error probabilistic 
complexity classes (i.e., ZPP, RP, coRP, and BPP) as intuitively "feasible." 
Indeed, under a certain very plausible complexity-theoretic assumption, it 
would even follow that P = BPP (IW97]. On the other hand, to present a fair 
picture we should mention that the assumption that a computer can fairly 
generate random bits is less innocuous than it seems (however, there is in­
teresting work on dealing with biased sources , see, e.g., (VV85]). Also, it is 
important to stress that BPP is characterized in terms of the probability of 
acceptance being bounded away from 1/2, not by the proportion of accept­
ing paths being bounded away from 1/2. The latter notion seems to define a 
larger class ((HHT97], see also (JMT96,AFF+01]). 
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RP and coRP are classes similar to BPP, but allow only "one-sided" 
error (see Fig. A.16). ZPP is the class of languages accepted by zero­
error computers whose expected running times are polynomial. Equivalently, 
ZPP = RP n coRP (Gil77,Zac82]. 

Probabilistic classes play a central role in complexity theory and comput­
ing. For example, though it is not known whether testing primality can be 
done deterministically in polynomial time, Adleman and Huang have shown 
that primality is in ZPP (AH92]. 

A.12 PP, C=P, and SPP: Counting Classes 

A language Lis in PP (Sim75,Gil77] if there is a probabilistic polynomial-time 
Turing machine M such that, for each x, 

x E L {::::::} M(x) accepts with probability at least 1/2. 

A language L is in C=P (Sim75,Wag86] if there is a polynomial-time com­
putable function f and a NPTM N such that, for each x, 

x E L {::::::} #accN(x) = f(x), 

where #accN(x) denotes the number of accepting paths of Non input x. A 
language Lis in SPP (OH93,FFK94] if there is a polynomial-time computable 
function f and a NPTM N such that, for each x, 

x ¢ L ===} #accN(x) = f(x)- 1, and 

x E L ===} #accN(x) = f(x). 

Many counting classes have been defined and shown to be important in the 
study of previously defined notions. The classes usually attempt to extract 
out the essence of some particular computational task. For example, we may 
loosely think of PP as encapsulating the power of majority testing, and of 
C=P as encapsulating the power of exact equality testing. 

Though BPP is a quite strong candidate for the title of "outer limit of 
feasible computation," PP is not. The reason is that PP has no bound on 
its error. In fact, for PP machines, the difference between acceptance and 
rejection is so slight-one over an exponential function of the input-that we 
would need an exponential number of Monte Carlo tests to get any useful 
information. However, if one were willing to do an exponential amount of 
work, one could just as well exactly solve the PP problem by brute force. 

PP, however, does have some nice properties. In particular, there is no 
"promise" built into its definition, and thus it is not hard to show that it has 
complete sets. The same also holds for C=P. However, in contrast, there is a 
"promise" (see the discussion in Sect. A.9) in the definition of SPP. 
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PP, c..._p, and SPP - Counting Classes 

Power 
PP: Unbounded error probabilism. 
C=P: Exact counting. 
SPP: Generalized UP. 

Definition 

{ I there is a probabilistic polynomial-time Turing machine} 
PP = L M so that for each x it holds that x E L if and only if . 

Pr(M(x) accepts] ~ 1/2 

{ 
there is a nondeterministic polynomial-time Turing rna-} 

C P _ L chine N and a (deterministic) polynomial-time com-
= - putable function f so that for each x it holds that x E L · 

if and only if #accN(x) = f(x) 

{ 

there is a nondeterministic polynomial-time Turing rna-} 
chine N and a (deterministic) polynomial-time com-

SPP = L putable function f so that for each x it holds that (a) if . 
x E L then #accN(x) = f(x), and (b) if x '1. L then 
#accN(x) = f(x) - 1 

Fig. A.18 PP, C=P, and SPP-part I 

A.13 FP, NPSV, and NPMV: Deterministic and 
Nondeterministic Functions 

We say that a function is in FP if it is computed by some deterministic 
polynomial-time Turing machine. Functions in FP must be single-valued, 
but they may potentially be partial. 

The classes NPSV and NPMV capture the power of nondetermin­
istic function computation. In particular, consider any nondeterministic 
polynomial-time Turing machine N. On any input x, we will consider N 
to have a (possibly empty) set of outputs. Namely, on input x, each stringy 
that appears on the worktape of N along at least one computation path that 
halts and accepts is considered to belong to the output set. A function f is 
said to belong to NPMV if there exists some nondeterministic polynomial­
time Turing machine N such that on each input x the outputs off are exactly 
the outputs of N. As a notation, we use set-f(x) to denote {a I a is an output 
of f(x)}. For example, on inputs x where the partial function f(x) is unde­
fined, we have set-f(x) = 0. Note that functions in NPMV may be partial or 
may be total, and may be single-valued or may be multivalued. Note that the 
multiplicities of appearances of outputs do not concern us here; if, on input 
x, machine N outputs 101 on one path and outputs 0011 on seventeen paths, 
its set of outputs is simply {101, 0011}. 

NPSV denotes the set of all NPMV functions f that are single-valued, 
i.e., for each input x, JJset-f(x)JJ::; 1. 
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PP, C-Y, and SPP- Counting Classes 

Alternate Definition 
A language L is in PP if there exists a polynomial q and a polynomial-time 
predicate R such that, for each x, 

X E L <===>- JJ{y IJyJ = q(Jxl) 1\ R(x, y)}JJ ;::: 2q(lzl)-l. 

A language L is in C=P if there exists a polynomial q, a polynomial-time 
function j, and a polynomial-time predicate R such that, for each x, 

x E L <===>- IJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = f(x). 

A different definition, which again yields the same class, allows us to fix the 
function f to be a of a very simple form. In particular, R such that, for each 
C=P has an alternate definition in which the "acceptance" cardinality is set to 
be exactly half of the total number of possibilities: A language L is in C=P if 
there exists a polynomial q and a polynomial-time predicate R such that, for 
each x, 

X E L <===>- JJ{y IJyJ = q(Jxl) 1\ R(x, y)}JJ = 2q(lzl)-l. 

A language L is in SPP if there exists a polynomial q, a polynomial-time 
function j, and a polynomial-time predicate R such that, for each x, 

1. x E L ~ JJ{y IIYI = q(Jxl) 1\ R(x,y)}JI = f(x), and 

2. x If. L ~ JJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = f(x) -1. 

A different definition, which again yields the same class, allows us to fix the 
function f to be a of a very simple form. A language L is in SPP if there exists 
a polynomial q, a polynomial p, and a polynomial-time predicate R such that, 
for each x, 

1. X E L ~ JJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = 2P(Izl) + 1, and 

2. x If. L ~ Jl{y jJyJ = q(Jxl) 1\ R(x,y)}JJ = 2P(Izl>. 

Fig. A.19 PP, C=P, and SPP-part II 

We need some natural way to speak of reducing the number of outputs 
that a function has. Refinement captures this notion. 

Definition A.4 We say that a multivalued function f is a refinement of 
multivalued function g if 

1. (Vx) [set-f(x) = 0 {=> set-g(x) = 0], and 
2. (Vx) [set-f(x) ~ set-g(x)]. 

Intuitively, a refinement of a function is the function except on each input 
some (but not all) outputs may be missing. Note that an NPSV refinement 
of g is g with, on each input, all but one output removed. The question of 
whether all NPMV functions have NPSV refinements is central in Chap. 3. 

We note that whether all NPMV functions have NPSV refinements seems 
to be a different issue than whether UP = NP. That is, it is not currently 
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Background 
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PP was introduced in the work of Simon [Sim75] and Gill [Gil77]. C=P was 
introduced (though not assigned a name) by Simon [Sim75], who also proved 
that C=P ~ PP. 

Complete Languages 
Simon [Sim75] proved that MajSat is PP-complete, where MajSat = {f I f 
is satisfied by more than half of the possible variable assignments}. C=P has 
canonical complete sets, but is not currently known to have any particularly 
natural complete sets. Toda [Tod94] and Ogiwara [Ogi92] have studied, respec­
tively, canonical complete problems for pPP and pC=P. SPP is a "promise"-like 
class and thus seems to lack complete sets. Mundhenk, Goldsmith, Lusena, and 
Allender [MGLAOO] have shown that ppNP has natural complete sets. 

Selected Facts and Theorems 
1. P C UP C SPP c ESP C PP. 
2. US-~ C=P ~ PP ~ p#P ~ PSPACE. 
3. Both C=P and coC=P are closed downward under positive Turing reduc-

tions. [Ogi94b] 
4. Rft(C=P) = P-uniformNC1(C=P) = P-uniformAC1(C=P). [Ogi95a] 
5. pPP = p#P. (BBS86] 
6. NP#P = NPc=P. [Tor91] 
7. ppPH ~ BPPC=P ~ pPP. (see Chap. 4) 
8. 8~ ~ PP. [BHW91] 
9. There is an oracle A such that pNPA ll: ppA. [Bei94] 

10. PP is closed downward under truth-table reductions. (see Chap. 9) 
11. sppSPP = sppFewP = PP. [FFK94] 
12. c=psPP = C=pFewP = C=P. [FFK94,KSTT92] 
13. ppsPP = ppFewP = PP. [FFK94,KSTT92] 
14. There exists an oracleA such that sppA strictly contains PHA yet PHA 

does not collapse. [For99] 

Fig. A.20 PP, C=P, and SPP-part III 

known that either implies the other. The barrier to proving "UP = NP if all 
NPMV functions have NPSV refinements" is that NPSV functions, though 
possessing at most one output, may potentially output that one output on 
many accepting paths; thus, the computation is in no way UP-like. Regarding 
the other direction, though 

UP= NP =? all NPMV functions have FPUP refinements, 

there seems to be no obvious way to use UP = NP to obtain NPSV refine­
ments of NPMV functions. 
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FP, NPSV, and NPMV- Deterministic and Nondeterministic Functions 

Power 
Function versions of P and NP. 

Definition 
FP denotes the class of (single-valued, possibly partial) functions computed 
by deterministic polynomial-time Turing machines. Given a nondeterministic 
polynomial-time Thring machine, we may view it as computing a (possibly 
partial, possibly multivalued) function as follows. Each rejecting path is viewed 
as outputting no value. Each accepting path is viewed as outputting whatever 
value it has written on its worktape. The machine, on input x, maps from 
x to the set of all values that are an output of some accepting computation 
path. The set of all such functions is denoted NPMV. The class of all NPMV 
functions that on no input take on more than one value is denoted NPSV. 
set-f ( x) denotes {a I a is an output of f ( x)}. We say that a multivalued 
function f is a refinement of multivalued function g if 

1. (Vx) [set-f(x) = 0 ~ set-g(x) = 0], and 
2. (Vx) [set-J(x) ~ set-g(x)]. 

Background 
NPSV and NPMV were introduced by Book, Long, and Selman [BLS84,BLS85]. 

Sample Functions 
Let /sAT represent the function such that set-/sAT(F) is empty ifF is unsat­
isfiable, and is {a I a is a satisfying assignment of F} if F is satisfiable. /sAT 
is in NPMV. 

Selected Facts and Theorems 
1. FP ~ NPSV £;; NPMV. 
2. P = NP ~ FP = NPSV. (see [Sel94]) 
3. For every k ~ 1, P~.:';t = P~.:';~v and P~!'T = P~!'/v. [FHOS97] 
4. If every NPMV function has an NPSV refinement, then PH = zppNP. 

(see Chap. 3) 

Fig. A.21 FP, NPSV, and NPMV 

A.14 P-Sel: Semi-feasible Computation 

{ 
there is a polynomial-time 2-ary function f such that } 

P-sel = L for each x andy it holds that (a) f(x,y) E {x,y}, and . 
(b) {x,y} n L -j. 0 =} f(x,y) E L 

P denotes the class of sets that have polynomial-time membership al­
gorithms. P-sel, the class of P-selective sets, denotes the class of sets that 
have polynomial-time semi-membership algorithms. A semi-membership al­
gorithm for a set is a function-called a selector function-that, given two 
inputs, chooses one that is "logically more likely" (or, to be more accurate, 
"logically no less likely") to be in the set in the sense that if exactly one of 
the two inputs is in the set then the algorithm chooses that input. 
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P-sel - Semi-feasible Computation 

Power 
Semi-feasible computation. 

Definition 

{ lthere is a polynomial-time 2-ary function f such that} 
P-sel = L for each x andy it holds that (a) f(x,y) E {x,y} and . 

(b) {x,y} n L i= 0 ==> f(x,y) E L 

Background 
The P-selective sets were introduced by Selman [Sel79,Sel82b,Sel82a] as a 
polynomial-time analog of the semi-recursive sets from recursive function 
theory [Joc68]. The NPSV-selective sets were first studied by Hemaspaandra, 
Naik, Ogihara, and Selman [HNOS96b]. 

Sample Language 
For any real number 0 ::; a< 1, the left cut of a is a P-selective set, where the 
left cut of a number in the range [0, 1) is the set {b1b2ba · · · bk j k ~ 0 1\ a > 
O.b1b2ba · · · bk} and O.b1b2ba · · · bk denotes the binary faction denoted by the 
given bits. 

Fig. A.22 P-sel-part I 

In the 1960s, Jockusch [Joc68] first studied semi-membership algorithms, 
by studying the class of languages-the semi-recursive sets-having recursive 
selector functions. 

Around 1980, Selman [Sel79,Sel82a,Sel82b] introduced the P-selective 
sets-the class of sets having polynomial-time selector functions. Selman 
and other researchers obtained many important foundational results [Sel79, 
Sel82a,Sel82b,Ko83]. There followed a half-decade in which relatively lit­
tle attention was paid to the P-selective sets. Then, around 1990, there 
was an abrupt and intense renewal of interest in in the P-selective sets. 
In a flurry of progress (surveyed by Denny-Brown, Han, Hemaspaandra, 
and Torenvliet [DHHT94]), longstanding open problems were resolved and 
new variants were introduced and explored. Of particular interest to this 
book are the NPSV-selective sets of Hemaspaandra, Naik, Ogihara, and Sel­
man [HNOS96b]. 

Definition A.5 A set L is NPSV-selective if there is a function f E NPSV 
such that 

1. (Vx,y) [set-f(x,y) ~ {x,y}], and 
2. (Vx,y) [{x,y} n L =f. 0 ==} (set-f(x,y) = {x} v set-f(x,y) = {y})]. 

The motivations for studying selectivity are varied. One motivation is as 
a relaxation of P. Given that membership in P is open for a wide range of im­
portant sets, it is natural to define generalizations of P and see whether these 
generalizations capture such important sets. A great variety of such classes 
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P-sel - Semi-feasible Computation 

Selected Facts and Theorems 
1. P ~ P-sel ~ RECURSIVE. 
2. The P-selective sets are closed under complementation. 
3. The P-selective sets are closed downward under :::;~08-reductions. 

(BTvEB93] 
4. The P-selective sets are closed under exactly 2k + 2 of the k-ary boolean 

functions properties, namely, those that are either completely degenerate 
or almost-completely degenerate. In particular, the P-selective sets are 
closed under neither union nor intersection. [HJ95b] 

5. NP ~ P-sel ==> P = NP. Indeed, NP ~ Rttt(P-sel) ==> P = NP. 
(Sel79,AA96,BKS95,0gi95b] 

6. a) If all sets in UP are :::;fcreducible to P-selective sets then P = UP. 
b) If all sets in NP are :::;ft-reducible to P-selective sets then P = FewP 

and RP = NP. 
c) If all sets in pNP are :::;ft-reducible to P-selective sets then P = NP. 

(Tod91b] 
7. If there exists a P-selective set that is truth-table-hard for NP then, for 

all k > 0, SATE DTIME(2n/logkn]. (NS99] 
8. P-sel ~ P /poly (indeed, even P-sel ~ P /quadratic). (see Chap. 3) 
9. P-sel ~ NP /linear n coNP /linear. (see Chap. 3) 

10. P-sel ~ NP jn. (see Chap. 3) 
11. If NP ~ NPSV -sel then the polynomial hierarchy collapses. 

(see Chap. 3) 
12. NPSV-sel n NP ~ (NP n coNP)fpoly. (see Chap. 3) 
13. NPSV-sel ~ NP/poly n coNPjpoly. (HNOS96b] 
14. P-sel s;; Rt-r(P-sel) = Rt-tt(P-sel) = Ef-r{P-sel) = Ef-tt(P-sel) s;; 

R~-tt(P-sel) s;; · · · s;; R~-tt(P-sel) s;; Rfk+l)-tt(P-sel) s;; · · ·. (HH096] 
15. P-sel s;; Ef-r(P-sel) s;; E~-T(P-sel) s;; s;; E~-r(P-sel) s;; 

E(k+l)-T(P-sel) s;; · · ·. (HH096] 
16. Any Turing self-reducible P-selective set is in P. (BT96b] 
17. If P = PP then for every non-empty P-selective set A there exists a stan-

dard left-cut L(r) such that A=~ L(r). (HNOS96a] 
18. If A is a P-selective set, then NPNPA ~ NPAEilSAT. In particular, 

NPNpP-sel n NP = NPNP. (KS85,ABGOO] 
19. Ei-(P-sel) ~ EXP /linear. (BL97] 

Fig. A.23 P-sel-part II 

have been defined: the P-selective sets, the P-close sets [Sch86a], the near­
testable sets [GHJY91], the nearly near-testable sets [HH91b], the almost 
polynomial-time sets [MP79], etc. However, the P-selective sets stand out 
from the crowd in their centrality in complexity theory. The NPSV-selective 
sets are, somewhat curiously, best motivated simply as a tool. In particu­
lar, they offer the key bridge to proving that unique solutions collapse the 
polynomial hierarchy (Chap. 3). 
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The NPSV -selective sets are not the only generalization of the P-selective 
sets. Many other generalizations or variations have been developed and stud­
ied [HHN+95,0gi95b,HZZ96, Wan95,HJRW97 ,Zim98,ABGOO,Nic00]. 

Finally, it is very useful to be able to assume that selector functions are 
oblivious to the order of their arguments. Let f'(·, ·) be a selector function 
for L. Note that that f(x,y) = f'(min{x,y},max{x,y}) is also a selector 
function for L. 

Proposition A.6 

1. If L is a P-selective set, then L is P-selective via some selector function 
f E P such that ('v'x,y) [f(x,y) = f(y,x)]. 

2. If L is a NPSV-selective set, then L is NPSV-selective via some selector 
function f E NPSV such that ('v'x,y) [set-f(x,y) = set-f(y,x)]. 

A.15 ffiP, ModkP: Modulo-Based Computation 

Mod p = {L 1(3 NPTM N) ('v'x) [x E L 
k #accN(x) ¢. 0 (mod k)] 

EBP = Mod2P. 

EBP, introduced independently by Papadimitriou and Zachos [PZ83] and 
Goldschlager and Parberry [GP86], captures the power of parity. Cai and 
Hemachandra [CH90] and Beigel, Gill, and Hertrampf [Her90,Bei91 b,BG92] 
generalized the class to modulos other than two. There are oracles relative 
to which EBP does not even contain NP, as shown by Toran [Tor9l,Tor88]. 
Nonetheless, Toda [Tod9lc] proved that BPP6W contains the entire poly­
nomial hierarchy, and Tarui [Tar93J shows that R · PP contains the entire 
polynomial hierarchy (and even PP H). 

A.16 SpanP, OptP: Output-Cardinality and 
Optimization Function Classes 

The counting class #P captures the notion of the number of accepting paths 
of NP machines. This class plays a very central role in complexity theory. 
However, it is not the only function class that plays a central role. 

The function class OptP, introduced by Krentel ([Kre88], see 
also [BJY91]), seeks to capture the notion of maximizing over the set of 
output values of nondeterministic machines. Otir model is as follows. We 
by convention say that any path that does not explicitly output a non­
negative integer has implicitly output the integer 0. A function f is an 
OptP function if there is some such machine, N, for which, on each x, 
f(x) = max{i E Nl some path of N(x) has i as its output}. 



298 A. A Rogues' Gallery of Complexity Classes 

EeP, Modr.P - Modulo-Based Computation 

Power 
Modulo-based computation. 

Definition 

ModkP = {L 1(3 NPTM N) ('v'x) [x E L <===? #accN(x) ¢. 0 (mod k)]}. 

EBP = Mod2P. 

Alternate Definition 

ModkP = L mial q such that, for all x, x E L <===? II{Y I IYI ~ · { 
there is a polynomial-time predicate Panda polyno-} 

q(lxl) A P(x, y)}ll ¢. 0 (mod k) 

Background 
EBP was introduced by Papadimitriou and Zachos [PZ83] and Goldschlager and 
Parberry [GP86]. ModkP was introduced by Cai and Hemachandra ([CH90], 
see also [Her90,BG92]). 

Complete Languages 
EBSAT = {f I f has an even number of satisfying assignments} is complete for 
EBP. Analogous complete sets exist for ModkP. 

Selected Facts and Theorems 
1. UP s;;; SPP s;;; EBP n C=P. 
2. ffipSPP = ffipGlP = ffiPFewP = ffiP. [PZ83,KSTT92,FFK94] 
3. For any k that is a prime power, ModkP = coModkP. [BG92] 
4. For any integer k > 1, ModkP = Mod,.(k)P, where 1r(k) denotes the prod­

uct of all primes that are divisors of k, e.g., 11"(12) = 2 · 3 = 6. In particular, 
for any k that is a prime power and i ~ 1, Modk;P = ModkP. 

([Her90], see also [BG92]) 
5. For any k, ModkP is closed under union. [Her90] 
6. ffipPH s;;; BPPGlP. (see Chap. 4) 
7. There exists an oracle A relative to which pA = NPA = PHA =1= ffiPA = 

EXPA. [BM99] 
8. For each k ~ 2, the existence of sparse ~rtt-hard sets for ModkP implies 

P = ModkP. [OL93] 
9. For each k ~ 2, ModkP s;;; Rrtt(P-sel) ==> P = ModkP. [AA96,0gi95b] 

10. There exists an oracle A relative to which EBP S?; ppPH. 
(see the text and Bibliographic Notes of Chap. 8) 

Open Problem 
• NP s;;; EBP ==> PH s;;; EBP? 

Fig. A.24 EBP and ModkP 
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So, #P focuses on the number of accepting paths of NP machines and 
OptP focuses on the largest output value of an NP machine. The class SpanP 
seeks to capture the functions giving the richness of the output value set. That 
is, a function f is in SpanP if there is some NP Turing Machine N such that, 
on each x, f(x) is the cardinality of the set of strings output on the accepting 
paths of N. (By looking at only the accepting paths, we allow the possibility 
that on some inputs f may take on the value 0.) SpanP was introduced by 
Kobler, Schoning, and Toran ([KST89], see also [Kob89,Sch90]). SpanP is a 
quite flexible class; it is easy to see that SpanP contains both #P and OptP. 

A.17 IP and MIP: Interactive Proof Classes 

A verifier is a polynomial time-bounded probabilistic Turing machine V with 
a special state called query state and k special read/write tapes called com­
munication tapes, where k ~ 1. Through the k communication tapes, the 
verifier interacts with k adversaries P1, ... , Pk called provers, which have 
unlimited computational power and can use randomness but cannot commu­
nicate among others. The interaction with provers is invoked when V enters 
query state. At that moment, for each i, 1 ::; i ::; k, the string held on the ith 
communication tape is sent to Pi. In the next move, for each i, 1 ::; i ::; k, 
Pi supplies an answer, which depends on (1) the input to V, (2) the query, 
(3) the questions and answers passed through the tape so far, and (4) Pi's 
probability distribution. 

Definition A. 7 Let k ~ 1. A language L has a k-prover interactive proof 
system if there exist a verifier with k communication tapes and k provers 
P1. ... , Pk such that for every x, the following two conditions (1) and (2), 
respectively called the correctness condition and the soundness condition, are 
met: 

1. if x E L, then V on x with P1, ... , Pk accepts with probability greater 
than~ and 

2. if x (/. L, then for any provers P{, ... , P{., V on x with P{, ... , P{. rejects 
with probability greater than ~. 

IP (respectively, MIP) is the class of all languages L that have one-prover 
interactive proof systems (respectively, k-prover interactive proof systems for 
some k}. 

We will sometimes omit the word "one-prover" but, by convention, it will be 
implicit. 



300 A. A Rogues' Gallery of Complexity Classes 

IP and MIP (Interactive Proof Systems) 

Power 
Probabilistic verification. 

Definition 

{ 

there is a verifier V and a prover P such that for every x,} 
Ip = L 

it holds that (a} if x E L, then the probability that Von x 
accepts with prover Pis greater than ~ and (b) if x E L, . 
then for any prover P', the probability that V on x accepts 
with prover P' is less than ~ 

Mlp = !L 
there exist some k 2': 1, a k-communication-tape verifier) 
V, and provers H , . . . , Pk such that for every x, it holds 
that (a) if x E L, then the probability that Von x accepts 
provers H, ... ,Pk is greater than ~,and (b) if x E L, · 
then for any provers P{, ... , Pt, the probability that V on 
x accepts with P{, ... , P~ is less than ~ 

Background 
IP was studied independently by Babai [Bab85] and by Goldwasser, Micali, 
and Rackoff [GMR89], with different models and terminology (with Babai in 
particular defining the class AM, Arthur-Merlin). The difference between these 
two models is the treatment of the coin tosses of the verifier, which are sent 
to the prover in Babai's model and kept secret in Goldwasser, Micali, and 
Rackoff's model. Goldwasser and Sipser showed that these two models are 
equivalent [GS89]. MIP was introduced by Ben-Or, Goldwasser, Kilian, and 
Wigderson [BOGKW88]. 

Selected Facts and Theorems 
1. NP ~ IP. [GMR89] 
2. pPP ~ IP. (see Chap. 6) 
3. IP = PSPACE. (see Chap. 6) 
4. MIP = NEXP. (see Chap. 6) 
5. With probability one relative to a random oracle, IP and PSPACE differ. 

[CCG+94] 

Fig. A.25 IP and MIP 

A.18 PBP, SF, SSF: Branching Programs and 
Bottleneck Computation 

A width-k branching program over variables x 1 , ... , Xn is a sequence P = 
{ ( ij, 1-L~, 1-LJ) }j!:1 such that for each j, 1 ::; j ::; m, it holds that 

1. 1 ::; ij ::; n, and 
2. 1-L~ and 1-L} are mappings of {1, ... , k} to itself. 

The triples ( ij, 1-L~, 1-LJ) are called instructions. Given a bitstring x E En, 
whose n bits we will refer to as Xt, x 2 , •.• , Xn (i.e., x is the concatenation 
X1X2 • · • Xn), the product of P with respect to x, denoted by P[x], is 
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PBP, SF, and SSF-Branching Programs, Bottleneck Turing Machines 

Power 
Distributing computations into smaller tasks. 

Definition 

k-PBP = {L 'L is ~cepted by width-k polynomial-size}. 
branchmg programs 

SFk = {L iL is ~cepted by a width-k bottleneck Turing} . 
machmes 

SSF = {L 'Lis acce~ted by a.width-k symmetric bottle-}. 
k neck Thrmg machmes 

p b bT t" SSF _ {L 'Lis accepted by a width-k probabilistic sym-} 
ro a 1 IS IC k - metric bottleneck Turing machines · 

Selected Facts and Theorems 
1. Nonuniform-NC1 = 5-PBP = Uk>2 k-PBP. (see Chap. 7) 
2. Nonuniform-NC1 is the class ~f languages accepted by a family of 

polynomial-size NUDFA programs on some monoid. 
(see the text and Bibliographic Notes of Chap. 7) 

3. Nonuniform-AC0 is the class of languages accepted by a family of 
polynomial-size NUDFA programs on some aperiodic monoid. 

(see the text and Bibliographic Notes of Chap. 7) 
4. PSPACE = SFs = Uk>2 SFk. (see Chap. 7) 
5. PH~ SF4. - ([Ogi94a], see also [Her97,Her00]) 

pMod3 pEilP 
6. SF4 ~ BP. E!)pModaPEB 

([Ogi94a], see also [Her97,Her00]) 
7. For k ;:::: 2, languages in SSFk are many-one reducible to languafes in 

coModktP by functions polynomial-time computable with at most k par-
allel queries to languages in NP. (see Chap. 7) 

8. ProbabilisticSSF2 = NPPP. (see Chap. 7) 

Fig. A.26 PBP, SF, and SSF 

where the product is evaluated from the right to the left. That is, a triple 
( ij, J.L~, J.Lj) in P in effect says that J.L~ has to be multiplied into the product if 

the ijth bit of x is a 0, and J.Lj has to be multiplied into the product otherwise. 
Program P accepts x if P[x] is a mapping that maps 1 to something else; i.e., 
P[x](1) -::f= 1. A language Lis accepted by polynomial-size width-k branching 
programs if there exists a family {Pn}n>l of width-k branching programs 
such that (1) there exists a polynomial p such that for every n, the length 
of Pn is at most p(n) and (2) for every x, x belongs to L if and only if 
f'lxl accepts x. The class of languages accepted by polynomial-size width-k 
branching programs is denoted by k-PBP. 
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For k ~ 2, a width-k bottleneck Turing machine is a polynomial time­
bounded deterministic Turing machine M with an auxiliary input called the 
counter and a special device called the safe-storage, where the counter holds 
a binary integer of length p(!xl), for some fixed polynomial p not dependent 
on x, and the safe-storage is a read/write cell that holds a number from 
the set {1, ... ,k}. For an input x, an auxiliary input y, and a valued E 

{1, ... , k }, let V(x, y, d) denote the value of the safe-storage when M finishes 
its computation. Collection V ( x, v, d), 1 $ d $ k, can then be viewed as a 
mapping of {1, ... , k} to itself, so, we will use f(x, y) to denote the mapping. 
A language L is accepted by M if for every x, it holds that (here we are 
showing an expansion that assumes that p(!xl) ~ 2, but the general case is 
similarly clear) : 

xEL~ 
f(x, 1P(Ixll) o f(x, 1P(Ixll-1o) o f(x, 1P(Ixll-2o1) o f(x, 1P(Ixll-2 oo) o 
... o f(x, OP(Ixll-210) o f(x, OP(Ixl)-l1) o f(x, OP(Ixll) maps 1 to 1, 

where the product is from right to left. SFk is the class of languages accepted 
by bottleneck Turing machines of width k. 

A bottleneck Turing machine M is symmetric if, for every x and every 
permutation 1r over EP(Ixl), it holds that: 

(f(x, 1P(Ixll) o ... o f(x, OP(Ixll))(1) = 1 ~ 
(f(x, 7r(1P(Ixll)) o ... o f(x, 7r(OP(Ixll)))(1) = 1. 

SSFk is the class of all languages accepted by a symmetric bottleneck Turing 
machine of width k. 

A probabilistic width-k symmetric bottleneck Turing machine is defined 
by endowing M the power of flipping coins to determine what to store in the 
storage-value, which turns function f into a probability distribution over the 
set of all mappings of {1, ... , k} to itself. A language L is accepted by M if 
for every x and every permutation 1r over EP(Ixl), it holds that: 

x E L ~ Pr[(f(x,7r(1P(Ixl))) o · · · o f(x,7r(OP(Ixl))))(1) = 1] = ~-
2 

ProbabilisticSSFk is the class of all languages accepted by probabilistic width­
k symmetric bottleneck Turing machines. 

Branching programs were introduced by Lee [Lee59]. For every k ~ 2, 
k-PBP can be viewed as a class of those languages many-one reducible to 
languages accepted by k-state automata via nonuniform (the output depends 
only on the input length) functions each of whose output bits is one of: an in­
put bit, the negation of an input bit, the constant 0, or the constant 1 (such 
reductions in general are studied by Skyum and Valiant [SV85]). Barring­
ton [Bar89J showed that for every k ~ 5, polynomial-size width-k branching 
programs capture nonuniform NC1 and for k = 2, 3, 4, k-PBP are subclasses 
of languages accepted by polynomial-size constant-depth circuits with mod­
ulo 2 gates and modulo 3 gates. 
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Bottleneck Turing machines were introduced by Cai and Furst [CF91], 
who showed that SF5 = PSPACE. The power of SFk and its subclasses with 
k = 2, 3, 4 were studied by Ogihara [Ogi94a] and Hertrampf ([Her97], see 
also [HerOO]). Ogihara [Ogi94a], among other results, exactly classified SF2 
as equaling the class E90ptP, which was originally defined by Hemachandra 
and Hoene [HH91b] to capture the notion of efficient implicit membership 
testing. Hertrampf ([Her97], see also [HerOO]) expressed, using the notion of 
query-order-based classes ([HHW99], see also [HHH97]), exact classifications 
of the power of SF a and SF 4· 

Symmetric bottleneck Turing machines as well as probabilistic versions 
of them are introduced and studied by Hemaspaandra and Ogihara [H097], 
and have been further investigated by Hertrampf ([Her99], see also [HerOO]). 





B. A Rogues' Gallery of Reductions 

If one can solve problem A using a black box that solves problem B, one can 
reasonably say that problem A is "not much harder than" problem B, the 
degree of the "not much" being linked to how powerful and extensive the use 
of B is. Thus, reductions provide a means of classifying the relative hardness 
of sets. If A reduces to B and B reduces to A, then we can reasonably say 
that A and B are of "about the same" hardness. Of course, the closeness of 
the relationship between A and B will again depend on how powerful the 
reduction is. The more computationally weak the reduction is, the stronger 
the claim we can make about the similarity of hardness of A and B. Over the 
years, a rich collection of reductions has been developed to aid in classifying 
the relative hardness of sets. In this chapter, we define the key reductions, 
mention some standard notational shorthands, and then present some com­
ments about reductions and their relative powers. We also discuss a centrally 
important reduction, Cook's reduction, which is the reduction that proves 
that SAT is NP-complete. 

B.l Reduction Definitions: <~, <~, ... 
:5~ (Many-one reductions) 

A~~B ¢::::::} (3! E FP)(Vx)[x E A ¢::::::} f(x) E B]. 
:5~ (Turing reductions) 

A~~PB ¢::::::} A E P8 (see Sect. A.3). 
:5ft (Truth-table reductions) 

A ~ft B ¢::::::} (3g E FP)(3L E P)(Vx)[(3i)(3z1, z2, ... , zt)[g(x) 
z1#z2# · · · #zt#] 1\ (x E A ¢::::::} x#xB(zi)xB(z2) · · · XB(zt) E L)]. 

:5~tt (Disjunctive truth-table reductions) 
A~~ttB ¢::::::} (3g E FP)(Vx)[(3i)(3zl, z2, ... , zt)[g(x) = 
z1#z2# · · · #zt#] 1\ (x E A ¢::::::} z1 E B V z2 E B V · · · V Zt E B)]. (By 
convention, when the machine asks no questions the input is rejected.) 

:5~tt (Conjunctive truth-table reductions) 
A~~ttB ¢::::::} (3g E FP)(Vx)[(3i)(3z1, z2, ... , Zt)[g(x) 
z1 #z2# · · · #zt#] 1\ (x E A ¢::::::} z1 E B 1\ z2 E B 1\ · · · 1\ Zt E B)]. 
(By convention, when the machine asks no questions the input is 
accepted.) 
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~: (Disjunctive 'lUring reductions) 
A$~B {:::=:} A$~B via some deterministic polynomial-time machine M 
that on each input accepts if and only at least one oracle query is made 
and at least one query that M makes is in B. (Note in particular that 
when the machine asks no questions to its oracle, the input is rejected.) 

~~ (Conjunctive 'lUring reductions) 
A$~B {:::=:} A$~B via some deterministic polynomial-time machine 
that on each input accepts if and only if all queries it makes to its oracle 
are in B. (Note in particular that when the machine asks no questions 
to its oracle, the input is accepted.) 

<P (Positive 'lUring reductions) 
-pOB 

A$~08B {:::=:} A$~B via some deterministic 'lUring machine M that for 
some polynomial q runs for all oracles in time q(n) (where n is the input 
length) and that satisfies the additional property that: 

~focpos (Locally positive 'lUring reductions) 
A:5focposB {:::=:} A$~B via some deterministic polynomial-time machine 
M that has the following properties: 
1. (VC: C 2 B)[L(M0 ) 2 L(M8 )], and 
2. (VC: C ~ B)[L(M0 ) ~ L(MB)]. 

~~(n)-tt (f(n)-truth-table reductions) 

A:5j(n)-ttB {:::=:} 

(::lg E FP)(::JL E P)(Vx)[(::l£: i :5 J(lxi))(::Jzl, z2, ... , zt)[g(x) 
z1 #z2# · · · #ze#]A (x E A {:::=:} x#xB(zl)XB(z2) · · · XB(ze) E L)]. 

~:tt (Bounded truth-table reductions) 
A:5~ttB {:::=:} (::Jk)[A :51-tt B]. 

~~(n)-T (f(n)-'Th.ring reductions) 
A:5j(n)-TB {:::=:} A$~B via some deterministic polynomial-time ma­
chine that on each input x makes at most f(lxi) oracle queries. 

~::;. (Many-one logspace reductions) 
A$!;,B {:::=:} (::lf : function f can be computed by a logspace machine) 
(Vx)[x E A {:::=:} f(x) E B]. 

~~np (Many-one coNP reductions) 
A$'::,np B {:::=:} A = B = 0 v (::lf E NPMV) (Vx )[x E A {:::=:} 0 =f. 
set-f(x) ~ B]. 

~i- (Generalized 'lUring reductions) 
A$fB {:::=:} A E C8 . Notes: This is defined only for classes C for which 
relativization has been defined. Clearly, :5~ = $~. By tradition, the no­
tation s:rn denotes :5~p n coNP, i.e., A:5rn B {:::=:} A E NP8 n coNP8 . 

Note on Combining Mechanisms and Bounds Interpretation types 
(disjunctive, conjunctive, positive, etc.) and bounds on the number 
of queries are often combined in the natural way. For example, 
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A :5~(n)-ctt B <===> (3g E FP)(Vx)[(3£: l :5 f(jxl))(3zl. z2, ... , Zt)[g(x) 
z1 #z2# · · · #zt#] 1\ (x E A <===> z1 E B 1\ z2 E B 1\ · · · 1\ Zt E B)]. 

B.2 Shorthands: R and E 

Definition B.l For any text strings a and b for which :5~ is a reduction 
type that has been defined: 

1. For any set C, R:(C) = {L I L :5~ C}. 
2. For any class C, R:(c) = {L I (3C E C)[£ :5~ C]}. 

Definition B.2 For any text strings a and b for which :5~ is a reduction 
type that has been defined: 

1. For any set C, E:(C) = {L I L :5~ C 1\ C :5~ £}. 
2. For any class C, E:(c) = {L I (3C E C)[£ :5~ C 1\ C :5~ £]}. 

B.3 Facts about Reductions 

Proposition B.3 For any sets A and B neither of which is 0 or E*, the 
following hold. 

=? A~: •• B =? 

1. A<L B ===} A <P B =* A ~~tt B =* A <P B ===} A <P B ===} A <sn 
-m -m =* A ~~tt B =* -tt -T -T 

B, 
2. (A :5~ B VA :5d B) ===} A :5~os B ===} A:::;focposB ===} A :5~ B, and 
3. A :5~tt B ===} A :5':::np B. 
4. If B is sparse and A:::;tttB then A:::;~ttB. 

All the above implications-except that A:5tttB ===} A:::;~ttB if B is 
sparse-are immediately clear from the definitions. 

It is not hard to see that :5~ is equivalent to :5~tt• and that :5~ is equivalent 
to :::;~tt" 

Many complexity classes respect reductions. For example, though 
Rttt(NP) = NP <===> NP = coNP, nonetheless NP is closed downward 
under :5~os reductions, i.e., 

NP = R~os(NP). 

Similarly, ~PP(BPP) = BPP and R.Tn(NP n coNP) = NP n coNP. 
Some reductions are powerful enough to bridge the differences be­

tween seemingly-or absolutely-different classes. For example, SPARSE;;? 
TALLY, but it can be shown that R~tt(SPARSE) = R~tt(TALLY). As an­
other example, E S: EXP, but clearly (via padding) R~(E) = R~(EXP) = 
EXP. Finally, though we suspect that NP i= coNP, clearly Rtr(NP) = 
Rtr(coNP). 
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B.4 Circuit-Based Reductions: NCk and ACk 

ACk 
For k ~ 0, a language L is ACk reducible to a language A if there 
exists a family of polynomial-size O(logk n) depth circuits with oracle 
gates, which that this family used with oracle A accepts L, where an 
oracle gate with m inputs contributes 1 to the depth. Furthermore, L is 
logspace-uniform (P-uniform) ACk reducible to A if there is a logspace 
(polynomial-time) algorithm to compute the description of the circuit for 
En given 1 n. 

NCk 
For k ~ 1, a language Lis NCk reducible to a language A if there exists 
a family of polynomial-size, O(logk n) depth, bounded fan-in (all 1\ and 
V gates have in-degree two) circuits with oracle gates, such that this 
family used with oracle A accepts L, where an oracle gate with m inputs 
contributes flog m l to the depth. Furthermore, L is logspace-uniform 
(P-uniform) NCk reducible to A if there is a logspace (polynomial-time) 
algorithm to compute the description of the circuit for En given 1 n. 

B.5 Bibliographic Notes 

Ladner, Lynch, and Selman's seminal paper is the best source on polynomial­
time reductions [LLS75]. Ladner and Lynch [LL 76] is the best source on 
logspace reductions. Positive Turing reductions were introduced by Sel­
man [Sel82b], and locally positive Turing reductions were introduced by 
Hemachandra and Jain [HJ91]. Many-one coNP reductions were introduced 
by Beigel, Chang, and Ogiwara [BC093]. Strong nondeterministic Turing 
reductions were introduced by Selman ([Sel78], see also [Lon82]). Allender 
et al. [AHOW92] proved that if B is sparse then A~~ttB => A ~~tt B. 
Cook's reduction is due (not surprisingly) to Cook [Coo71], though we state 
it here (see Fig. A.3) in a known stronger form. Buhrman, Hemaspaandra, 
and Longpre [BHL95] proved that SPARSE ~ R~~(TALLY), from which 
R~tt(SPARSE) = R~tt(TALLY) clearly follows. R~ (BPP) = BPP is due 
to Ko and Zachos [Ko82,Zac82]. The AC0 reductions were introduced by 
Chandra, Stockmeyer, and Vishkin [CSV84] as reductions among functions. 
Cook [Coo85] introduced the NC1 many-one reductions as reductions of 
among functions. Language versions of the NCk reducibility as well as the 
ACk reducibility were introduced by Wilson [Wil85,Wil90]. In general, for 
every k ~ 0, Nck+l reductions are as powerful as ACk-reductions. Ogi­
hara [Ogi95a] showed for certain classes such as NP and C=P that, for each 
k ~ 0, the P-uniform ACk reducibility closure and the P-uniform NCk+ 1 

reducibility closure coincide. 
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commutator 168,172,174,175 
coModkP 194, 298, 301 
companion 
- best v 
comparison 
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