

Lane A. Hemaspaandra • Mitsunori Ogihara

The Cotnplexity
Theory Cotnpanion

With 43 Figures

'Springer

Authors Series Editors

Prof. Dr. Lane A. Hemaspaandra
Prof. Dr. Mitsunori Ogihara
Department of Computer Science
Rochester, NY 14627

USA
{lane,ogihara}@cs.rochester.edu

Q;t
47.7
.f/4~
20D~

Prof. Dr. Wilfried Brauer
Institut fiir Informatik
'n:chnische Universitiit MUnchen
Arcisstrasse 21,80333 Miinchen, Germany
brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced Computer Science
University of Lei den
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Dataaty
Turku Centre for Computer Science
20 500 Turku, Finland
asalomaa@utu.fi

library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek- CIP-Einheitsaufnahme

Hemaspaandra, Lane A.:
The complexity theory companion/Lane A. Hemaspaandra; Mitsunori Ogihara. -
Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan;
Paris; Tokyo: Springer, 2002

('n:xts in theoretical computer science)
ISBN 3-540-67419-5

ACM Computing Classification (1998}: F.l, F.2.2, F.4

ISBN 3-540-67419-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of ilfustrations,
recitation, broadcasting, ~reduction on microfilm or in any other way, and storage in data
banks. Duplication of th1s publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer -Verlag. Violations are liable for
prosecution under the German Copyright Law;

Springer-Verlag Berlin Heidelberg New York,
a member ofBertelsmannSpringer Science+ Business Media GmbH

©Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, trademarks, etc. in this publication does not imply,
even in the absence of a SJ?l:cific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KUnkeiLopka, Heidelberg
Typesetting: Camera-reaily by the authors
Printed on acid-free paper SPIN 10723529 45/3142SR- 54 3 2 1 0

This book is dedicated to our families-the best of companions.

Preface

Invitation

Secret 1 Algorithms are at the heart of complexity theory.

That is the dark -secret of complexity theory. It is recognized by complex
ity theorists, but would be literally incredible to most others. In this book,
we hope to make this secret credible. In fact, the real secret is even more
dramatic.

Secret 2 Simple algorithms are at the heart of complexity theory.

A corollary of Secret 2 is that every practitioner of computer science or stu
dent of computer science already possesses the ability required to understand,
enjoy, and employ complexity theory.

We realize that these secrets fly in the face of conventional wisdom. Most
people view complexity theory as an arcane realm populated by pointy-hatted
(if not indeed pointy-headed) sorcerers stirring cauldrons of recursion theory
with wands of combinatorics, while chanting incantations involving complex
ity classes whose very names contain hundreds of characters and sear the
tongues of mere mortals. This stereotype has sprung up in part due to the
small amount of esoteric research that fits this bill, but the stereotype is more
strongly attributable to the failure of complexity theorists to communicate in
expository forums the central role that algorithms play in complexity theory.

Throughout this book-from the tree-pruning and interval-pruning algo
rithms that shape the first chapter to the query simulation procedures that
dominate the last chapter-we will see that proofs in complexity theory usu
ally employ algorithms as their central tools. In fact, to more clearly highlight
the role of algorithmic techniques in complexity theory, this book is organized
by technique rather than by topic. That is, in contrast to the organization of
other books on complexity theory, each chapter of this book focuses on one
technique-what it is, and what results and applications it has yielded.

The most thrilling times in complexity theory are when a new technique
is introduced and sweeps like fire over the field. In addition to highlighting
the centrality of algorithms in the proof arsenal of complexity theory, we feel
that our technique-based approach more vividly conveys to the reader the
flavor and excitement of such conflagrations. We invite the reader to come

viii Preface

with us as we present nine techniques, usually simple and algorithmic, that
burned away some of the field's ignorance and helped form the landscape of
modern complexity theory.

Usage

We intend this book as a companion for students and professionals who seek
an accessible, algorithmically oriented, research-centered, up-to-date guide to
some of the most interesting techniques of complexity theory. The authors
and their colleague Joel Seiferas have test-driven the book's approach in two
different courses at the University of Rochester. We have used this technique
based approach in Rochester's one-semester basic complexity theory course,
which is taken by all first-year computer science graduate students and also
by those undergraduates specializing or specially interested in theoretical
computer science, and in our second course on complexity theory, which is
taken by all second-year graduate students as their theory "breadth" course.

We found in both these course settings that the technique-based approach
allowed us to impart to students a significant amount of the feel and expe
rience of complexity theory research and led to more student interest and
involvement than occurred in earlier course incarnations using other texts.
We expect that this will not only benefit the complexity theory students in
the courses, but will also help all the course's students become prepared to
do work that is theoretically aware, informed, and well-grounded.

At times, we stop the flow of a proof or discussion with a "Pause to
Ponder." These are places at which we encourage the reader to pause for a
moment and find his or her own solution to the issue raised. Even an un
successful attempt to craft a solution will usually make the proof/discussion
that follows clearer and more valuable, as the reader will better understand
the challenges posed by the hurdle that the proof/ discussion overcomes.

With some exceptions due to result dependencies, the non-appendix chap
ters are generally ordered to put the easier chapters near the start of the book
and the more demanding chapters near the end of the book.

Acknowledgments

We are extraordinaril:y indebted to the following people, who proofread one or
more chapters, for their invaluable help, suggestions, corrections, and insights:
Eric Allender, Russell Bent, Alina Beygelzimer, Matthew Boutell, Samuel
Chen, Yin-He Cheng, Louis Deaett, Gregory Goldstein, Fred Green, Ulrich
Hertrampf, Chris Homan, Gabriel Istrate, Jason Ku, David Lagakos, Andrew
Learn, Tao Li, loan Macarie, Proshanto Mukherji, Kenneth Regan, William
Scherer III, Alan Selman, D. Sivakumar, Howard Straubing, Robert Swier,

Preface ix

Mayur Thakur, Jonathan Tomer, Jacobo Toran, Leen Torenvliet, Dieter van
Melkebeek, Heribert Vollmer, Julie Zhong, and Marius Zimand. We also
thank the many other people who have helped us with advice, comments,
corrections, literature pointers, most-recent-version information, and sug
gestions: Andris Ambainis, Vikraman Arvind, Richard Beigel, Nate Blay
lock, Daniel Bovet, Jin-Yi Cai, Diane Cass, Stephen Fenner, Lance Fortnow,
William Gasarch, Viliam Geffert, Oded Goldreich, Juris Hartmanis, Edith
Hemaspaandra, Paul Ilardi, Sven Kosub, Richard Lipton, Alexis Maciel, Wolf
gang Merkle, Christos Papadimitriou, Thanos Papathanasiou, Eduardo Pin
heiro, Robert Rettinger, Jorg Rothe, Alex Samorodnitsky, Marcus Schaefer,
Michael Schear, Uwe Schoning, Joel Seiferas, Samik Sengupta, Carl Smith,
Scott Stoness, Madhu Sudan, Chunqiang Tang, Jun Tarui, Thomas Thier auf,
Luca Trevisan, Chris Umans, Osamu Watanabe, Chee Yap, and Stathis Za
chos. Any remaining errors are the responsibility of the authors.

We thank our thesis advisors, Juris Hartmanis and Kojiro Kobayashi;
their insightful, dedicated, joyous approach to research has been a continuing
inspiration to us.

We appreciate the grants-NSF-CCR-8957604, NSF-INT-9116781/
JSPS-ENGR-207, NSF-CCR-9322513, NSF-INT-9513368/DAAD-315-PRO
fo-ab, NSF-CCR-9701911, NSF-CCR-9725021, NSF-INT-9726724, NSF-INT-
9815095/DAAD-315-PPP-gii-ab NSF-DUE-9980943, DARPA-F30602-98-2-
0133, NIA-R01-AG18231-that have supported our research programs during
the planning and writing of this book.

For generous advice, help, and support, we thank the Springer-Verlag se
ries editors and staff, namely, Wilfried Brauer, Grzegorz Rozenberg, Arto Sa
lomaa, Alfred Hofmann, Frank Holzwarth, Ingeborg Mayer, Sherryl Sundell,
and Hans Wossner. Our own department's technical and secretarial staff
especially Jill Forster, Elaine Heberle, and Jim Roche-was invaluable in
keeping our computers up and our manuscript copied and circulating, and
we much appreciate their help.

We are grateful to those colleagues-Peter van Emde Boas, Harald
Hempel, Jorg Rothe, Alan Selman, Seinosuke Toda, Leen Torenvliet, Heribert
Vollmer, Klaus Wagner, Osamu Watanabe, and Gerd Wechsung-who have
generously hosted our research visits during the planning and writing of this
book, and to the many colleagues, as cited in the Bibliographic Notes sections,
who have collaborated with us on the research described in some sections of
this book.

Above all, we thank Edith, Ellen, Emi, and Erica for their advice, love,
and support.

Lane A. Hemaspaandm

Mitsunori Ogiham

Rochester, NY
October 2001

Contents

Preface . vii
Invitation . vii
Usage ... viii

1. The Self-Reducibility Technique . 1
1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 2
1.2 The 'I'uring Case........ 18
1.3 The Case of Merely Putting Sparse Sets in NP - P: The

Hartmanis-lmmerman-Sewelson Encoding 22
1.4 OPEN ISSUE: Does the Disjunctive Case Hold? 26
1.5 Bibliographic Notes . 26

2. The One-Way Function Technique . 31
2.1 GEM: Characterizing the Existence of One-Way Functions . . 32
2.2 Unambiguous One-Way Functions Exist If and Only If

Bounded-Ambiguity One-Way Functions Exist. 35
2.3 Strong, Total, Commutative, Associative One-Way

Functions Exist If and Only If One-Way Functions Exist 36
2.4 OPEN ISSUE: Low-Ambiguity, Commutative, Associative

One-Way Functions? . 42
2.5 Bibliographic Notes . 43

3. The Tournament Divide and Conquer Technique 45
3.1 GEM: The Semi-feasible Sets Have Small Circuits.......... 45
3.2 Optimal Advice for the Semi-feasible Sets 48
3.3 Unique Solutions Collapse the Polynomial Hierarchy 56
3.4 OPEN ISSUE: Are the Semi-feasible Sets in P /linear? 63
3.5 Bibliographic Notes . 63

4. The Isolation Technique . 67
4.1 GEM: Isolating a Unique Solution . 68
4.2 Toda's Theorem: PH ~ pPP . 72
4.3 NL/poly = UL/poly . 82

xii Contents

4.4 OPEN ISSUE: Do Ambiguous and Unambiguous
Nondeterminism Coincide?.............................. 87

4.5 Bibliographic Notes . 87

5. The Witness Reduction Technique........................ 91
5.1 Framing the Question: Is #P Closed Under

Proper Subtraction?. 91
5.2 GEM: A Complexity Theory for Feasible Closure Properties

of #P .. 93
5.3 Intermediate Potential Closure Properties. 99
5.4 A Complexity Theory for Feasible Closure Properties

of OptP .. 103
5.5 OPEN ISSUE: Characterizing Closure Under

Proper Decrement 105
5.6 Bibliographic Notes 106

6. The Polynomial Interpolation Technique 109
6.1 GEM: Interactive Protocols for the Permanent 110
6.2 Enumerators for the Permanent 119
6.3 IP = PSPACE .. 122
6.4 MIP = NEXP ... 133
6.5 OPEN ISSUE: The Power of the Provers 163
6.6 Bibliographic Notes 163

7. The Nonsolvable Group Technique 167
7.1 GEM: Width-5 Branching Programs Capture

Nonuniform-NC1•........................... 168
7.2 Width-5 Bottleneck Machines Capture PSPACE 176
7.3 Width-2 Bottleneck Computation 181
7.4 OPEN ISSUE: How Complex Is Majority-Based

Probabilistic Symmetric Bottleneck Computation? 192
7.5 Bibliographic Notes 192

8. The Random Restriction Technique 197
8.1 GEM: The Random Restriction Technique and a

Polynomial-Size Lower Bound for Parity 197
8.2 An Exponential-Size Lower Bound for Parity 207
8.3 PH and PSPACE Differ with Probability One 218
8.4 Oracles That Make the Polynomial Hierarchy Infinite 222
8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite with

Probability One? 231
8.6 Bibliographic Notes 231

Contents xiii

9. The Polynomial Technique 235
9.1 GEM: The Polynomial Technique 236
9.2 Closure Properties of PP 241
9.3 The Probabilistic Logspace Hierarchy Collapses 252
9.4 OPEN ISSUE: Is PP Closed Under Polynomial-Time Turing

Reductions? . 259
9.5 Bibliographic Notes 260

A. A Rogues' Gallery of Complexity Classes 263
A.1 P: Determinism .. 264
A.2 NP: Nondeterminism 266
A.3 Oracles and Relativized Worlds 268
A.4 The Polynomial Hierarchy and Polynomial Space:

The Power of Quantifiers . 270
A.5 E, NE, EXP, and NEXP 27 4
A.6 P /Poly: Small Circuits 276
A.7 L, NL, etc.: Logspace Classes 277
A.8 NC, AC, LOGCFL: Circuit Classes 279
A.9 UP, FewP, and US: Ambiguity-Bounded Computation and

Unique Computation 281
A.10 #P: Counting Solutions .. : 286
A.ll ZPP, RP, coRP, and BPP: Error-Bounded Probabilism 288
A.12 PP, C=P, and SPP: Counting Classes 290
A.13 FP, NPSV, and NPMV: Deterministic and Nondeterministic

Functions ... 291
A.14 P-Sel: Semi-feasible Computation 294
A.15 E9P, ModkP: Modulo-Based Computation 297
A.16 SpanP, OptP: Output-Cardinality and Optimization

Function Classes . 297
A.17 IP and MIP: Interactive Proof Classes 299
A.18 PBP, SF, SSF: Branching Programs and Bottleneck

Computation . 300

B. A Rogues' Gallery of Reductions 305
B.1 Reduction Definitions: :::;~, :::;~, 305
B.2 Shorthands: R and E 307
B.3 Facts about Reductions 307
B.4 Circuit-Based Reductions: NCk and ACk 308
B.5 Bibliographic Notes 308

References . 309

Index ... 335

1. The Self-Reducibility Technique

A set S is sparse if it contains at most polynomially many elements at each
length, i.e.,

(3 polynomial p)(Vn)[lj{x I xES 1\ jxj = n}ll ~ p(n)]. (1.1)

This chapter studies one of the oldest questions in computational complexity
theory: Can sparse sets be NP-complete?

As we noted in the Preface, the proofs of most results in complexity theory
rely on algorithms, and the proofs in this chapter certainly support that claim.
In Sect. 1.1, we1 will use a sequence of increasingly elaborate deterministic
tree-pruning and interval-pruning procedures to show that sparse sets cannot
be ~~-complete, or even ~ttt-hard, for NP unless P = NP. (The appendices
contain definitions of and introductions to the reduction types, such as ~~
and ~ttt• and the complexity classes, such asP and NP, that are used in this
book.)

Section 1.2 studies whether NP can have ~~-complete or ~~-hard sparse
sets. pNP[O(logn)] denotes the class of languages that can be accepted by
some deterministic polynomial-time Turing machine allowed at most O(log n)
queries to some NP oracle. In Sect. 1.2, we will-via binary search, self
reducibility algorithms, and nondeterministic algorithms-prove that sparse
sets cannot be ~~-complete for NP unless the polynomial hierarchy collapses
to pNP[O(logn)J, and that sparse sets cannot be ~~-hard for NP unless the
polynomial hierarchy collapses to NPNP.

As is often the case in complexity-theoretic proofs, we will typically use
in the construction of our algorithms the hypothesis of the theorem that the
algorithm is establishing (e.g., we will build a P algorithm for SAT, and will
use in the algorithm the-literally hypothetical-sparse ~~-complete set for
NP). In fact, this "theorems via algorithms under hypotheses" approach is
employed in each section of this chapter.

FUrthermore, most of Sects. 1.1 and 1.2 are unified by the spirit of their
algorithmic attack, which is to exploit the "(disjunctive) self-reducibility" of
SAT-basically, the fact that a boolean formula is satisfiable if and only if
either it is satisfiable with its first variable set to False or it is satisfiable with

1 In this book, "we" usually refers to the authors and the readers as we travel
together in our exploration of complexity theory.

2 1. The Self-Reducibility Technique

its first variable set to True. A partial exception to the use of this attack
in those sections is the left set technique, which we use in Sect. 1.1.2. This
technique, while in some sense a veiled tree-pruning procedure inspired by a
long line of self-reducibility-based tree-pruning procedures, adds a new twist
to this type of argument, rather than being a direct invocation of SAT's
self-reducibility.

Section 1.3 studies not whether there are sparse NP-complete sets, but
rather whether NP - P contains any sparse sets at all. Like the previous
sections, this section employs explicit algorithmic constructions that them
selves use objects hypothesized to exist by the hypotheses of the theorems
for which they are providing proofs. The actual result we arrive at is that
NP - P contains sparse sets if and only if deterministic and nondeterministic
exponential time differ.

Throughout this book, we will leave the type of quantified variables im
plicit when it is clear from context what that type is. For example, in equa
tion 1.1, the "(Vn)" is implicitly "(Vn E {0,1,2, ... })," and "(Vx)" is typi
cally a shorthand for "(Vx E E*)." We will use a colon to denote a constraint
on a variable, i.e., "(Vx: R(x)) [S(x)]" means "(Vx) [R(x) => S(x)]," and
"(:lx: R(x)) [S(x)]" means "(:lx) [R(x) 1\ S(x)]." For any set A and any nat
ural number n, we will use A~n to denote the strings of A that are of length
at most n, and we will use A=n to denote the strings of A that are of length
exactly n. Given a 'lUring machine M, we will use L(M) to denote the lan
guage accepted by the machine (with respect to whatever the acceptance
mechanism of the machine is).

1.1 GEM: There Are No Sparse NP-Complete Sets
Unless P=NP

1.1.1 Setting the Stage: The Pruning Technique

Before we turn to Mahaney's Theorem-NP has sparse complete sets only if
P = NP-and its generalization to bounded-truth-table reductions, we first
prove two weaker results that display the self-reducibility-based tree-pruning
approach in a simpler setting. (Below, in a small abuse of notation we are
taking "1" in certain places-such as in expressions like "1 *"-as a shorthand
for the regular expression representing the set { 1}.)

Definition 1.1 A set T is a tally set exactly if T ~ 1 *.

Theorem 1.2 If there is a tally set that is ~'fn-hard for NP, then fl = NP.

Corollary 1.3 If there is a tally set that is NP-complete, then P = NP.

We note in passing that if P = NP, then the singleton set {1} is trivially
both NP-complete and coNP-complete. Thus, all the "if ... then ... " theorems

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 3

of this section (Sect. 1.1) have true converses. We state them in "if ... then ... "
form to stress the interesting direction.

Proof of Theorem 1.2 LetT be a tally set that is ~~-hard for NP. Since
the NP-complete set

SAT = {f I f is a satisfiable boolean formula}

is in NP and T is ~~-hard for NP, it follows that SAT~~T. Let g be a
deterministic polynomial-time function many-one reducing SAT toT. Let k
be an integer such that ('v'x)[lg(x)l ~ lxlk + k]; since g is computable by some
deterministic polynomial-time Turing machine, such a k indeed must exist
since that machine outputs at most one character per step.

We now give, under the hypothesis of the theorem, a deterministic
polynomial-time algorithm for SAT, via a simple tree-pruning procedure.
The input to our algorithm is a boolean formula F. Without loss of general
ity, let its variables be VI, ... , Vm and let m :?: 1. We will denote the result of
assigning values to some of the variables of F via expressions of the following
form: F[vi = True, V3 = False], where True denotes the constant true and
False denotes the constant false. For example, if F = VI V v2 V V3 then

F[vi = True, V3 = False] = True V V2 V False,

and
(F[vi = True])[v3 =False] =True V v2 V False.

Our algorithm has stages numbered 0, 1, ... , m + 1. At the end of each
stage (except the final one), we pass forward a collection of boolean formulas.
Initially, we view ourselves as having just completed Stage 0, and we view
ourselves as passing forward from Stage 0 a collection, C, containing the
single formula F.
Stage i, 1 :::; i ::5 m, assuming that the collection at the end
of Stage i - 1 is the following collection of formulas: { F1 , ••• , Ft.}.
Step 1 Let C be the collection

{FI[vi =True], F2[vi =True], ... Fl[vi =True],
Fl[vi =False], F2[vi =False], ... Fe[vi =False]}.

Step 2 Set C' to be 0.
Step 3 For each formula fin C (in arbitrary order) do:

1. Compute g(f).
2. If g(f) E 1 * and for no formula h E C' does g(f) = g(h), then add f to

C'.

End Stage i [C' is the collection that gets passed on to Stage i + 1]

The action of our algorithm at Stage m + 1 is simple: F is satisfiable if
and only if some member of the (variable-free) formula collection output by
Stage m evaluates to being true.

4 1. The Self-Reducibility Technique

As to the correctness of our algorithm, note that after Stage 0 it certainly
holds that

the collection, C, contains some satisfiable formula
{::::::::}

F is satisfiable,
(1.2)

since after Stage 0 formula F is the only formula in the collection. Note also
that, for each i, 1 ~ i ~ m,

the collection input to Stage i contains some
satisfiable formula

{::::::::}

the collection output by Stage i contains some
satisfiable formula.

(1.3)

Will now argue that this is so, via using a self-reducibility-based argument. In
the present context, the relevant self-reducibility fact is that for any formula
F containing v as one of its variables,

F is satisfiable {::::::::}
((F[v =True] is satisfiable) V (F[v =False] is satisfiable)),

since any satisfying assignment must assign some value to each variable. So
Step 1 of Stage i does no damage to our invariant, equation 1.3. What about
Steps 2 and 3? (In terms of the connection to Step 1, it is important to keep
in mind that if, for example, formula F having variable v is in our collection
at the start of the stage and is satisfiable, then it must be the case that

(F[v =True] is satisfiable) V (F[v =False] is satisfiable),

so it must be the case that

g(F[v = True]) E TV g(F[v = False]) E T.

And of course, T ~ 1 *.) Steps 2 and 3 "prune" the formula set as follows.
Each formula f from Step 1 is kept unless either

a. g(f) ¢ 1 *, or
b. g(f) E 1 * but some hE C' has g(f) = g(h).

Both these ways, (a) and (b), of dropping formulas are harmless. Recall that
SAT~~T via function g, and so iff E SAT then g(f) E T. However, regard
ing (a), T ~ 1 *so if g(f) ¢ 1 *then g(f) ¢ T, and so f ¢SAT. Regarding (b),
if g(f) = g(h) and h has already been added to the collection to be output by
Stage (i), then there is no need to output f as---since SAT~~T via reduction
g-we know that

f E SAT {::::::::} g(f) E T

and
hE SAT {::::::::} g(h) E T.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 5

Thus, f E SAT <==> h E SAT, and so by discarding f but leaving in h,
we do no damage to our invariant, equation 1.3. So by equations 1.2 and 1.3
we see that F is satisfiable if and only if some formula output by Stage m
is satisfiable. As the formulas output by Stage m have no free variables, this
just means that one of them must evaluate to being true, which is precisely
what Stage m + 1 checks.

Thus, the algorithm correctly checks whether F is satisfiable. But is this a
polynomial-time algorithm? IFI will denote the length ofF, i.e., the number
of bits in the representation of F. Let IFI = p. Note that after any stage
there are at most pk + k + 1 formulas in the output collection, and each of
these formulas is of size at most p. This size claim holds as each formula in
an output collection is formed by one or more assignments of variables of
F to being True or False, and such assignments certainly will not cause an
increase in length (in a standard, reasonable encoding). We will say that a
string s is a tally string exactly if s E 1 *. The pk + k + 1 figure above holds
as (due to the final part of Step 3 of our algorithm) we output at most one
formula for each tally string to which (nk + k-time function) g can map, and
even if g outputs a 1 on each step, g can output in pk + k steps no tally string
longer than 1 Pk +k. So, taking into account the fact that the empty string is a
(degenerate) tally string, we have our pk + k + 1 figure. From this, from the
specification of the stages, and from the fact that g itself is a polynomial-time
computable function, it follows clearly that the entire algorithm runs in time
polynomial in IFI· 0

In the proof of Theorem 1.2, we used self-reducibility to split into two each
member of a set of formulas, and then we pruned the resulting set using the
fact that formulas mapping to non-tally strings could be eliminated, and the
fact that only one formula mapping to a given tally string need be kept. By
repeating this process we walked down the self-reducibility tree of any given
formula, yet we pruned that tree well enough to ensure that only a polynomial
number of nodes had to be examined at each level of the tree. By the self
reducibility tree-more specifically this is a disjunctive self-reducibility tree
of a formula, we mean the tree that has the formula as its root, and in which
each node corresponding to a formula with some variables unassigned has as
its left and right children the same formula but with the lexicographically
first unassigned variable set respectively to True and to False.

In the proof of Theorem 1.2, we were greatly helped by the fact that we
were dealing with whether tally sets are hard for NP. Tally strings are easily
identifiable as such, and that made our pruning scheme straightforward. We
now turn to a slightly more difficult case.

Theorem 1.4 I! there is a sparse set that is s~ -hard for coNP, then
P=NP.

Corollary 1.5 If there is a sparse coNP-complete set, then P = NP.

6 1. The Self-Reducibility Technique

The proof of Theorem 1.4 goes as follows. As in the proof of Theorem 1.2,
we wish to use our hypothesis to construct a polynomial-time algorithm for
SAT. Indeed, we wish to do so by expanding and pruning the self-reducibility
tree as was done in the proof of Theorem 1.2. The key obstacle is that the
pruning procedure from the proof of Theorem 1.2 no longer works, since
unlike tally sets, sparse sets are not necessarily "P-capturable" (a set is P
capturable if it is a subset of some sparse P set). In the following proof,
we replace the tree-pruning procedure of Theorem 1.2 with a tree-pruning
procedure based on the following counting trick. We expand our tree, while
pruning only duplicates; we argue that if the tree ever becomes larger than a
certain polynomial size, then the very failure of our tree pruning proves that
the formula is satisfiable.

Proof of Theorem 1.4 LetS be the (hypothetical) sparse set that is :5~
hard for coNP. For each .e, let Pt(n) denote the polynomial nl +.e. Let d be
such that ('v'n)[JIS~nll :5 Pd(n)].2 Since SATE NP, it follows that SAT:5~S.
Let g be a deterministic polynomial-time function many-one reducing SAT to
S. Let k be an an integer such that ('v'x)[lg(x)l :5 Pk(n); since g is computed
by a deterministic polynomial-time Turing machine, such a k indeed exists.

We now give, under the hypothesis of this theorem, a deterministic
polynomial-time algorithm for SAT, via a simple tree-pruning procedure.
As in the proof of Theorem 1.2, let F be an input formula, and let m be the
number of variables in F. Without loss of generality, let m ~ 1 and let the
variables ofF be named v1, ... , Vrn· Each stage of our construction will pass
forward a collection of formulas. View Stage 0 as passing on to the next stage
the collection containing just the formula F. We now specify Stage i. Note
that Steps 1 and 2 are the same as in the proof of Theorem 1.2, Step 3 is
modified, and Step 4 is new.

Stage i, 1 ~ i ~ m, assuming the collection at the end of Stage i -1
is{Ft, ... ,FL}.
Step 1 Let C be the collection

{Fl[vi =True], F2[vi =True], ... Ft[Vi =True],
F1[vi =False], F2[vi =False], ... Ft[vi =False]}.

Step 2 Set C' to be 0.
Step 3 For each formula f inC (in arbitrary order) do:

1. Compute g(f).
2. If for no formula hE C' does g(!) = g(h), then add f to C'.

2 The IJS5nll, as opposed to the IIS=n11 that implicitly appears in the definition
of "sparse set" (equation 1.1), is not a typographical error. Both yield valid and
equivalent definitions of the class of sparse sets. The JJS=nll approach is, as we
will see in Chap. 3, a bit more fine-grained. However, the proof of the present
theorem works most smoothly with the IJSSnJI definition.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 7

Step 4 If C' contains at least Pd(Pk(IFI))+1 elements, stop and immediately
declare that FE SAT. (The reason for the Pd(Pk(IFI)) + 1 figure will be made
clear below.)

End Stage i [C' is the collection that gets passed on to Stage i + 1]

The action of our algorithm at Stage m + 1 is as follows: If some member
of the (variable-free) formula collection output by Stage m evaluates to being
true we declare FE SAT, and otherwise we declare F ¢SAT.

Why does this algorithm work? Let n represent IFI· Since Pd(Pk(n)) + 1 is
a polynomial in the input size, F, it is clear that the above algorithm runs in
polynomial time. If the hypothesis of Step 4 is never met, then the algorithm
is correct for reasons similar to those showing the correctness of the proof of
Theorem 1.2.

If Step 4 is ever invoked, then at the stage at which it is invoked, we
have Pd(Pk(n)) + 1 distinct strings being mapped to by the non-pruned nodes
at the current level of our self-reducibility tree. (Recall that by the self
reducibility tree-more specifically this is a disjunctive self-reducibility tree
of a formula, we mean the tree that has the formula as its root, and in which
each node corresponding to a formula with some variables unassigned has as
its left and right children the same formula but with the lexicographically
first unassigned variable set respectively to True and False.) Note that each
of these mapped-to strings is of length at most Pk(n) since that is the longest
string that reduction g can output on inputs of size at most n. However, there
are only Pd (Pk (n)) strings in S~Pk (n}. As usual, E denotes our alphabet,
and as usual we take E = {0, 1}. So since the formulas in our collection
map to Pd(Pk(n)) + 1 distinct strings in (E*)~Pk(n), at least one formula in
our collection, call it H, maps under the action of g to a string in 8.3 So
g(H) ¢ S. However, SAT reduces to S via g, soH is satisfiable. Since H was
obtained by making substitutions to some variables of F, it follows that F is
satisfiable. Thus, if the hypothesis of Step 4 is ever met, it is indeed correct
to halt immediately and declare that F is satisfiable. 0 Theorem 1.4

Pause to Ponder 1.6 In light of the comment in footnote 3, change the
proof so that Step 4 does not terminate the algorithm, but rather the algorithm
drives forward to explicitly find a satisfying assignment for F. (Hint: The
crucial point is to, via pruning, keep the tree from getting too large. The
following footnote contains a give-away hint. 4)

3 Note that in this case we know that such an H exists, but we have no idea which
formula is such an H. See Pause to Ponder 1.6 for how to modify the proof to
make it more constructive.

4 Change Step 4 so that, as soon as C' contains Pd(Pk(n)l + 1 formulas, no more
elements are added to C' at the current level.

8 1. The Self-Reducibility Technique

1.1.2 The Left Set Technique

1.1.2.1 Sparse Complete Sets for NP. So far we have seen, as the proofs
of Theorems 1.2 and 1.4, tree-pruning algorithms that show that "thin" sets
cannot be hard for certain complexity classes. Inspired by these two results,
Mahaney extended them by proving the following lovely, natural result.

Theorem 1. 7 If NP has sparse complete sets then P = NP.

Pause to Ponder 1.8 The reader will want to convince him- or herself of
the fact that the approach of the proof of Theorem 1.4 utterly fails to establish
Theorem 1. 7. (See this footnote for why. 5)

We will not prove Theorem 1.7 now since we soon prove, as Theorem 1.10,
a more general result showcasing the left set technique, and that result will
immediately imply Theorem 1.7. Briefly put, the new technique needed to
prove Theorems 1.7 and 1.10 is the notion of a "left set." Very informally, a
left set fills in gaps so as to make binary search easier.

Theorem 1. 7 establishes that if there is a sparse NP-complete set then
P = NP. For NP, the existence of sparse NP-hard sets and the existence
of sparse NP-complete sets stand or fall together. (One can alternatively
conclude this from the fact that Theorem 1.10 establishes its result for NP
~~tt-hardness rather than merely for NP-~~tt-completeness.)

Theorem 1.9 NP has sparse ~~-hard sets if and only if NP has sparse
~~-complete sets.

Proof The "if" direction is immediate. So, we need only prove that if NP
has a ~~-hard sparse set then it has a ~~-complete sparse set. Let S be
any sparse set that is ~~-hard for NP. Since S is ~~-hard, it holds that
SAT~~S. Let f be a polynomial-time computable function that many-one
reduces SAT to S. Define

S' = {Ok#y I k ;::: 0 1\ (::lx E SAT)[k;::: lxl 1\ f(x) = y]}.

The rough intuition here is that S' is almost /(SAT), except to make the
proof work it via the Ok also has a padding part. Note that if Ok#z E S'
then certainly z E S. S' is clearly in NP, since to test whether Ok#z is
in S' we nondeterministically guess a string x of length at most k and we
nondeterministically guess a potential certificate of x E SAT (i.e., we guess a
complete assignment of the variables of the formula x), and (on each guessed
path) we accept if the guessed string/certificate pair is such that f(x) = z

5 The analogous proof would merely be able to claim that if the tree were getting
"bushy," there would be at least one unsatisfiable formula among the collection.
This says nothing regarding whether some other formula might be satisfiable.
Thus, even if the set C' is getting very large, we have no obvious way to prune
it.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 9

and the certificate proves that x E SAT. Given that S is sparse, it is not
hard to see that S' is also sparse. Finally, S' is NP-hard because, in light of
the fact that SAT::;~S via polynomial-time reduction f, it is not hard to see
that SAT::;~S' via the reduction f'(x) = olxl#f(x). 0

We now turn to presenting the left set technique. We do so via proving
that if some sparse set is NP-complete under bounded-truth-table reductions
then P = NP.

Theorem 1.10 If there is a sparse set then P = NP that is ::;~tt-hard for
NP, then P = NP.

In the rest of the section, we prove Theorem 1.10.

1.1.2.2 The Left Set and Wmax· Let L be an arbitrary member of NP.
There exist a polynomial p and a language in A E P such that, for every
X E E",

x E L {::::::::} (::lw E Ep(lxll)[(x, w) E A].

For each x E E" and w E E", call w a witness for x E L with respect to A
and p if lwl = p(lxl) and (x, w) EA. Define the left set with respect to A and
p, denoted by Left[A,p], to be

{(x,y) I x E E" 1\ y E EP(Ixl) 1\ (::lw E Ep(lxll)[w ~ y 1\ (x,w) E A]},

i.e., Left[A, p] is the set of all (x, y) such that y belongs to Ep(lxl) and is "to
the left" of some witness for x E L with respect to A and p. For each x E E",
define

Wmax(x) = max{y E EP(Ixlll (x,y) E A};

if {y E EP(Ixlll (x, y) E A} is empty, then Wmax(x) is undefined. In other
words, Wmax(x) is the lexicographic maximum of the witnesses for x E L
with respect to A and p. Clearly, for every x E E",

X E L {::::::::} Wmax(x) is defined,

and
x E L {::::::::} (::lyE EP(Ixll)[(x, y) E Left[A,p]].

Furthermore, for every x E E", the set

{y E Ep(lxl) I (x, y) E Left[A, p]}

equals {y E EP(Ixll I QP(Ixl) ::::; y ::::; Wmax(x)} if x E L and equals 0 otherwise
{see Fig. 1.1). More precisely,

Also,

(Vx E E")(Vy E EP(Ixll)[(x,y) E Left[A,p] {::::::::} y E Wmax(x)].

(Vx E E")(Vy,y' E EP(Ixll)[(((x,y) E Left[A,p]) 1\ (y' < y))
===> (x,y') E Left[A,p]].

{1.4)

10 1. The Self-Reducibility Technique

0 ... 0 witnesses 1.. .1

0 .. . 0 no witnesses 1.. .1

Fig. 1.1 The left set Left[A,p]. Top: The case when x E L. The arrows above are
witnesses for x E L with respect to A and p, Wmax(x) is the rightmost arrow, and
the shaded area is {y E ~P(I:~:I) I (x, y) E Left[A, p]}. Bottom: The case when x rj. L.
Wmax(x) is undefined and {y E ~P(I:~:I) I (x,y) E Left[A,p]} = 00

Note that Left[A,p] is in NP via the nondeterministic Turing machine
that, on input (x, y), guesses w E EP(Ixl), and accepts if

(y E EP(Ixl)) 1\ (y ::=; w) 1\ ((x, y) E A)

and rejects otherwise.
Below, we introduce a useful characterization of ::=;~tt reductions. Let k 2::

1. A k-truth-table condition is a (k+1)-tuple C such that the first component
of C is a boolean function of arity k and each of the other components of
Cis a member of E*. For a k-truth-table condition C =(a, vi, ... ,vk), we
call a the truth-table of C, call {w I (3i : 1 ::::; i ::::; k)[w = vi]} the queries
of C, and, for each i, 1 ::::; i ::::; k, call Vi the ith query of C. For a language
D, we say that the k-truth-table condition (a, vi, .. 0 ,vk) is satisfied by D if
a(xn(v!), ... , xn(vk)) = 1.

Proposition 1.11 Suppose that a language C is ::=;~tt-reducible to a lan
guage D. Then there exist an integer k 2:: 1 and a polynomial-time computable
function f from E* to the set of all k-truth-table conditions, such that for all
u E E*,

u E C {::::::::} f (u) is satisfied by D.

Proof of Proposition 1.11 Suppose that, for some k;::: 1, a language C
is ::=;r-tt-reducible to a language D via (fo, Bo) such that fo E FP and B 0 E P.
For all u E E*, there exist some l, 1 ::::; l ::::; k, and VI, .. 0 , vz E E*, such that

• fo(u) =vi#··· #vz#, and
• u E Left[A,p] {::::::::} u#xn(v!) · · · xn(vz) E Bo,

where#¢ E. Let !I be the function from E* to (E*#)k defined for all u E E*
by

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 11

where fo(u) = v1# ···#vi#· Define B1 to be the set of all u#b1 · · · bk,
u E E*, b1, ... ,bk E E, such that

u#b1 · · · b1 E Bo,

where lis the integer such that fo(u) E (E*#)1• Since B0 E P and foE FP,
it holds that B1 E P and 11 E FP.

Let (3 = XD(E). Let u E E* and let fo(u) = v1# ···#vi#· Then

u#xv(vl) · · · xv(v1) E Bo <==> u#xv(vl) · · · xv(v,)f3k-l E B1.

Since 11(u) = v1# · · · #v1#k+1-l, we have that the pair (11,Bl) witnesses
that C ::;ttt D.

Define function f from E* to the set of all k-truth-table conditions as
follows: For each u E E*,

f(u) = (a,v1, ... ,vk),

where 11 (u) = v1 # · · · #vk # and 0! is the boolean function defined for all
b1, ... ,bk E {0,1}k by

a(b1, ... , bk) = XB 1 (u#b1 · · · bk)·

Since 11 E FP and k is a constant, f E FP. For every u E E*,

u E C <==> u#xv(vl) · · · xv(vk) E B1

and

u#xv(vl) · · · xv(vk) E B1 <==> a(xv(vl), ... , xv(vk)) = 1,

where 11(u) = v1# · · · #vk#· So, for all u E E*,

u E C <==> f(u) is satisfied by D.

Thus, the statement of the proposition holds. 0 Proposition 1.11
Suppose that NP has a sparse ::;~tt-hard set, S. Since L was an arbi

trary member of NP, it suffices to prove that L E P. Since Le.ft[A, p] E NP,
Le.ft[A,p]::;~ttS. So, by Proposition 1.11, there exist some k 2:: 1 and f E FP
such that, for all u E E*, f(u) is a k-truth-table condition, and

u E Le.ft[A,p] <==> f(u) is satisfied by S.

In preparation for the remainder of the proof, we define some polynomials. Let
Pl be a strictly increasing polynomial such that for all x E E* and y E EP(Ixl),
I (x, Y) I ::; Pl (I xi). Let P2 be a strictly increasing polynomial such that for all
u E E*, every query of f (u) has length at most P2(lui). Let P3 be a strictly
increasing polynomial such that for all integers n 2:: 0 IIS~nll ::; p3(n). Define
q(n) = P3(P2(Pl(n))). Then, for all x E E*,

ll{w E S I (:lyE EP(Ixll)[w is a query of /((x,y))]}ll::; q(lxl).

Define r(n) = k!2k(2q(n)+1)k. Also, for each d, 0::; d $ k, define rd(n) = (k
d)!2k-d(2q(n) + 1)k-d. Note that r0 =rand Tk is the constant 1 polynomial.

12 1. The Self-Reducibility Technique

1.1.2.3 A Polynomial-Time Search Procedure for Wmax· To prove
that L E P, we will develop a polynomial-time procedure that, on input x E
E*, generates a list of strings in EP(Ixl) such that, if Wmax(x) is defined then
the list is guaranteed to contain Wmax(x). The existence of such a procedure
implies L E P as follows: Let M be a Turing machine that, on input x E E*,
runs the enumeration procedure to obtain a list of candidates for Wmax(x),
and accept if the list contains a string y such that (x, y) E A and reject
otherwise. Since the enumeration procedure runs in polynomial time and
A E P, M can be made polynomial-time bounded. Since the output list of
the enumeration procedure is guaranteed to contain Wmax(x) if it is defined,
M accepts if x E L. If x fl. L, there is no y E EP(Ixl) such that (x, y) E A, so
M rejects x. Thus, M correctly decides L. Hence, L E P.

In the rest of the proof we will focus on developing such an enumeration
procedure. To describe the procedure we need to define some notions.

Let n 2: 1 be an integer. Let I be a subset of En. We say that I is an
interval over En if there exist y, z E En such that

y S z and I = { u E En J y S u S z}.

We call y and z respectively the left end and the right end of I, and write
[y, z] to denote I. Let I = [u, v] and J = [y, z] be two intervals over En. We
say that I and J are disjoint if they are disjoint as sets, i.e., either v < y or
z < u. If I and J are disjoint and v < y, we say that I is lexicographically
smaller than J, and write I< J.

Let x E E* and let A be a set of pairwise disjoint intervals over En. We
say that A is nice for x if

x E L ===} (::II E A)[wmax(x) E I].

Note that for all x E E*

• { [QP(Ixl), 1P(ixl)]} is nice for x regardless of whether x E L, and
• if x fl. L, then every set of pairwise disjoint intervals over EP(Ixl) is nice

for x.

Let T be an ordered (possibly empty) list such that, if T is not empty then
each entry of T is of the form (w, b) for some w E E* and b E {0, 1 }. We
call such a list a hypothesis list. We say that a hypothesis list T is correct if
every pair (w, b) in the list satisfies xs (w) = b. Let x E E*, let A be a set of
pairwise disjoint intervals over EP(Ixl)' let r be a subset of A, and let T be a
hypothesis list. We say that r is a refinement of A for X under T if

((A is nice for x) 1\ (T is correct)) ===} r is nice for x.

The following fact states some useful properties of refinements.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 13

Fact 1.12

1. IfA=rl U ... Urm andri, ... ,r;. arerefinementsofrl, ... ,rkfor
X under T, respectively, then ri u ... u r;. is a refinement of A for X

under T.

2. If e is a refinement of r for X under T and 8' is a refinement of e for
X under T, then 8' is a refinement of r for X under T.

To generate candidates for Wmax(x), starting with the initial value

we repeat the following two-phase process p(lxl) times.

• Splitting Split each interval in A into upper and lower halves.
• Culling If IIAII ~ r(lxl), skip this phase. If IIAII 2: r(lxl) + 1, do the fol

lowing: Set T to the empty list. Call a subroutine CULL on input (x, A, T)
to obtain T £; A that has cardinality less than or equal to r(lxl) and is
nice for x. Replace A with T.

When the the two-phase process has been executed p(lxl) times, each interval
in A has size exactly 1, i.e., is of the form [u, u] for some u E EP(Ixl). The
output of the enumeration procedure is the list of all strings u E Ep(lxl) such
that [u, u] E A.

Note that if A is nice for x at the beginning of the splitting phase then it is
nice for x at the end of the splitting phase. Since both p and rare polynomials,
if CULL runs in polynomial time, the entire generation procedure runs in
polynomial time. Since CULL is guaranteed to output a refinement, if x E L
then there is always one interval in A that contains Wmax(x). So, if x E L,
Wmax(x) is included in the list of candidates at the end. So, we have only to
show that a polynomial-time procedure CULL exists that, on input (x, A, r)
with IIAII 2: r(lxl) + 1, finds T £; A having cardinality at most r(lxl) such
that T is a refinement of A for x under T.

For the sake of simplicity, in the following discussion, let x E E* be fixed.
Since only splitting and elimination are the operations executed to modify
intervals, we can assume that the intervals in A are pairwise disjoint during
the entire enumeration procedure. So, for every pair of distinct intervals,
I and J, appearing in the input to CULL, we will assume that they are
disjoint, and thus, either I< J or I> J. We also induce a mapping from the
set of all interval over Ep(lxl) to the set of all k-truth-table conditions. Let
I = [u, v] be an interval over EP(Ixl). The image of I induced by f, denoted
by ![I], is f((x, u)). Let f[I] = (a:, w1, ... , wk)· For each i, 1 ~ i ~ k, Q[I, i]
to denote wi.

1.1.2.4 The Structure of the Culling Method. Each input (x,r,r) to
CULL is supposed to satisfy the following conditions:

• Tis a hypothesis list and its length, lrl, is less than or equal to k.

14 1. The Self-Reducibility Technique

• r is a set of pairwise disjoint intervals over EP(Ixl) having cardinality strictly
greater than r1.,.1 (lxl).

• If lrl ;::: 1, then the following condition holds: Let d = lrl and T =
[(wi,bi), ... ,(wd,bd)] for some WI, ... ,wd E E* and bi, ... ,bd E {0, 1}.
Then, for all I E r, there exist d pairwise distinct elements of { 1, ... , k},
}I, ... ,jd, such that for all r, 1 ~ r ~ d, Q[I,jr] = Wr.

Given an input (x,r,r) that meets this specification, CULL may call itself
recursively in the case when lrl < k. The number of recursive call that CULL
makes is less than or equal to 2(k- lrl)(2q(lxl) + 1) and the input to each
recursive call is a triple of the form (x, r'' r') for some r' s;;;_ rand a hypothesis
list r' such that lr'l = lrl + 1. Thus, the computation of CULL on input
(x, r, r) can be viewed as a tree of depth bounded by k -lrl.

The hypothesis list T is used to refine, for each interval I E r' the
k-truth-table condition f[I] to a (k - lrl)-truth-table condition. We de
note the refinement of f[I] with respect to T by J.,.[I]. Suppose that T =
[(wi,bi), ... ,(wd,bd)] for some d;::: 1, WI, ... ,wd E E*, and bi, ... ,bd E
{0, 1}. Let I be an arbitrary interval in rand let f[I] = (a, vi, ... ,vk)·
Then, f.,.[I] = ((3, Vjp .•. , vik-d), where (3 and Vjp •.. , vik-d are defined as
follows:

• For s = 1, ... , d, in that order, let p8 be the smallest of r, 1 ~ r ~ k, such
that (Q[I, r] = w 8) 1\ (Vt: 1 ~ t ~ s -1)[r =f. Pt]·

• For every i, 1 ~ i ~ k- d, let Ji be the ith smallest element in { 1, ... , k}-

{p~, · · · , Pd}·
• (3 is the boolean function of arity (k- d) that is constructed from a by

simultaneously fixing for all s, 1 ~ s ~ d, the argument at position p8 to
bs.

We will write (3.,.[I] to denote the truth-table of f.,.[I] and Q.,.[I] to denote
the queries of f.,.[I]. Note that if the hypothesis list T is correct, then for all
IE r, f[I] is satisfied by S if and only if f.,.[I] is satisfied by S.

Suppose that lrl = k. Then, for all I E r, J.,.[I] is a boolean function of
arity 0, i.e., a boolean constant. Since rk(lxl) = 1, CULL cannot select more
than one interval from r to generate its output. CULL computes S = {I E

r I f.,.[I] = (True)}. If Sis nonempty, CULL selects the largest element in
S in lexicographic order; if S is empty, CULL outputs the empty set. We
claim that the output of CULL is a refinement of r for X under T. To see
why, suppose that r is nice for X and that the hypothesis list T is correct.
Then, for every interval I= [u,v] E r, Wmax(x) is less than or equal to u if
(3.,.[I] = True and is strictly greater than u otherwise. So, for every interval
IE r, Wmax(x) (/.I if either f3.,.[I] =False or I is not the largest element in
Sin lexicographic order. Thus, it is safe to to select the largest element in S
in lexicographic order.

On the other hand, suppose that lrl < k. Then CULL executes two
phases, Phases 1 and 2. In Phase 1, CULL eliminates intervals from r so that

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 15

f.,.[I] =f. f.,.[J] for every pair of distinct intervals I, J E r. In Phase 2, CULL
selects from r disjoint subsets, rl, ... ,r!, 1 ~ l ~ 2(k- lrJ)(2q(n) + 1),
where it is guaranteed that no intervals in the rest of r Contain Wmax(x)
if T is correct. For each of the subsets, CULL makes exactly two recursive
calls. The output of CULL(x,r,r) is the union of the outputs of all the 2l
recursive calls.

Below we describe the two phases of CULL. Let (x, r, r) be an input to
CULL. Let d = lrl. Suppose that 0 ~ d ~ k- 1.

Phase 1: Making f.,. unambiguous CULL executes the following:

• While there exist two intervals I, I' E r such that I< I' E r and f.,.[I] =
f.,.[I'], find the smallest such pair (I, I') in lexicographic order and eliminate
I from r.

Let r' be the set r when CULL quits the loop. We claim that r' is a
refinement of r for x under T. To see why, assume that Tis correct. Suppose
that r contains two intervals I = [u, v] and I' = [u', v'] such that I < I' and
f.,.[I] = f.,.[I']. Then f.,.[I] is satisfied by S if and only if f.,.[I'] is satisfied by
S. Since Tis correct, f.,.[I] is satisfied by S if and only if ![I] is satisfied by
S. Also, f.,.[I'] is satisfied by S if and only if f[I'] is satisfied by S. So, ![I]
is satisfied by S if and only if f[I'] is satisfied by S. Then, by equation 1.4,
we have

Wmax(x) ~ u ¢=:> Wmax(x) ~ u'.

In particular, Wmax(x) ~ u ==? Wmax(x) ~ u'. This implies that either
Wmax(x) < u or Wmax(x) ~ u'. Since u' > v ~ u, it holds that either
Wmax(x) < u or Wmax(x) > v. Thus, Wmax(x) ~ I. So, r - {I} is a re
finement of r for X under T. By part 2 of Fact 1.12, each time an interval is
eliminate by executing the above algorithm, the resulting set is a refinement
of r for X under T. Thus, r' is a refinement of r for X under T.

Phase 2: Refining r' CULL splits r' into two groups .D.0 and .D. 1 , where
for each b E {0, 1 },

.D.b ={IE r'l ,6.,.[1](0, ... ,0) = b}.

CULL refines .D.o and .D. 1 separately.

Refining .D.o: Suppose .D.o is nonempty. CULL computes an integer m ~ 1
and a sequence of intervals I1, I2, ... , Im E .D.o, I 1 < I2 < · · · < Im, as
follows:

• I1 is the lexicographic minimum of the intervals in .D.o.
• For each t ~ 1 such that It is defined, let St+l = {I E .D.o I (Vj : 1 ~ j ~ t)

[Q.,.[I] n Q.,.[Ii] = 0]}. If St+l = 0, then It+l is undefined. If St+l =f. 0,
then It+l is the lexicographic minimum of the intervals in St+l·

• m is the largest t such that It is defined.

16 1. The Self-Reducibility Technique

Define
!::::..' _ { D..o if m ~ q(lxl),

0 - {J E D..o I J < Iq(jxl)+d otherwise.

We claim that !::::..~ is a refinement of !::::..0 for x under T. If m ~ q(lxl), then
!::::..~ = !::::..0, so !::::..~ clearly is a refinement of D..o for x under r. So, suppose
that m ~ q(n) + 1, and thus, that !::::..~ ~ !::::..0. Suppose that Tis correct. For
each j, 1 ~ j ~ m, let I; = [u;,v;]. Assume Uq(jxi)+1 ~ Wmax(x). Then
for all j, 1 ~ j ~ q(lxl) + 1, u; ~ Wmax(x). Since T is correct, for all j,
1 ~ j ~ q(lxl) + 1, fr[I;] is satisfied by S. For each j, 1 ~ j ~ q(lxl) + 1,
.Br[I;](O, ... ,0) = 0, and thus, Qr[I;] n S # 0. The intervals h, ... ,lm are
chosen so that Qr[h], ... , Qr[Im] are pairwise disjoint. Thus,

u
1:-=;;:::;q(jxi)+l

This is a contradiction, because the number of strings in S that may appear
as a query string in f((x, y)) for some y E EP(Ixl) is at most q(lxl). Thus,
Wmax(x) < Uq(ixll+ 1 • So, all intervals IE D..o whose left end is greater than or
equal to Uq(lxi)+ 1 can be safely eliminated from D.o. Hence,!::::..~ is a refinement
of !::::..0 for x under T.

Let mo = min{m,q(lxl)} and

R= U Qr[I;].
1:-=;;:::;mo

Let h = IIRII· Then h ~ (k-d)mo. For every IE!::::..~, there exists some y E R
such that y E Qr[I]. Let y1, ... ,yh be the enumeration of the strings in R
in lexicographic order. For each j, 1 ~ j ~ h, let

9; ={I I (IE D..o) 1\ (Vs: 1 ~ s ~ j -1)[I ~e.] 1\ (Y; E Qr[I])}.

By the choice of the intervals I1, ... , Im, 81, · · · , eh are all nonempty and
!::::..~ = 81 U · · · U 9h. For each j, 1 ~ j ~ h, and each bE {0, 1}, let 9j,b be
the set of intervals that CULL on input (x, 8;, r) outputs as a refinement
of 9; for x under r', where T 1 is T with the pair (y;, b) appended at the end.
Let Yo = U1::;;::;h ubE{0,1} e;,b. By part 1 of Fact 1.12, if CULL correctly
computes a refinement for all the recursive calls, then Y 0 is a refinement of
D..o for x under T.

Dividing !::::..1: Suppose that !::::..1 # 0. CULL computes an integer m ~ 1
and a sequence of intervals I1, I2, ... , Im E D..o, h > I2 > · · · > Im, as
follows:

• I 1 is the lexicographic maximum of the intervals in !::::..1 .
• For each t ~ 1 such that It is defined, let st+1 = { J E !::::..1 I (Vj : 1 ~ j ~ t)

[Qr[I] n Qr[I;] = 0]}. If St+1 = 0, then It+1 is undefined. If Bt+l # 0,
then It+l is the lexicographic maximum of the intervals in !::::..1.

• m is the largest t such that It is defined.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 17

Define
D.' _ { D..1 if m ~ q(Jxi) + 1,

1 - { J E D.~ I J ~ Iq(lxi)+l} otherwise.

We claim that D.~ is a refinement of D..1 for x under r. If m ~ q(Jxi) + 1,
then D.~ = D..1. so D.~ clearly is a refinement of D.. 1 for x under r. So, suppose
that m ~ q(n) + 2, and thus, that D.~ s; D..1. Suppose that r is correct. For
each j, 1 ~ j ~ m, let Ij = [uj,Vj]· Assume Uq(lxl)+1 > Wmax(x). Then
for all j, 1 ~ j ~ q(Jxi) + 1, Uj > Wmax(x). Since r is correct, for all j,
1 ~ j ~ q(Jxi) + 1, fr[IJ] is not satisfied by S. For every j, 1 ~ j ~ q(Jxi) + 1,
.8r[I1](0, ... , 0) = 1. So, for every j, 1 ~ j ~ q(Jxi) + 1, Qr[I1] n S =f. 0.
The intervals !1. ... , Im are chosen so that Qr[I1], ... , Qr[Im] are pairwise
disjoint. Thus,

JJSn u
1~j~q(lxi)+l

This is a contradiction. So, Wmax(x) ~ Uq(lxi)+I· This implies that if r is
correct, then all intervals IE D..1 whose right end is strictly less than Uq(lxl)+1
can be eliminated from D..1. Hence, D.~ is a refinement of D..1 for x under r.
The rest of the procedure is essentially the same as that of Case 1. The only
difference is that the number of selected intervals is at most q(Jxi) + 1, and
thus, the total number of refinements that are combined to form a refinement
of D.~ is at most 2(k-d)(q(Jxi)+1). LetT 1 denote the union of the refinements
obtained by the recursive calls.

The output T of CULL is To U T1. Suppose that for each b E {0, 1},
Tb is a refinement of D.b for x under r. Since D. = D.o U D..1. by part 1 of
Fact 1.12, Tis a refinement of D. for x under r. The total number ofrecursive
calls that CULL makes is 2(k- Jrl)(2q(Jxl) + 1).

1.1.2.5 Correctness and Analysis of the Culling Method. Since the
depth of recursion is bounded by k, the entire culling procedure runs in time
polynomial in JxJ. The correctness of CULL can be proven by induction on
the length of the hypothesis list, going down from k to 0. For the base case,
let the length be k. We already showed that if the length of hypothesis list
is k then CULL works correctly. For the induction step, let 0 ~ d ~ k - 1
and suppose that CULL works correctly in the case when the length of the
hypothesis list is greater than or equal to d + 1. Suppose that (x, r, r) is
given to CULL such that Jrl = d. In each of the recursive calls that CULL
makes on input (x, r, r), the length of the hypothesis list is d + 1, so by the
induction hypothesis, the output of each of the recursive calls is correct. This
implies that the output of CULL on (x, r, r) is a refinement of r.

We also claim that, for every d, 0 ~ d ~ k, the number of intervals in the
output of CULL in the case when the hypothesis list has length d is at most
rd(Jxi). Again, this is proven by induction on d, going down from k to 0. The
claim certainly holds for the base case, i.e., when d = k, since the output of

18 1. The Self-Reducibility Technique

CULL contains at most one interval when the hypothesis list has length k
and rk is the constant 1 function. For the induction step, let d = do for some
d0 , 0 $ do $ k- 1, and suppose that the claims holds for all values of Jrl
between d0 + 1 and k. Let (x, r, r) be an input to CULL such that Jrj =d.
The number of recursive calls that CULL on input (x,r,r) is at most

2((k- d)q(Jxl) + 2(k- d)(q(Jxl) + 1)) = 2(k- d)(2q(lxl) + 1).

In each of the recursive calls that are made, the length of the hypothesis list
is d + 1, so by the induction hypothesis, the output of each recursive call
has at most rd+I (Jxl) elements. So, the number of intervals in the output of
CULL on input (x,r,r) is at most

2(k- d)(2q(Jxj) + 1)rd+I (2q(Jxl) + 1).

This is rd(Jxl). Thus, the claim holds for d.
Since r0 = r, the number of intervals in the output of the culling phase is

at most r(Jxl) as desired. Hence, L E P. 0

1.2 The Turing Case

In the previous section, we saw that if any sparse set is NP-hard or NP
complete with respect to many-one reductions or even bounded-truth-table
reductions, then P = NP. In this section, we ask whether any sparse set can
be NP-hard or NP-complete with respect to Turing reductions. Since Turing
reductions are more flexible than many-one reductions, this is a potentially
weaker assumption than many-one completeness or many-one hardness. In
fact, it remains an open question whether these hypotheses imply that P =
NP, though there is some relativized evidence suggesting that such a strong
conclusion is unlikely. However, one can achieve a weaker collapse of the
polynomial hierarchy, and we do so in this section.

Unlike the previous section, the results and proofs for the $?;
completeness and $?;-hardness cases are quite different. We start with the
$?;-complete case, which uses what is informally known as a "census" ap
proach. The hallmark of algorithms based on the census approach is that
they first obtain for a set (usually a sparse set) the exact number of elements
that the set contains up to some given length, and then they exploit that
information.

The e~ level of the polynomial hierarchy (see Sect. A.4) captures the
power of parallel access to NP. In particular, is known to equal the down
ward closure under truth-table reductions (see Sect. B.1) of NP; this clo
sure is denoted (see the notational shorthands of Sect. B.2) Rft(NP). Thus,
Theorem 1.14 proves that if NP has Turing-complete sparse sets, then the en
tire polynomial hierarchy can be accepted via parallel access to NP. However,
the following equality is known to hold.

1.2 The Turing Case 19

Proposition 1.13 Rft(NP) = pNP(CJ(logn)J.

We will use the latter form of e~ in the proof below.

Theorem 1.14 lfNP has sparse, for NP $.~-complete sets then PH= e~.

Proof Let S be a sparse set that is $.~-complete for NP. For each £, let
Pt(n) denote ni +f. Let j be such that ('v'n)[IIS~nll $. p3(n)]. Let M be
a deterministic polynomial-time 'lUring machine such that SAT = L(M8);

such a machine must exist, as S is 'lUring-hard for NP. Let k be such that
Pk(n) bounds the runtime of M regardless ofthe oracle M has; without loss
of generality, let M be chosen so that such a k exists.

Pause to Ponder 1.15 Show why this "without loss of generality claim"
holds.

(Answer sketch for Pause to Ponder 1.15: Given a machine M, let the
machines M 1 , M2, .. . , be as follows. Mf(x) will simulate the action of exactly
Pi(lxl) steps of the action of MA(x), and then will halt in an accepting state
if MA(x) halted and accepted within Pi(lxl) steps, and otherwise will reject.
Note that since the overhead involved in simulating one step of machine is at
most polynomial, for each i, there will exist ani such that for every A it holds
that MiA runs in time at most Pi(n). Furthermore, in each relativized world
A in which MA runs in time at most Pi, it will hold that L(MA) = L(MiA).
Relatedly, in our proof, given the machine M such that SAT= L(M8), we
will in light of whatever polynomial-time bound M 8 obeys similarly replace
M with an appropriate M3 from the list of machines just described.)

Let L be an arbitrary set in :E~. Note that, since SAT is NP-complete, it
is clear that :E~ = NPSAT. So, in particular, there is some nondeterministic
polynomial-time 'lUring machine N such that L = L(NSAT). Let f be such
that Pt(n) bounds the nondeterministic runtime of N for all oracles; without
loss of generality, let N be chosen such that such an integer exists (see Pause
to Ponder 1.15). Note that L = L(NL(M5)).

Define:

V = {O#ln#lq IIIS~nll ~ q} U
{l#x#ln#lq I (:JZ ~ s~n)[IIZII = q 1\ X E L(NL(Mz>m.

Note that, in light of the fact that Sis an NP set, V E NP.
We now give a e~ algorithm that accepts L. In particular, we give an

algorithm that makes O(log n) calls to the NP oracle V. Suppose the input
to our algorithm is the string y.

Step 1 In O(log IYJ) sequential queries to V determine IIS~Pk(Pt(lyl))ll·
Our queries will be of the form "0#1Pk(Pt(lyi))#F ," where we will vary
z in a binary search fashion until we home in on the exact value of
IIS~Pk(Pt(IYI)) II· Since IIS~Pk(Pt(IYI)) II is bounded by a polynomial in y, namely,

20 1. The Self-Reducibility Technique

by Pi(Pk(Pt(lyl))), it holds that O(log IYI) queries indeed suffice for binary
search to pinpoint the census value. Let the census value obtained be de
noted r.
Step 2 Ask to V the query 1#y#1Pt(Pk{lyl))#1r, and accept if and only if
the answer is that 1#y#1Pt(Pk(lyi))#F E V.

That completes the statement of the algorithm. Note that the algorithm
clearly is a e~ algorithm. Furthermore, note that the algorithm indeed ac
cepts L. This is simply because, given that Step 1 obtains the true census r,
the Step 2 query to V can accept only if the actual strings in S~Pk(Pt(lyl))
are guessed (because there are only r strings at those lengths, so if r distinct
strings inS have been guessed, then we have guessed all of S~Pk(Pt(lyl))) and,
when used by M to generate a prefix of SAT (and note that this prefix is
correct on all queries to SAT of length at most Pt(lyl), since such queries
generate queries to S of length at most Pk(Pt(lyl))), causes N to accept.

So, since L was an arbitrary set from E~, we have E~ = 8~. Since 8~
is closed under complementation, this implies E~ = II~, which itself implies
PH= E~. So PH= E~ = 8~, completing our proof. 0

The proof for the case of ::;~-hardness is more difficult than the case of
::;~-completeness, since the census proof used above crucially uses the fact
that the sparse set is in NP. The proof below rolls out a different trick. It
extensively uses nondeterminism to guess a set of strings that, while perhaps
not the exact elements of a prefix of the sparse NP-::;~-hard set, function
just as usefully as such a prefix. The following result is often referred to as
the Karp-Lipton Theorem.

Theorem 1.16 (The Karp-Lipton Theorem) If NP has sparse ::;~
hard sets then PH = NPNP.

Proof Let S be a sparse set that is ::;~-hard for NP. For each f., let p1(n)
denote n1 +f.. Let j be such that ('v'n)[IIS~nll ::; Pi(n)]. Let M be a deter
ministic polynomial-time Turing machine such that SAT = L(M8); such a
machine must exist, as Sis Turing-hard for NP. Let k be such that Pk(n)
bounds the runtime of M for all oracles; without loss of generality, let M be
such that such an integer exists (see Pause to Ponder 1.15).

Let L be an arbitrary set in E~. We will give a E~ algorithm for L. This
establishes that E~ = E~, which itself implies that PH = E~, thus proving
the theorem.

NPSAT
Note that, since SAT is NP-complete, it is clear that E~ = NP . So, in

particular, there are two nondeterministic polynomial-time Turing machines
L(NSAT)

N 1 and N2 such that L(N1 2) = L. Let f. be such that p1(n) bounds
the nondeterministic runtime of N1 for all oracles, and such that Pt(n) also
bounds the nondeterministic runtime of N2 for all oracles; without loss of
generality, let N 1 and N2 be such that such an integer exists (see Pause to
Ponder 1.15).

1.2 The Turing Case 21

Define

V0 = {0#1n#S' I (3z E (E*)~n)((a) z is not a well-formed formula
and M 8 ' (z) accepts; or (b) z is a well-formed formula free
variables and either (b1) M 8 ' (z) accepts and z ¢ SAT or
(b2) M 8' (z) rejects and z E SAT; or (c) z is a well-formed
formula variables z1 , z2 , ... and it is not the case that: M 8 ' (z)
accepts if and only if

(M8' (z[z1 =True]) accepts V M 8' (z[z1 =False]) accepts)]},

where, as defined earlier in this chapter, z(...] denotes z with
the indicated variables assigned as noted.

V1 = {1#S'#z I z E L(Ni'<Ms'))}.

V = Vo U V1.

Note that V E NP. Informally, V functions as follows. The 0#1n#S' strings
in V determine whether given sets of strings "work" as sparse oracles that (on
all instances of length at most n) allow M to correctly accept SAT. Or, more
exactly, it checks if a given set fails to simulate SAT correctly. Of course,
the fact that S is a sparse Turing-hard set for NP ensures that there are
some such sets S' that do simulate SAT correctly in this sense; however, it
is possible that sets S' other than prefixes of S may also happen to simulate
SAT correctly in this sense. The 1# · · · part of V takes a set of strings that
happens to simulate SAT as just described, and uses them, in concert with
M, to simulate SAT.

We now give a NPNP algorithm that accepts L. In particular, we give
an NPV algorithm. Suppose the input to our algorithm is the stringy. Note
that the longest possible query to SAT that N2 will make on queries N 1 asks

L(NSAT)
to its oracle during the run of N 1 2 (y) is p£(p£(iyi)). Note also that M,
on inputs of length P£(P£(iyi)), asks its oracle only questions of length at
most Pk(p£(P£(iyi))). And finally, note that there is some sparse oracleU such
that L(M(U~Pk<Pt<Pt<l,ll»)) = SAT~Pt(Pt<IYI)); for example, the set Sis such
an oracle.

Step 1 Nondeterministically guess a set S' ~ (E*)~Pk(Pt(Pt(lyl))) satisfying
IIS'II ~ Pi(Pk(P£(P£(1YI)))). If 0#1Pk(Pt(Pt(lyi)))#S' E V then reject. Other
wise, go to Step 2.
Step 2 Simulate the action of N1(y) except that, each time N1(y) makes a
query z to its L(N~AT) oracle, ask instead the query 1#S'#z to V.

That completes the description of the algorithm. Note that the algorithm
we have given is clearly a E~ algorithm. Furthermore, note that the algorithm
indeed accepts L. This is simply because Step 1 obtains a valid set of strings S'
that either are S~Pk(Pt(Pt(IYI))), or that, in the action of machine M, function
just as well as S~Pk(Pt(Pt(lyl))) in simulating SAT. That is, we obtain a set of
strings S' such that

22 1. The Self-Reducibility Technique

SAT~Pk (Pt(Pt(IYI))) = (L(MS')) ~Pk(Pt(Pt(iyi))) •

This correct prefix of SAT is just long enough that it ensures that Step 2 of
the algorithm will correctly simulate N~AT. D

This result has been extended in various ways. One very useful strength
ening that we will refer to later is that one can replace the base-level
NP machine with an expected-polynomial-time probabilistic machine. (The
parenthetical equivalence comment in the theorem is based on the well
known fact, which is an easy exercise that we commend to the reader, that
R~({Si Sis sparse})= Pjpoly.)

Theorem 1.17 If NP has sparse 5:.~-hard sets (equivalently, if NP s;;
p /poly), then PH = zppNP.

1.3 The Case of Merely Putting Sparse Sets in NP- P:
The Hartmanis-Immerman-Sewelson Encoding

In the previous sections we studied whether classes such as NP had com
plete or hard sparse sets with respect to various reductions. We know from
Theorem 1.7, for example, that there is no NP-complete sparse set unless
P=NP.

In this section, we ask whether there is any sparse set in NP - P. Note
in particular that we are not here asking whether there is any sparse set in
NP - P that is NP-complete; by Theorem 1. 7 the answer to that question
is clearly "no." We here are instead merely asking whether any sparse set in
NP can be so complex as to lack deterministic polynomial-time algorithms.

Before approaching this question, let us motivate it from a quite dif
ferent direction. One central goal of computational complexity theory is to
understand the relative power of different complexity classes. For example,
is deterministic polynomial-time computation a strictly weaker notion than
nondeterministic polynomial-time computation, that is P =F NP? The ideal
results along such lines are results collapsing complexity classes or separating
complexity classes.

In fact, complexity theorists have achieved a number of just such results
outright, nontrivial complexity class collapses and separations. For example,
the strong exponential hierarchy-an exponential-time analog of the poly
nomial hierarchy-is known to collapse, and for very small space bounds a
space analog of the polynomial hierarchy is known to truly separate. The
famous time and space hierarchy theorems also provide unconditional sepa
ration results. Unfortunately, not one such result is known to be useful in the
realm between P and PSPACE. It remains plausible that P = PSPACE and
it remains plausible that P =F PSPACE.

Given this disturbingly critical gap in our knowledge of the power of com
plexity classes between P and PSPACE-exactly the computational realm in

1.3 The Case of Merely Putting Sparse Sets in NP- P: The H-1-S Encoding 23

which most interesting real-world problems fall-what can be done? One ap
proach is, instead of directly trying to separate or collapse the classes, to link
the many open questions that exist within this range. The philosophy behind
this is very similar to the philosophy behind NP-completeness theory. There,
we still do not know whether NP-complete problems have polynomial-time
algorithms. However, we do know that, since all NP-complete problems are
~~-interreducible, they stand or fall together; either all have polynomial-time
algorithms or none do.

In the context of complexity classes between P and PSPACE, the goal
along these lines would be to link together as many open questions as pos
sible, ideally with "if and only if" links. It turns out that it often is easy to
"upward translate" collapses, that is, to show that if small classes collapse
then (seemingly) larger classes collapse. The truly difficult challenge is to
"downward translate" equalities: to show that if larger classes collapse then
(seemingly) smaller classes collapse.

In this section we study a famous downward translation that partially
links the P = NP question to the collapse of exponential-time classes. In
particular, we will ask whether the collapse of deterministic and nondeter
ministic exponential time implies any collapse in the classes between P and
PSPACE. The really blockbuster result to seek would be a theorem estab
lishing that E = NE ==> P = NP. However, it is an open question whether
this can be established. What is known, and what we will here prove, is the
following theorem, which says that the collapse of NE to E is equivalent to
putting into P all sparse sets in NP.

Theorem 1.18 The following are equivalent:

1. E=NE.
2. NP - P contains no sparse sets.
3. NP - P contains no tally sets.

Proof Part 2 clearly implies part 3,
theorem follows immediately from this
Lemma 1.21.

as every tally set is sparse. The
fact, and from Lemmas 1.19 and

D
The following easy lemma shows that if no tally sets exist in NP - P, then

NE collapses to E.

Lemma 1.19 IJNP- P contains no tally sets then E = NE.

Proof Let L be some set in NE, and assume that NP - P contains no
tally sets. Let N be a nondeterministic exponential-time machine such that
L(N) = L. Define L' = {1k I (:Jx E L)[k = (1x)bin]}, where for any string
(over {0,1}) z the expression (z)bin denotes the integer the string represents
when viewed as a binary integer, e.g., (1000)bin = 8.

Note that L' E NP, since the following algorithm accepts L'. On input y,
reject if y is not of the form 1 k for some k > 0. Otherwise y = 1 k for some

24 1. The Self-Reducibility Technique

k > 0. Write k in binary, and let s be the binary of representation of k to the
right of, and not including, its leftmost one, viewed as a binary string. Call
this string w. (If k = 1, then w = t:.) Simulate N(w) (thus accepting if and
only if N(w) accepts). Though N is an exponential-time machine, the length
of w is logarithmic in the length of y, and thus the overall nondeterministic
runtime of this algorithm is, for some constant c, at most 0(2clogn).

Thus, L' E NP. However, by hypothesis this implies that L' is in P. So,
let M be a deterministic polynomial-time machine such that L(M) = L'. We
now describe a deterministic exponential-time algorithm for L. On input a,
compute the string b = 1 (la)bin, and then simulate M(b), accepting if and only
if M(b) accepts. Since M is a polynomial-time machine and lbl $ 2lal, the
number of steps that M(b) runs is (2n)c = 2cn. As the overhead of doing the
simulation and the cost of obtaining b from a are also at most exponential in
the input's length, clearly our algorithm for Lis a deterministic exponential-
time algorithm. Thus, L E E, which completes our proof. 0

Finally, we must prove that if E = NE then all sparse NP sets in fact are
in P.

Pause to Ponder 1.20 As an easy warmup exercise, try to prove the sim
pler claim: If E = NE then all tally sets in NP are in P.

A sketch of the solution to Pause to Ponder 1.20 is as follows. If L is a tally
set in NP, then let L' = {xi(x is 0 or xis a binary string of nonzero length
with no leading zeros) and 1 (x)bin E L}. It is not hard to see that L' E NE.
Thus by assumption L' E E, and thus there is a natural P algorithm for L,
namely, the algorithm that on input a rejects if a fl. 1 * and that if a = 1 k

writes k as 0 if k = 0 and otherwise as k in binary with no leading zeros,
and then simulates the E algorithm for L' on this string. This concludes the
proof sketch for Pause to Ponder 1.20.

However, recall that we must prove the stronger result that if E = NE then
all sparse NP sets are in P. Historically, the result in Pause to Ponder 1.20
was established many years before this stronger result. If one looks carefully
at the proof just sketched for Pause to Ponder 1.20, it is clear that the
proof, even though it works well for the stated case (tally sets), breaks down
catastrophically for sparse sets. The reason it fails to apply to sparse sets is
that the proof is crucially using the fact that the length of a string in a tally
set fully determines the string. In a sparse set there may be a polynomial
number of strings at a given length. Thus the very, very simple encoding
used in the proof sketch of Pause to Ponder 1.20, namely, representing tally
strings by their length, is not powerful enough to distinguish same-length
strings in a sparse set.

To do so, we will define a special "Hartmanis-lmmerman-Sewelson en
coding set" that crushes the information of any sparse NP set into extremely
bite-sized morsels from which the membership of the set can be easily recon
structed. In fact, the encoding manages to put all useful information about a

1.3 The Case of Merely Putting Sparse Sets in NP-P: The H-1-S Encoding 25

sparse NP set's length n strings into length-0 (log n) instances of the encod
ing set-and yet maintain the easy decodability that is required to establish
the following lemma.

Lemma 1.21 If E = NE then NP - P contains no sparse sets.

Proof Let L be some sparse NP set, and assume that E = NE. Given that
Lis sparse, there is some polynomial, call it q, such that (Vn)[jj£=nll ~ q(n)].
Define the following encoding set:

L' = {O#n#k IIIL=n11 ~ k} U
{1#n#c#i#j I (:lz1, Z2, ... , Zc E £=n)[zl <lex Z2 <!ex

· · · <!ex Zc 1\ the jth bit of Zi is 1]}.

Since L E NP, it is clear that L' E NE. So by our assumption, L' E E.
We will now use the fact that L' E E to give a P algorithm for L. Our

P algorithm for L works as follows. On input x, let n = jxj. Query L' to
determine which of the following list of polynomially many strings belong
to £': O#n#O, 0#n#1, 0#n#2, ... , O#n#q(n), where here and later in the
proof the actual calls to L' will for the numerical arguments (the n's, c, i,
j, and k of the definition of L') be coded as (and within L' will be decoded
back from) binary strings. Given these answers, set

c = ma.x{k I 0 ~ k ~ q(n) 1\ O#n#k E £'}.

Note that c = IIL=nll· Now ask the following questions to L':

1#n#c#1#1, 1#n#c#1#2, ... , 1#n#c#1#n,
1#n#c#2#1, 1#n#c#2#2, ... , 1#n#c#2#n,

' 1#n#c#c#1, 1#n#c#c#2, ... , 1#n#c#c#n.

The answers to this list of polynomially many questions to L' give, bit by bit,
the entire set of length n strings in L. If our input, x, belongs to this set then
accept, and otherwise reject. Though L' E E, each of the polynomially many
queries asked to L' (during the execution of the algorithm just described) is
of length O(log n). Thus, it is clear that the algorithm is indeed a polynomial-
time algorithm. D

Theorem 1.18 was but the start of a long line of research into downward
translations. Though the full line of research is beyond the scope of this book,
and is still a subject of active research and advances, it is now known that the
query hierarchy to NP itself shows certain downward translations of equality.
In particular, the following result says that if one and two questions to E1
yield the same power, then the polynomial hierarchy collapses not just to
pE: [l) but in fact even to E~ itself.

Theorem 1.22 Let k > 1. E~ =II~ if and only if pEWJ = pE:I21.

26 1. The Self-Reducibility Technique

1.4 OPEN ISSUE: Does the Disjunctive Case Hold?

Theorem 1. 7 shows that NP lacks sparse ~~-complete sets unless P = NP.
Does this result generalize to bounded-truth-table, conjunctive-truth-table,
and disjunctive-truth-table reductions: ~rw ~~ttl and ~~tt?

Theorem 1.10 already generalizes Theorem 1. 7 to the case of ~rtc
hardness. Using the left set technique it is also easy to generalize the result
to the case of ~~tt-hardness: If NP has ~~tt-hard sparse sets then P = NP.

The case of ~~tt-hardness remains very much open.

Open Question 1.23 Can one prove: IjNP has ~~tt-hard sparse sets, then
P=NP?

However, it is kn<;>wn that proving the statement would be quite strong. In
particular, the following somewhat surprising relationship is known.

Proposition 1.24 Every set that ~rtt-reduces to a sparse set in fact ~~tt
reduces to some sparse set.

Thus, if one could prove the result of Open Question 1.23, that result would
immediately imply Theorem 1.10.

1.5 Bibliographic Notes

Theorem 1.2 (which is often referred to as "Berman's Theorem") and
Corollary 1.3 are due to Berman [Ber78], and the proof approach yields
the analog of these results not just for the tally sets but also for the
P-capturable [CGH+89] sets, i.e., the sets having sparse P supersets.
Theorem 1.4 and Corollary 1.5 are due to Fortune [For79]. Among the re
sults that followed soon after the work of Fortune were advances by Ukko
nen [Ukk83], Yap [Yap83], and Yesha [Yes83].

Theorems 1. 7 (which is known as "Mahaney's Theorem") and
Theorem 1.9 are due to Mahaney [Mah82]. The historical motivation for his
work is sometimes forgotten, but is quite interesting. The famous Berman
Hartmanis Isomorphism Conjecture [BH77], which conjectures that all NP
complete sets are polynomial-time isomorphic, was relatively new at the time.
Since no dense set (such as the NP-complete set SAT) can be polynomial
time isomorphic to any sparse set, the existence of a sparse NP-complete set
would immediately show the conjecture to be false. Thus, Mahaney's work
was a way of showing the pointlessness of that line of attack on the Berman
Hartmanis Isomorphism Conjecture (see [HM80]): if such a set exists, then
P = NP, in which case the Berman-Hartmanis Isomorphism Conjecture fails
trivially anyway.

Theorem 1.10 (which is often referred to as "the Ogiwara-Watanabe
Theorem") is due to Ogiwara and Watanabe ([OW91], see also [HL94]),

1.5 Bibliographic Notes 27

who introduced the left set technique in the study of sparse complete sets.
Somewhat more general results than Theorem 1.10 are now known to hold,
due to work of Homer and Longpre [HL94], Arvind et al. [AHH+93], and
Glafier ([GlaOO], see also [GHOO]). Our presentation is based on the work of
Homer and Longpre [HL94].

These results are part of a rich exploration of sparse completeness results,
with respect to many complexity classes and many types of reductions, that
started with Berman's work and that continues to this day. Numerous surveys
of general or specialized work on sparse complete sets exist [HM80,Mah86,
Mah89,You92,HOW92,vM097,C097,GHOO].

Regarding the relativized evidence mentioned on page 18, Immerman
and Mahaney [IM89] have shown that there are relativized worlds in which
NP has sparse Turing-hard sets yet P =f. NP. Arvind et al. [AHH+93] ex
tended this to show that there are relativized worlds in which NP has sparse
Turing-complete sets yet the boolean hierarchy [CGH+88] does not collapse,
and Kadin [Kad89] showed that there are relativized worlds in which NP
has sparse Turing-complete sets yet some e~ languages cannot be accepted
via P machines making o(log n) sequential queries to NP.

Proposition 1.13 is due to Hemachandra [Hem89]. Theorem 1.14 is due
to Kadin [Kad89]. Theorem 1.16 is due to Karp and Lipton [KL80], and we
prove it here using a nice, intuitive, alternate proof line first suggested by
Hopcroft ([Hop81], see also [BBS86]). The fact that ~({SIS is sparse})=
P /poly appears in a paper by Berman and Hartmanis [BH77], where it is
attributed to Meyer. Theorem 1.17 is due to Kobler and Watanabe ([KW98],
see also [KS97]) based on work of Bshouty et al. [BCKT94,BCG+96].

Cai [Cai01] has proven that the "symmetric alternation" version ofNpNP,
a class known as S~ [Can96,RS98], satisfies S~ ~ zppNP. In light of Sen
gupta's observation (see the discussion in [Cai01]) that a Hopcroft-approach
proof of Theorem 1.16 in fact can be used to conclude that S~ =PH, Cai's
result says that Sengupta's collapse to S~ is at least as strong as, and poten
tially is even stronger than, that of Theorem 1.16.

The collapse of the strong exponential-time hierarchy referred to near the
start of Sect. 1.3 is due to Hemachandra [Hem89], and the separation of small
space alternation hierarchies referred to in Sect. 1.3 is due, independently
(see [Wag93]), to Liskiewicz and Reischuk [LR96,LR97], von Braunmiihl,
Gengler, and Rettinger [vBGR93,vBGR94], and Geffert [Gef94]. The study
of time and space hierarchy theorems is a rich one, and dates back to the
pathbreaking work of Hartmanis, Lewis, and Stearns [HS65,LSH65,SHL65].

Lemma 1.19 and the result stated in Pause to Ponder 1.20-and thus the
equivalence of parts 1 and 3 of Theorem 1.18-are due to Book [Boo74b].

The Hartmanis-Immerman-Sewelson Encoding, and in particular
Lemma 1.21 (and thus in effect the equivalence of parts 1 and 2 of
Theorem 1.18), was first employed by Hartmanis [Har83]. The technique
was further explored by Hartmanis, Immerman, and Sewelson ([HIS85], see

28 1. The Self-Reducibility Technique

also [All91,AW90]). Even the Hartmanis-Immerman-Sewelson Encoding has
its limitations. Though it does prove that E = NE if and only if NP - P
has sparse sets, it does not seem to suffice if we shift our attention from NP
(and its exponential analog, NE) to UP, FewP, EBP, ZPP, RP, and BPP (and
their respective exponential analogs). In fact, the Buhrman-Hemaspaandra
Longpre Encoding [BHL95], a different, later encoding encoding based on
some elegant combinatorics [EFF82,EFF85,NW94], has been used by Rao,
Rothe, and Watanabe [RRW94] to show that the EBP and "FewP" analogs of
Theorem 1.18 do hold. That is, they for example prove that E equals, "EBE,"
the exponential-time analog of EBP, if and only if EBP- P contains sparse
sets. In contrast with this, Hartmanis, Immerman, and Sewelson showed
that there are oracles relative to which the coNP analog of Theorem 1.18
fails. Hemaspaandra and Jha [HJ95a] showed that there are oracles relative
to which the the ZPP, R, and BPP analogs of Theorem 1.18 fail, and they also
showed that even for the NP case the "immunity" analog of Theorem 1.18
fails. Allender and Wilson [All91,AW90] have shown that one claimed "su
persparse" analog of Theorem 1.18 fails, but that in fact certain analogs can
be obtained. For some classes, for example UP, it remains an open question
whether an analog of Theorem 1.18 can be obtained.

The proof of Lemma 1.21 proves something a bit stronger than what the
lemma itself asserts. In particular, the proof makes it clear that: If E = NE
then every sparse NP set is P-printable (i.e., there is an algorithm that on
input 1 n prints all length n strings in the given sparse NP set). This stronger
claim is due to Hartmanis and Yesha [HY84].

Regarding downward translations of equality relating exponential-time
classes to smaller classes, we mention that a truly striking result of Babai,
Fortnow, Nisan, and Wigderson [BFNW93] shows: If a certain exponential
time analog of the polynomial hierarchy collapses to E, then P = BPP. This
is not quite a "downward" translation of equality, as it is not clear in gen
eral whether BPP ~ E (though that does hold under the hypothesis of their
theorem, due to the conclusion of their theorem), but this result nonethe
less represents a remarkable connection between exponential-time classes and
polynomial-time classes.

A E~ = II~ conclusion, and thus a downward translation of equal
ity for classes in the NP query hierarchy, was reached by Hemaspaandra,
Hemaspaandra, and Hempel [HHH99a] for the case k > 2. Buhrman and
Fortnow [BF99] extended their result to the k = 2 case. These appear as
Theorem 1.22. Downward translations of equality are known not just for the
1-vs-2 query case but also for the j-vs-(j+1) query case ([HHH99a,HHH99b],
see also [HHH98]), but they involve equality translations within the bounded
access-to-E~ hierarchies, rather than equality translations to E~ =II~.

In contrast with the difficulty of proving downward translations of equal
ity, upward translations of equality are so routine that they are considered
by most people to be "normal behavior." For example, it is well-known for

1.5 Bibliographic Notes 29

almost all pairs of levels of the polynomial hierarchy that if the levels are
equal then the polynomial hierarchy collapses. This result dates back to the
seminal work of Meyer and Stockmeyer, who defined the polynomial hierar
chy [MS72,Sto76]. The fascinating exception is whether et = ~t implies that
the polynomial hierarchy collapses. Despite intense study, this issue remains
open-see the discussion in [Hem94,HRZ95].

Nonetheless, it is far from clear that the view that upward translation
of equality is a "normal" behavior of complexity classes is a itself a correct
view. It does tend to hold within the polynomial hierarchy, which is where
the intuition of most complexity theorists has been forged, but the polyno
mial hierarchy has many peculiar properties that even its close cousins lack
(stemming from such features as the fact that the set of all polynomials hap
pens to be closed under composition-in contrast to the set of logarithmic
functions or the set of exponential functions), and thus is far from an ideal
basis for predictions. In fact, Hartmanis, Immerman, and Sewelson [HIS85]
and Impagliazzo and Tardos [IT89] have shown that there is an oracle rel
ative to which upward translation of equality fails in an exponential-time
analog of the polynomial hierarchy, and Hemaspaandra and Jha ([HJ95a],
see also [BG98]) have shown the same for the limited-nondeterminism hier
archy of NP-the so-called (3 hierarchy of Kintala and Fischer [KF80] and
Diaz and Toran [DT90].

Proposition 1.24 is due to Allender et al. [AHOW92]. Though Open
Question 1.23, with its P = NP conjectured conclusion from the assump
tion of there being sparse ~~tt-hard sets for NP, indeed remains open,
some consequences-though not as strong as P = NP-are known to fol
low from the existence of sparse ~~tt-hard sets for NP. In particular, Cai,
Naik, and Sivakumar have shown that if NP has sparse ~~tt-hard sets then
RP = NP [CNS96]. It is also known that if NP has sparse ~~tt-hard sets,
then there is a polynomial-time set A such that every unsatisfiable boolean
formula belongs to A and every boolean formula that has exactly one satis
fying assignment belongs to A (implicit in [CNS95], as noted by van Melke
beek [vM97] and Sivakumar [SivOO]). That is, A correctly solves SAT on all
inputs having at most one solution, but might not accept some satisfiable
formulas having more than one satisfying assignment.

2. The One-Way Function Technique

No proven one-way functions are known. Not even one. Nonetheless, one-way
functions play a central role in complexity theory and cryptography. In com
plexity theory, one-way functions have been used in the (to date unsuccessful)
attempts to show that there exist two NP-complete sets that are not essen
tially the same set in disguise (i.e., that are not polynomial-time isomorphic).
In average-case and worst-case cryptography, one-way functions have been
used as key components in the construction of cryptographic protocols.

Fortunately, the comment made above about not even one one-way func
tion being known is, though true, a bit deceptive. Good candidates for being
one-way functions are known. In fact, complete characterizations now exist
regarding the existence of one-way functions. In particular, it is now known
that the type of one-way function used in average-case cryptography exists if
and only if pseudorandom generators exist. It is also known that the type of
one-way function used in both computational complexity theory and worst
case cryptography exists if and only if two well-known complexity classes
differ.

This chapter's GEM section proves the latter result. We will see in that
section that one way in which one-way functions are classified is in terms of
their level of many-to-one-ness-what types of collision are allowed. Sect. 2.2
proves the rather remarkable result that one-to-one one-way functions exist
if and only if constant-to-one one-way functions exist. Though this does not
say that low-collision-intensity one-way-function classes all collapse to mutual
equality, it does say that their existence stands or falls together. Section 2.3
looks at two-argument one-way functions and in particular at the extremely
powerful (associative, commutative, total, and strongly noninvertible) types
of one-way functions that have been supposed-to-exist and used as hypothet
ical building blocks for protocols in worst-case cryptography. We prove that
they are just as likely to exist as are standard one-way functions. So, one
might as well feel free to use these "killer" building blocks, as their existence
stands or falls together with the existence of standard building blocks.

32 2. The One-Way Function Technique

2.1 GEM: Characterizing the Existence of One-Way
Functions

Informally put, a one-way function is a function that is easy to compute and
hard to invert. However, to be able to rigorously characterize whether one
way functions exist, we will have to formally pin down each of these notions.
In addition, we will require a technical condition known as "honesty," which is
needed to keep the entire discussion from being trivialized. Also, the functions
discussed in the definitions and theorems of this section and Sect. 2.2 are one
argument functions, that is, their type is f : E* -+ E*; in Sect. 2.3, we will
extend the notion of one-way function to the case of two-argument functions.

Definition 2.1 We say a (possibly nontotal) function f, is honest if

(3 polynomial q)(Vy E range(f))(3x)[lxl ~ q(iyl) 1\ f(x) = y].

Definition 2.2 We say a {possibly nontotal) function f is polynomial-time
invertible if there is a (possibly nontotal) polynomial-time computable func
tion g such that1

(Vy E range(J))[y E domain(g) 1\ g(y) E domain(!) 1\ f(g(y)) = y].

Definition 2.3 We say a (possibly nontotal) function f is one-way if

1. f is polynomial-time computable,
2. f is not polynomial-time invertible, and
3. f is honest.

Let us see why the honesty condition is natural and needed. Con
sider the function f(x) = lflogloglog(max{lxl,4})l, that is, a string of
flogloglog(ma.x{lxl,4})l ones. This function's outputs are so short relative
to its inputs that, simply to have enough time to write down an inverse,
any machine inverting f must take triple exponential time. Thus, f is a
polynomial-time computable function that is not polynomial-time invertible.
However, this noninvertibility is simply an artifact of the dramatically length
decreasing nature of f. As this type of length-trick noninvertibility is of no
help at all in cryptography or complexity theory, we preclude it by putting
the honesty condition into our definition of a one-way function.

The honesty condition says that each element y of the range of f has
some inverse whose length is at most polynomially longer than the length
of y. So, for honest functions f, f does have short inverses, and iff is not

1 The "1\" here is a bit subtle, since if "y E domain(g)" does not hold, the
expression "g(y) E domain{!) 1\ f(g(y)) = y" isn't even meaningful. In fact, the
"1\" is really a "cand" (a "conditional and")-an "1\" such that the right-hand
side is evaluated only if the left-hand side evaluates to "true." However, since
this type of thing, here and elsewhere, is clear from context, we use " 1\ " as our
notation.

2.1 GEM: Characterizing the Existence of One-Way Functions 33

polynomial-time invertible the reason is not a length trick, but rather reflects
our intuitive notion of what noninvertibility should mean.

Of course, having defined one-way functions, the natural question that
immediately arises is whether one-way functions exist. This question is one
of the major open issues in complexity theory and worst-case cryptography.
However, it is not a new open issue, but rather is a familiar issue in disguise.
In particular, Theorem 2.5 proves that this question in fact is a restatement
of the famous "P =f. NP?" question, and for one-to-one functions it is a re
statement of the question "P =f. UP?"

The reason the one-to-one case is often studied is that it corresponds to
the case where each encrypted message has at most one possible decoding
an obviously desirable situation.

Definition 2.4 We say a (possibly nontotal) function f : E* --+ E* is one
to-one if (Vy E E*)[ll{x I f(x) = Y}ll::; 1].

Theorem 2.5

1. One-way functions exist if and only if P =f. NP.
2. One-to-one one-way functions exist if and only if P =f. UP.

Proof We first prove part 1.
Let us start with the "if" direction. Assume that P =f. NP. Let A be a

language in NP - P. So, it certainly holds that there will exist an NPTM
(nondeterministic polynomial-time Turing machine) N such that A= L(N).
We assume (·, ·) is some standard pairing function (i.e., a bijection between
E* X E* and E* that is polynomial-time computable and polynomial-time
invertible). Consider the function f((x, w)) that outputs Ox if w is an ac
cepting path of N(x) and that outputs lx otherwise. This function is clearly
polynomial-time computable and honest (the polynomial-time computability
and invertibility of the pairing function block it from so severely distorting
lengths as to destroy honesty). Suppose that f were polynomial-time invert
ible, via function g. Then we have that A E P, as shown by the following
algorithm. On any input y, if Oy ¢ domain(g) then reject y. Otherwise, inter
pret g(Oy) as a pair and test whether its second component is an accepting
path of N(y). If so then accept and otherwise reject. However, as we as
sumed that A ¢ P, A E P is a contradiction, and so our supposition that f
is invertible must be incorrect. So, f is a polynomial-time computable, hon
est function that is not polynomial-time invertible. That is, it is a one-way
function.

We now turn to the "only if" direction of part 1. Assume that one-way
functions exist and that f is a one-way function. Let p be the honesty poly
nomial for f, in the sense of Definition 2.1. Consider the following language.

L = { (z,pre) I (3y)[IYI + lprel ::; p(lzl) 1\ f(pre · y) = z]},

where "·" denotes string concatenation. Clearly, L E NP. However, if L E P
we can invert f by prefix search. That is, to invert z we ask first "(z, €) E L?"

34 2. The One-Way Function Technique

If the answer is no, then z is not in the range of f. If the answer is yes, we
check whether f(£) = z and if so we have found a preimage under f of z
as desired, and otherwise we ask each of the questions "(z, 0) E L?" and
"(z, 1) E L?" At least one must receive the answer yes. We now proceed as
above to check whether that one is the inverse. If so we are done, and if not
we expand one bit further (if both receive the answer yes, we choose either
one, but not both, to expand further) and continue similarly. For strings z
that are in the range of f, we will find a certificate in polynomial time, as
with each pair of questions we get one additional bit of a certificate, and the
certificates are of length at most p(lzl). We conclude that L E NP- P. Thus
we have shown the "only if" direction of part 1.

The proof of part 2 is almost the same as the above, except we require
unambiguity of the NP machines and we add unambiguity to the inverses
of the functions. To make this work requires some minor proof tweaking; for
completeness, we include a proof of the changed part. However, we urge the
reader to see the proof not just by reading it below but rather by first him- or
herself checking that the previous proof with minor modification does cover
this case.

We prove part 2's "if" direction. Assume that P =f. UP. Let A be alan
guage in UP- P. So, it certainly holds that there will exist an NPTM N
such that A= L(N) and such that on each input x, N(x) has at most one
accepting computation path. Let p be a polynomial bounding the runtime
of N. Consider the function f((x, w)) that outputs Ox if w is an accepting
path of N(x) and that outputs 1(x, w) otherwise. This function is clearly
polynomial-time computable and honest. Since N has at most one accepting
path per input, and since we have modified f to now send the nonaccept
ing witnesses to distinct locations, f is a one-to-one function. However, if
f were polynomial-time invertible then by the same algorithm given in the
case of part 1, we would conclude that A E P, yielding a contradiction. So,
f is a polynomial-time computable, honest, one-to-one function that is not
polynomial-time invertible. That is, it is a one-to-one one-way function.

We now turn to the "only if" direction of part 2. Assume that one-to
one one-way functions exist and that f is such a function. The language L
constructed in the proof of part 1 will in fact be in UP due to f's one-to-one
ness, and the rest of the "only if" direction of part 1 holds without change,
thus completing our proof. 0

The proof of Theorem 2.5 is a model of the one-way function technique,
namely, proving results via the connection between certificates for machine
acceptance and the invertibility of functions. We will draw on this approach
both in Sect. 2.2, in the form of Fact 2.9, and in Sect. 2.3, where the main
proof is also an example of the one-way function technique.

2.2 Unambiguous One-Way Functions 35

2.2 Unambiguous One-Way Functions Exist If and Only
If Bounded-Ambiguity One-Way Functions Exist

In the GEM section, we saw that the existence of one-to-one one-way functions
is characterized by P =f:. UP, but the existence of one-way functions is char
acterized by the less demanding condition P =f:. NP. Though P =f:. UP implies
P =f:. NP, the converse has never been established. That is, it is at least plau
sible that one-way functions exist but that no one-to-one one-way functions
exist.

In contrast, we will now prove that for a certain narrower gap in allowed
amount of many-to-one-ness, the existence of one-way function at the two
levels of many-to-one-ness stands or falls together. In particular, we prove
that one-to-one one-way functions exist if and only if constant-to-one one
way functions functions exists.

Definition 2.6 1. For each k 2:: 1, we say that a (possibly nontotal) func
tion f is k-to-one if (Vy E range(f))[lj{x I f(x) = Y}il ~ k].

2. We say that a (possibly nontotal) function f is of bounded-ambiguity if
there is a k 2:: 1 such that f is k-to-one.

Note that "1-to-one" is synonymous with "one-to-one" (Definition 2.4),
and so we will use the terms interchangeably. Note that such functions fare
completely unambiguous in terms of inversion; each element of range(!) has
exactly one inverse. In the literature, bounded-ambiguity functions are often
referred to as "constant-to-one" or "0(1)-to-one" functions.

Theorem 2.7 Unambiguous (i.e., one-to-one) one-way functions exist if
and only if bounded-ambiguity one-way functions exist.

Proof All one-to-one functions are bounded-ambiguity functions, so the
"only if" direction holds.

We will prove the "if" direction somewhat indirectly. Recall that part 2
of Theorem 2.5 shows that one-to-one one-way functions exist if and only if
P =f:. UP. By an exactly analogous proof, we have Fact 2.9.

Definition 2.8 A language L is in UP~k, k 2:: 1, if there is an NPTM N
such that

1. (Vx E L)[N(x) has at least one and at most k accepting paths], and
2. (Vx E L)[N(x) has no accepting paths].

Fact 2.9 For each k 2:: 2, k-to-one one-way functions exist if and only if
P=j:.UP9.

Our attack on the "if" direction of Theorem 2.7 will be to prove by in
duction that, for all k E {1, 2, 3, ... },

P=UP===}P=UP9.

36 2. The One-Way Function Technique

This clearly holds fork= 1, as UP= UP9.
Assume, inductively, that we have proven P = UP =* P = UP::;k'·

We will now show that P =UP ==} P = UP::;k'+l· So, assume P =UP.
Let L be an arbitrary member of UP<k'+l· Let N be an NPTM-having at
most k' + 1 accepting paths on each input-that accepts L (in the sense of
Definition 2.8). Consider the set

B ={xI N(x) has exactly k' + 1 accepting paths}.

Clearly, B E UP, via the machine that on each input x guesses each lexi
cographically ordered (k' +I)-tuple of distinct computation paths and that
accepts on such a path exactly if each of the k' + 1 guessed paths is an
accepting path on input x. So by our P =UP assumption, BE P.

However, since B E P, the set

D ={xI x ~ B AxE L(N)}

is in UP :Sk'. Namely, we first deterministically check-using some P algorithm
for B, and we just argued that B E P so some such algorithm exists under
our current assumptions-whether x is in B. If x E B we reject, and if
x ~ B we directly simulate N(x). This latter simulation will have at most k'
accepting paths, as x ~ B precludes there being exactly k' + 1 paths, and N's
choice precludes there being more thank'+ 1 paths. Since DE UP<k', we
conclude from our inductive hypothesis (which wasP= UP ==} P = UP::;k'),
and our assumption that P = UP, that D E P. Since P is closed under
union, BUD E P. However, L = BUD, and since L was an arbitrary
member of UP::;k'+I. we have now established our inductive step, namely,
that P =UP =* P = UP:Sk'+l· D

It remains an open research issue whether Theorem 2. 7 can be extended
to a nonconstant level of many-to-one-ness. Certainly, the proof technique
used above does not seem valuable beyond the constant-to-one case.

2.3 Strong, Total, Commutative, Associative One-Way
Functions Exist If and Only If One-Way Functions Exist

In this chapter, we have until now focused on the theory of one-argument one
way functions. The present section studies two-argument (henceforth denoted
2-ary) one-way functions. Such functions arise naturally in the study of cryp
tographic protocols. In fact, their study and the most interesting new issues
they pose were directly motivated by proposed cryptographic protocols.

In particular, Rabi, Rivest, and Sherman have proposed interesting pro
tocols for digital signatures and multiparty secret-key agreement that used as
building blocks (hypothetical) 2-ary one-way functions having also such prop
erties as being total, commutative, associative, and "strongly noninvertible."

2.3 Strong, Total, Commutative, Associative One-Way Functions 37

This immediately raises the question of how likely it is that such functions
exist. As we will see in this section, a satisfying answer can be given to this
question: One-way functions exist if and only if strongly noninvertible, total,
commutative, associative, 2-ary one-way functions exist.

Before we prove this theorem, we first formally define what we mean for
2-ary functions by each of these properties.

Definition 2.10 We say a {possibly nontotal) 2-ary function f : E* x E* -+

E* is honest if

(3 polynomial q)(Vy E range(f))(3x, x')[lxl + lx'l ~ q(lyl) 1\ f(x, x') = y].

Note that Definition 2.10 does not require that lxl + lx'l ~ q(lyl) hold
for every x and x' for which f(x,x') = y; the definition merely requires that
each element of range(!) have at least one appropriate pair (x, x').

Definition 2.11 We say a (possibly nontotal) 2-ary function f : E* x E* -+

E* is (polynomial-time) invertible if there is a (possibly nontotal) polynomial
time computable function g such that, for each y E range(!),

y E domain(g) 1\

(first(g(y)), second(g(y))) E domain(!) 1\

f(first(g(y)), second(g(y))) = y,

where the projection functions first(z) and second(z) denote, respectively, the
first and second components of the unique ordered pair of strings that when
paired give z.

Definition 2.12 We say a {possibly nontotal) 2-ary function f : E* x E* -+

E* is one-way if

1. f is polynomial-time computable,
2. f is not polynomial-time invertible, and
3. f is honest.

Next, we turn towards defining strong noninvertibility. Informally put,
strong noninvertibility means that even given one of the inputs as well as the
output, the other input cannot in general be computed in polynomial time.
We capture this formally as Definition 2.14 below, being careful to avoid the
analog for strongness of a length-based "honesty" trick that might artificially
block inversion via shrinking lengths in one argument.2

2 Note that our definition does confer s-honesty on functions that wildly shrink
their arguments, but do so in parallel for both their arguments. For example,
consider the function f(a,b) that equals rlogloglog(max(lal,4))l when ial = lbl,
and that is undefined otherwise. This obviously dishonest function is in fact
"s-honest."

38 2. The One-Way Function Technique

Definition 2.13 We say a (possibly nontotal) 2-ary function f : E* x E* --4

E* iss-honest if

1. (3 polynomial q) (Vy, a: (3b)[f(a, b)= y])

(3b')[lb'l :5 q(iYi + lal) 1\ f(a, b') = y].

2. (3 polynomial q) (Vy, b: (3a)[f(a, b) = y])

(3a')[la'l :5 q(iyi + lbi) 1\ f(a',b) = y].

Definition 2.14 We say a (possibly nontotal) 2-ary function f : E* x E* --4

E* is strongly (polynomial-time) noninvertible if it is s-honest and yet neither
of the following conditions holds.

1. There is a (possibly nontotal) polynomial-time computable function g :
E* x E* --4 E* such that (Vy E range(f))(Vx1,x2 : (x1,x2) E

domain(!) 1\ f(x1,x2) = y)[(y,xi) E domain(g) A f(x1,g(y,x1)) = y].
2. There is a (possibly nontotal) polynomial-time computable function g :

E* x E* --4 E* such that (Vy E range(f))(Vx1,x2 : (x1,x2) E
domain(!) 1\ f(x1,x2) = y)[(y,x2) E domain(g) 1\ f(g(y,x2),xi) = y].

We define associativity and commutativity only for the case of total func
tions, as Theorem 2.16 uses these notions only for that case. However, we
mention in passing (and the Bibliographic Notes discuss in more detail) that
if one tries to apply analogs of these notions to partial functions, one must
be very careful. There are two different ways one can do this, and confusing
them has led to serious problems in the literature.

Definition 2.15

1. We say a total, 2-ary function f: E* x E* --4 E* is associative if

(Vx, y, z)[f(f(x, y), z) = f(x, f(y, z))].

2. We say a total, 2-ary function f : E* x E* --4 E* is commutative if

(Vx, y)[f(x, y) = f(y, x)J.

For example, applying the notion in the natural way to functions that may
interpret their input strings as integers, the 2-ary function "multiplication (of
integers)" is associative and commutative, the 2-ary function "concatenation
(of strings)" is associative but not commutative, and the 2-ary function "sub
traction (of integers)" is neither associative nor commutative.

We can now state the main theorem of this section.

Theorem 2.16 One-way functions exist if and only if strongly noninvert
ible, total, commutative, associative, 2-ary one-way functions exist.

2.3 Strong, Total, Commutative, Associative One-Way Functions 39

Before we prove Theorem 2.16, we prove the following easy proposition,
from which it is clear that Theorem 2.16 can be alternatively interpreted as
saying that for 2-ary functions, the existence of one-way functions stands or
falls together with the existence of strongly noninvertible, total, commutative,
associative one-way functions, and also stands or falls together with P f. NP.

Proposition 2.17 The following are equivalent.

1. One-way functions exist.
2. 2-ary one-way functions exist.
3. P f. NP.

Proof (1) = (3) by Theorem 2.5.
To show (2) ==> (1), let(·,·) be a pairing function with the standard nice

properties (see the proof of Theorem 2.5), and that in addition is nondecreas
ing in each argument when the other argument is fixed. Let f : E* x E* --+ E*
be any 2-ary one-way function. Then it is easy to see that g : E* --+ E* defined
by

g(z) = f(first(z), second(z))

is a one-way function, where first(z) denotes the first component of the
(unique) pair mapped to z by the pairing function, and second(z) denotes the
second component of the (unique) pair mapped to z by the pairing function.
So (2) ==> (1).

If h : E* --+ E* is a one-way function, then h' : E* X E* --+ E* defined
by h'(x, y) = (h(x), y) is easily seen to be a 2-ary one-way function, as is
h"(x, y) = (h(x), h(y)) (in fact, the latter even throws in for free strong
noninvertibility). So (1) ==> (2). D

We now turn to the proof of Theorem 2.16.

Proof of Theorem 2.16 It follows from Proposition 2.17 that one-way
functions exist if 2-ary one-way functions exist, and thus one-way functions
certainly exist if strongly noninvertible, total, commutative, associative, 2-
ary one-way functions functions exist. So we need only show that if one-way
functions exist then strongly noninvertible, total, commutative, associative,
2-ary one-way functions exist. In fact, by Proposition 2.17 it suffices to show
that if P f. NP then there exist functions.

So, assume P f. NP. Then there will exist an NPTM N' such that L(N') E
NP- P. By standard machine manipulation it follows that there exists a
polynomial p, satisfying ('v'n)[p(n) > n], and an NPTM N such that L(N') =
L(N) (thus, L(N) E NP- P) and on each input x each computation path
of N(x) has exactly p(lxl) bits. We will view these paths (the sequences of
nondeterministic guesses) as potential witnesses for x E L(N), and we will
call such a path a witness (for x E L(N)) exactly if it is an accepting path
of N(x). To formalize this, we define W(x) to be the set of all witnesses for
x E L(N). Note that x E L(N) {==} W(x) f. 0, and that each witness has
length polynomially related to lxl. Note also that, due to the "by standard

40 2. The One-Way Function Technique

machine manipulation" sentence above, a string can never be a witness for
its own membership.

Let our pairing function (-, ·) be as in the proof of Proposition 2.17.
Lett be any fixed string such that t rf. L(N). By t1 we denote t with the

bit 1 appended.
We now define our strongly noninvertible, total, commutative, associative,

2-ary one-way function, f. Let f be as follows.

f(u,v)=

(x,lexmin(w1,w2)) if u = (x,w1) 1\ v = (x,w2) 1\ {w1,w2} ~
W(x)

(x,x) if (3w E W(x))[{ u, v} = { (x, x), (x, w) }]

(t, tl) otherwise,

where lexmin(z, z') denotes the lexicographically lesser of z and z'. We men
tion immediately that due to our having required that p(n) > n, in the
{ u, v} = { (x, x), (x, w)} case above, there is no chance of x being a witness
string for x E L(N), as all witnesses for x are longer than x.

Intuitively, the action of the above function is as follows. It has two inputs,
and it expects them each to be a pairing of the same string, x, with itself or
with a witness for x E L(N). (Note that

{(x,w) J wE W(x)}

is in P, i.e., witness testing is easy.) If the input is of the wrong form-two
different first components, or the same first components but some second
component that is neither x nor a member of W(x)-then f outputs a dis
tinguished string that will function as a garbage dump. Otherwise f will re
duce by one the number of witness instances. That is, if both its inputs are x
paired with elements of W(x), then f reduces the number of witness instances
from two to one by outputting x paired with the lexicographically smaller3

witness; it is legal for the second components to both hold the same witness,
which is why we said "witness instance" above, rather than "witness." Simi
larly, if f has just one witness instance among the second components of the
(first-component-matching) inputs, then it will reduce to zero the number of
witness instances by outputting (x, x). If f has no witness instances among
its two inputs, it maps to the garbage-dump string.

Let us verify that f is a strongly noninvertible, total, commutative, asso
ciative, 2-ary one-way function.

From its definition, it is clear that 2-ary function f is total and
polynomial-time computable.

3 As we will see, choosing the lexicographically smaller witness will help us obtain
the algebraic properties we seek.

2.3 Strong, Total, Commutative, Associative One-Way Functions 41

Also, f is commutative. Why? Consider f(u,v). If either of the last two
cases of the definition of f hold we trivially have f(u, v) = f(v, u), and if
the first case holds, we also have f(u,v) = f(v,u), since lexmin itself is
commutative.

f also is strongly noninvertible. It is not hard to see that f is s-honest.
Interestingly, the only nonobvious case regarding s-honesty is inverting the
garbage output string given one of the inputs that mapped to it. However,
due to our having been so specific about fixing the witness of a string x
to be of length exactly p(lxl), even with either argument fixed we can find
a string for the other argument that is of appropriate length. So, f is s
honest. Continuing, let us suppose that f is not strongly noninvertible. Then,
given its s-honesty, this must be because it can be inverted with respect
to (at least) one of its two arguments given the other argument and the
output. Let us consider the first case, i.e., that condition 1 of the definition
of strong noninvertibility (Definition 2.14) holds. So, there is a polynomial
time function g such that for each x E L(N) it holds that g((x,x), (x,x))
must output a string of the form (x, w) with w E W(x). (If x fj. L(N),
then g((x, x), (x, x)) may output anything it likes, but as testing membership
in W(x) is easy it cannot possibly fool us into thinking that it has output
a witness for x E L(N).) This gives a polynomial-time algorithm for testing
membership in L(N): On input x, compute g((x, x), (x, x)) and accept exactly
if g((x,x), (x,x)) is of the form (x,w) for some wE W(x). However, we know
that L(N) fj. P, so our supposition that condition 1 of Definition 2.14 holds
must itself be wrong. By the symmetric, analogous argument, condition 2 of
Definition 2.14 cannot hold. So, f is indeed strongly noninvertible.

It would be tempting to claim that strong noninvertibility immediately
implies that the "noninvertibility" component of Definition 2.12 is satisfied.
However, for subtle reasons, this is not so. (Indeed, it is known that unless
P = NP there exist honest, strongly noninvertible functions that are invert
ible.) Nonetheless, the flavor of the preceding argument about strong non
invertibility still can be used to show noninvertibility in the current setting;
simply inverting based on the output (x, x) will put into our hands strings
at least one of which is a pair having as its second component a witness for
x E L(N), if any such witness exists.

Furthermore, f is honest. Due to the fact that (by our choice of N) wit
nesses are of polynomial length relative to the strings whose membership in
L(N) they certify-and that our pairing function is polynomial-time com
putable and polynomial-time invertible and so it cannot distort lengths by
more than a polynomial amount, i.e., I (a, b) I and Ia I+ lbl each are bounded by
a polynomial in the other-the first two cases of the definition of f pose no
problem. The only case that remains is when our range element is the special
string (t, tl). However, a single range point can never on its own preclude
honesty. That is, consider the shortest string mapping to (t, tl) and choose
our honesty polynomial large enough to stretch from I (t, tl) I up to the length

42 2. The One-Way Function Technique

of that one string and to handle the honesty of the first two cases of the
definition of f. This is legal and handles this case, as honesty requires that
range elements have at least one relatively short inverse, not that they have
all their inverses be relatively short.

So, we have left only the issue of whether f is associative. Our goal is to
show that, for each z, z', z" E E*,

f(!(z, z'), z") = f(z, f(z', z")).

Let first and second be as in the proof of Proposition 2.17. We say a string
a is legal if

(3x)(3w)[w E W(x) 1\ a= (x,w)].

It follows from the definition off that if at least two of z, z', and z" are
not legal then f(!(z,z'),z") = f(z,f(z',z")) = (t,tl). (Recall that by the
choice, on page 40, of t, and by the definition of J, (t, tl) will function
here as an "absorbing" element.) Similarly, f(!(z, z'), z") = f(z, f(z', z")) =
(t, tl) unless first(z) = first(z') = first(z"). And if first(z) = first(z') =
first(z") and exactly one z, z', and z" is not legal, then we still will have
f(!(z, z'), z") = f(z, f(z', z")) = (t, tl) unless the one that is not legal is the
string (first (z), first (z)).

The only remaining case is that first(z) = first(z') = first(z"), and ei
ther two or three of z, z', and z" have second components belonging to
W(first(z)), and in the case that exactly two of z, z', and z" have second
components belonging to W(first(z)) it also holds that the remaining string
is (first(z), first(z)).

If first(z) = first(z') = first(z") and exactly two of z, z', and z" have
second components belonging to W (first (z)) and the remaining string is
(first(z),first(z)), then applying the definition off we have

f(!(z, z'), z") = f(z, f(z', z")) = (first(z),first(z)).

If first(z) = first(z') = first(z") and exactly three of z, z', and z" have second
components belonging to W(first(z)), then applying the definition off we
see that

f(!(z,z'),z") = f(z,f(z',z")) = (first(z),q),

where q is the lexicographically least of second(z), second(z'), and second(z").
Thus, f is associative.
So, we have shown that f is a strongly noninvertible, total, commutative,

associative, 2-ary one-way function. D

2.4 OPEN ISSUE: Low-Ambiguity, Commutative,
Associative One-Way Functions?

We ideally would like our one-way functions to be one-to-one or, if that
cannot be achieved, to have as few preimages as possible. Exactly what can

2.5 Bibliographic Notes 43

be said about upper and lower bounds on the degree of many-to-one-ness
of total, associative, 2-ary one-way functions-under various assumptions or
unconditionally? Some preliminary work has been done, but matching upper
and lower bounds have so far proven elusive.

A major open issue regarding one-way functions is whether one-way func
tions exist if the polynomial hierarchy does not collapse. That is, can one
prove that P =UP ===} PH collapses? For that matter, can one prove that
UP = NP ===} PH collapses?

2.5 Bibliographic Notes

Section 2.1 covers two related notions: one-way functions and one-to-one one
way functions. The earliest citation we know of for the one-way functions part
of Theorem 2.5 is a paper by Watanabe ((Wat88], see also (BDG95,Sel92,
BFH78,Bra79]). The one-to-one one-way functions part of Theorem 2.5, and
the related definitions, are due to Grollmann and Selman (GS88]. This result
was also obtained independently by Berman (Ber77] and Ko (Ko85].

Of course, there are a range of "how many"-to-one-ness levels between
one-to-one and many-to-one, and they similarly and very naturally have been
shown to be characterized by the collapse of complexity classes. For exam
ple, Allender and Rubinstein (AR88] show that polynomial-to-one one-way
functions exist if and only if P =I Few P.

Similarly, the constant-to-one cases are relevant to Sect. 2.2. This section
is based on the work of Watanabe (Wat88], who in particular established
Theorem 2.7. Definition 2.8 is due to Beigel (Bei89] and Fact 2.9 is stated
explicitly in Hemaspaandra and Zimand (HZ93], who study the structure and
potential collapses of bounded-ambiguity classes such as UP::;k and coUP::;k·

Regarding Sect. 2.3, Rabi, Sherman, and Rivest raised the issue of how
algebraic properties interacted with 2-ary one-way functions ((RS93,RS97,
She86], see the discussion and literature pointers in those papers), and de
veloped secret-key agreement and digital signature protocols that interest
ingly use such functions as building blocks. Rabi and Sherman proved (RS93,
RS97] that P = NP if and only if commutative, associative, 2-ary one-way
functions functions {(RS93,RS97,She86]. exist. However, their functions are
nontotal and are not strongly noninvertible. The main theorem of Sect. 2.3,
Theorem 2.16, is due to Hemaspaandra and Rothe [HR99]. The counter
intuitive result mentioned in passing in the proof of Theorem 2.16-that if
P =I NP then there exist honest, strongly noninvertible, polynomial-time com
putable functions that are polynomial-time invertible-is due to Hemaspaan
dra, Pasanen, and Rothe (HPR01].

As mentioned on page 38, some tricky issues arise in the study of asso
ciativity of partial functions. In fact, two distinct notions of associativity can
be studied, and they are inspired by ideas dating back to the early work of
Kleene [Kle52], namely, "complete equality" versus ''weak equality." Simply

44 2. The One-Way Function Technique

put, the issue is whether f(a) = x should be considered true when x E E*
and a fj_ domain(!). These issues are discussed in detail by Hemaspaandra
and Rothe [HR99], who in particular prove that, due to a subtle confusion
between the two notions, a claim of Rabi and Sherman [RS97,She86] is invalid
if UP# NP.

Regarding Sect. 2.4, Rabi and Sherman ([RS97], see the discussion
in [HR99]) show that no total, "weakly associative," 2-ary one-way functions
exist, which implies that no total, associative, 2-ary one-way functions ex
ist. Hemaspaandra and Rothe [HR99] note that lack of one-to-one-ness holds
per force for any commutative 2-ary function having some distinct elements
in its domain, and they propose a more general notion to study that they
call unordered injectivity. Homan [HomOO] provides a deep and direct study
of what upper and lower bounds hold on the degree of many-to-one-ness of
2-ary functions, and of the interactions between that, algebraic properties, in
vertibility properties, and complexity-theoretic hypotheses. For example, he
proves that if P # UP then there exists a 0(n)-to-one, strongly noninvertible,
total, associative, 2-ary one-way function.

Selman [Sel92] has written a general survey of one-way functions, and
a later survey by Beygelzimer et al. [BHHR99] focuses on the study of
associative, 2-ary one-way functions. These references all study worst-case
cryptocomplexity. References on the related but distinct study of average
case cryptocomplexity and that area's notion of one-way functions include
the books of Luby [Lub96] and Goldreich [GolOl]. The result, mentioned in
this chapter's introduction, that the type of one-way function used in average
case cryptography exists if and only if pseudorandom generators exist is due
to Hastad, Impagliazzo, Levin, and Luby [HILL99].

3. The Tournament Divide and Conquer
Technique

If computer science were a country rather than a field, one can well imag
ine that its motto would be "Divide and Conquer," which might have edged
out "In Polynomial Time We Trust." Indeed, divide and conquer techniques
accompany the computer scientist from the introduction to binary search
through the mastery of cutting-edge algorithmic techniques. However, com
puter scientists do not own the franchise. Divide and conquer techniques are
useful in many fields.

In this chapter's GEM, we will prove via divide and conquer a result from
tournament theory. Perhaps surprisingly, we will see that this tournament
theory result immediately yields an upper bound on the nonuniform com
plexity of semi-feasible sets, i.e., how much advice various classes need to
accept them (Sect. 3.1). The result-with a bit of work-also proves that NP
machines cannot find unique satisfying assignments to satisfiable formulas
unless the polynomial hierarchy collapses (Sect. 3.3).

We also will exactly pinpoint the maximum nonuniform complexity of
semi-feasible sets (Sect. 3.2).

3.1 GEM: The Semi-feasible Sets Have Small Circuits

Consider a k-node graph, having no self-loops, such that for each pair, {a, b},
of distinct nodes we have a directed edge from a to b or a directed edge from b
to a, but not both such edges. Such a structure is known as a k-tournament
(see Fig. 3.1). One may think of this as a round-robin tournament in which
each node represents a player, and the edge between two players is directed
towards whichever of the two won the match they played (no ties are allowed).
Tournaments have been extensively studied. However, for our purposes at the
moment, we need only the following simple claim (Theorem 3.1): In any k
tournament, there exists some small collection of players such that every
player in the tournament defeats at least one member of that small collection
(we consider each member, by convention, to defeat him- or herself).

For a graph G, let Vc denote the vertex set of G and let Ec denote the
edge set of G. Let (a, b) denote an edge pointing from a to b. In our sports
tournament analog, we draw between players a and b the edge (a, b) if b
defeats a, and (b, a) if a defeats b; that is, edges point towards winners.

46 3. The Tournament Divide and Conquer Technique

c

Fig. 3.1 A 5-Tournament

Theorem 3.1 If G is a k-tournament on nodes Vc
there exists a setH~ {1, 2, ... , k} such that

1. IIHII::; llog(k + 1)J, and

{1, 2, ... , k} then

2. for each v E Vc- H, there is some g E H such that (g, v) E Ec.

Proof Consider a tournament in which there are k players. Thus, each
player plays k - 1 games. Note that some player must lose at least half the
time, i.e., must lose at least lk2 1l games. This is because in each game
someone wins and someone loses, so the total number of wins equals the
total number of losses. However, if no player were to lose at least half the
time, then each player individually has strictly more wins than losses, and
thus overall there are strictly more wins than losses, which is impossible.

Select some player who loses at least half the games he plays and place him
in the set H. Remove from consideration that player and all the players that
defeat that player. Note that the new player set has at most k - (1 + I k2 1 l) =
I~ l-1 players. Consider the tournament induced by restricting our attention
to only the edges (games) in the old tournament played between players of this
reduced set. Note that, in this reduced tournament, our previous argument

3.1 GEM: The Semi-feasible Sets Have Small Circuits 47

will again apply, and so there will be a player who loses to at least half the
players in the reduced tournament. Add that player to H and again reduce the
tournament. Continuing this process, we eventually arrive at a set H having
property 2 from the statement of the theorem, since there will eventually be
no vertices under consideration. Also, the number of elements in His bounded
by the recurrence relation: 8(0) = 0 and, for each k ~ 1, S(k) ~ 1+S(f~l-1).
As is standard, this recurrence relation implies S(k) ~ Llog(k + 1)J. 0

This innocuous theorem in fact proves that the semi-feasible sets have
small circuits. (Readers who are not familiar with the definitions of small
circuits and semi-feasible sets should at this point quickly read the introduc
tions to these topics contained in, respectively, Sects. A.6 and A.14.)

Theorem 3.2 P-sel ~ P /poly.

Informally, the proof goes as follows: At each length n in any semi-feasible
(equivalently, P-selective) set L, there will always exist, by Theorem 3.1, a
small set of nodes in L such that every element in L =n defeats one of these
nodes, and this small set of nodes itself will function for us as a "small advice
set" for L (since each string in L will defeat one of these nodes, and by the
definition of semi-feasibility any string that defeats one of these nodes must
be in L).

Proof Consider a semi-feasible set L. Recall that to prove that L has small
circuits (i.e., L E P /poly), it suffices (see Sect. A.6) to provide a function g
and a set A E P such that

('v'x) [x E L {::::::::} (x, g(Jxl)) E A] (3.1)

and

(3 polynomial q) ('v'n) [Jg(n)J ~ q(n)]. (3.2)

Consider the length n strings in L, L =n. Let f : E* X E* ~ E* be a
polynomial-time computable function that is a P-selector for semi-feasible
set L. Without loss of generality, we assume that f(a, b) = f(b, a) for all
a and b, as if f does not satisfy this condition, it can be replaced by the
function

f'(a, b) = /(min{ a, b }, max{a, b}),

which does satisfy this condition and, as follows clearly from the fact that f
is a P-selector for L, f' is also a P-selector for L. Consider the tournament on
L=n induced by f. That is, consider a simple (i.e., having no self-loops) graph
G whose nodes are the elements of L =n, and such that for any a, b E L =n,
a =f. b, it holds that (a, b) E Ea {::::::::} f(a, b) = b. Note that this indeed
is a tournament. Theorem 3.1, applied to this tournament, states that there
exists a small set Hn (in particular, JJHnll ~ Llog(1 + I!L=nJI)J ~ n+ 1) such
that this set Hn contains only members of L =n and for every element of L =n
there is some element hE Hn satisfying f(h, x) = x. Note that if x E Hn the

48 3. The Tournament Divide and Conquer Technique

test is whether f(x,x) = x, which is always true. Note also that if L contains
no length n elements, then Hn = 0.

We now state the advice function and advice interpreter for semi-feasible
set L. The advice function, g(n), outputs Hn, coded in any fixed natural way.
Clearly, equation 3.2 holds as, for each n, Hn has at most n + 1 elements,
each n bits long. Our advice interpreter set for L is

A = { (x, y) I y is a (possibly empty) list of length n elements
v1, ... , Vz, and for some j it holds that f(vj,x) = x}.

Clearly, A E P, as f is a polynomial-time computable function. Does
equation 3.1 hold? Let x E L. Then (x,g(lxl)) E A by our choice of g and
A. Let x ¢ L. Let n = lxl. Suppose (x,g(lxl)) EA. Then for some hiE Hn
it must hold that f(hi,x) = x. However, all elements of Hn are in L=n, so,
since f is a P-selector function, the fact that x has defeated an element of L
implies that x E L. So if x ¢ L then (x, g(lxl)) ¢A. 0

Pause to Ponder 3.3 In this section, we saw that P-sel ~ P /poly. Can
one, based on the proof presented in this section, say a bit more about the
number of advice bits than merely that a polynomial number (the ''poly" of
P /poly) of advice bits suffice? For example, do O(n2) bits suffice? That is,
does it hold that P-sel ~ P /quadratic? Hint: Consider the cardinality of the
sets Hn in the proof of Theorem 3.2, and the number of bits in each element
ofHn.

Looking towards the topic of the next section, one can also ask: Is there a
class C such that P -sel ~ C /linear ?

3.2 Optimal Advice for the Semi-feasible Sets

In some sense, computer science is the study of the efficient handling of
information. In this section we ask: How much information do semi-feasible
sets contain?

In the previous section, we saw that P-sel ~ P /poly. However, we proved
a bit more. The actual advice function used at length n was a coding of at
most n + 1 strings of length n. Thus, O(n2) bits are easily sufficient. So we
have the following theorem.

Definition 3.4

1. Let linear denote the class of all functions f such that f(n) = O(n).1

2. Let quadratic denote the class of all functions f such that f(n) = O(n2).

1 We could also have defined ~ to be all functions f such that for some c
and all n we have f(n) = en. Though linear "I ~. it is not hard to see
that P/linear = P/~. as the length of a linear function itself holds little
information-at most O(logn) bits. Analogous comments hold for the quadratic
case.

3.2 Optimal Advice for the Semi-feasible Sets 49

Theorem 3.5 P-sel ~ P/quadratic.

Can we get by with a subquadratic number of advice bits? In this section,
we will see that linear-sized advice suffices, if we are allowed to use powerful
advice interpreters. In particular, rather than use advice interpreters running
in deterministic polynomial time, we will use advice interpreters running in
probabilistic polynomial time (Theorem 3.7) and nondeterministic polyno
mial time (Theorem 3.10). We will eventually show that linear advice is the
best one can do; no strength of advice interpreter can always work success
fully on the semi-feasible sets using sublinear advice.

Recall from Sect. A.6 that to prove that L E Cjlinear we must provide a
function g and a set A E C such that

(Vx) [x E L {:::=:> (x,g(lxl)) E A] (3.3)

and

(:lq E linear) (Vn) [lg(n)l = q(n)]. (3.4)

We now prove that P-sel ~ PP /linear. That is, linear advice suffices
to accept semi-feasible sets, given advice interpreters that are probabilistic
polynomial-time machines (see Sect. A.12 for an introduction to PP). Later
in this section, we will extend this result by showing the even stronger claim
that P-sel ~ NP /linear.

Pause to Ponder 3.6 Prove that P -sel ~ PP /linear. [Hint: Count!]

Theorem 3. 7 P -sel ~ PP /linear.

Proof Let us be given a set L E P-sel and a P-selector function f for L. As
before, without loss of generality, we may assume that for all a and b it holds
that f(a, b) = f(b, a). Our advice function will be the census function of L at
the given length, i.e., g(n) = IIL=nll, padded if needed with leading zeros so
as to be exactly n + 1 bits long. (This is enough bits since 0 ~ IIL=nll ~ 2n,
so there are at most 1 + 2n possible census values.) Consider a string y of
length n. If y E L, then

ll{z In= lzl/\ f(y, z) = z }II ~ IIL=n11,

as only elements in L can defeat elements in L according to a P-selector
function. On the other hand, if y rJ. L, then

ll{z In= lzl/\ f(y, z) = z}ll > IIL=n11,

as each element in IIL=nll defeats y, and also y defeats y. Our advice inter
pretation set-the A of equation 3.3-is defined by the following, where m is
interpreted as the binary representation of an integer.

A= {(x,m) I m 2:: ll{z I f(x,z) = z 1\ lzl = lxl}ll}.

50 3. The Tournament Divide and Conquer Technique

It is not hard to see that A E PP. (We leave the proof as an easy exercise
for the reader. Hint: Construct a PP machine that has two types of paths.
For each z of length lxl, we have a path that accepts if and only if f(x, z) =f. z.
Also, there will be other paths that accept or reject so as to ensure that the
machine has the right acceptance/rejection threshold.) Thus, L E PP/linear,
as IIL=nil E {0, 1, ... , 2n}, so as noted above n + 1 bits suffice for the advice
function. 0

Unfortunately, PP is a very powerful class. PP 2 NP and, within the flex
ibility of Turing reductions, PP contains the entire polynomial hierarchy (see
Sect. A.12). It turns out that such powerful interpreters are not needed. NP
interpreters suffice. To see this, we will have to return briefly to tournament
theory in order to obtain an easy but useful lemma.

Given a directed graph G, and a node v EVa, let

Ro,a(v) = {v}

and, for each i > 0, let

Ri,a(v) = Ri-l,G U {z EVa I (3w E Ri-I,a(v)) [(w, z) E Ea]}.

That is, Ri,a(v) denotes the set of nodes that can be reached from v via
directed paths of length at most i. For any i, G, and S $;;; Va, define

Ri,a(S) ={wE Va I (3v E S) [wE Ri,a(v)]}.

Theorem 3.1 says that if G is a k-tournament, then there is a relatively
small setH such that Va = R 1,a(H). That is, there exists a small collection
of nodes from which all nodes can be reached via paths of length at most
one. We now claim that in any k tournament, there is some node from which
all nodes can be reached via remarkably short paths (just how short they are
will be the topic of Pause to Ponder 3.8).

Note that it is clear, by induction, that in a k-tournament there is a node
v such that Va = Rk-l,a(v). Why? When one adds a node, either it points
to the node that (inductively) reached all other nodes, or it is pointed to by
that node. In the former case, the new node reaches all nodes, and in the
latter CaSe, the node that inductively reached all nodes other than the new
node also reaches the new node, in both cases via sufficiently short paths.

Similarly, it is clear that in a k-tournament, there is a node v such that
Va = Rrlogkl,a(v). We quickly sketch a proof. In the proof of Theorem 3.1
we defined a sequence of nodes v1, ... , Vm and a sequence of sets T1 , ... , Tm,

m :::; llog(k + 1)J, such that for every i, each element in Ti defeats Vi and
Vi defeats Vi+l, ... , Vm· So, for every i, Vi is reachable from Vm by the path
[vm, Vm-1. ... , Vi], and every element u inTi is reachable via this path with
extra edge (vi, u). Thus, every node is reachable from Vm by a path of length
m :::; 1 + (llog(k + 1)J - 1). Also, in the special case k = 1 it is clear that

3.2 Optimal Advice for the Semi-feasible Sets 51

length zero paths suffice. So in all cases each node is reachable via paths of
length at most flog k l·

Va = Rpogkl,a(v) is a result that is strong enough to allow us to prove
the forthcoming Theorem 3.10. However, we prove as Theorem 3.9 a stronger
result that gives more insight into the shortness of paths in tournaments, and
thus into the nonuniform complexity of the semi-feasible sets.

Pause to Ponder 3.8 As just discussed, in each k-tournament there is a
node from which all nodes can be reached via paths of at most logarithmic
length. Improve this to the claim that in each k-tournament there is a node
from which all nodes can be reached via paths of length about most O(log" k).
Beyond that, improve this further to the claim that in each k-tournament
there is a node from which all nodes can be reached via paths of constant
bounded length. [Note: Don't first peek at Theorem 3.9 below, as it will bias
your thoughts on this by showing you the value of the constant.]

Theorem 3.9 If G is a k-tournament, then there is a v E Va such that
Va = R2,c(v).

Proof The result obviously holds for !-tournaments and 2-tournaments.
Inductively, assume it holds for all k tournaments. Consider an arbitrary
k +!-tournament, G. Let a be a node of that tournament, and let G' be the
k-tournament induced by the nodes of G other than a. By induction, there
is a node binG' such that R2,G'(b) = VG'·

If the edge between a and b points to a we are done, as in that case
R2,a(b) = Va. So let us henceforth assume that the edge between a and b
points to b. If a E R2,a(b) we also are done, as in that case R2,c(b) = Va. So
let us henceforth also assume that a¢ R2,c(b).

However, if a (j. R2,a(b) that implies that, for each node c E R 1,c(b), the
edge between a and c points from a to c. This in turn implies that R2,c(a) =
Va. Why? We already know (in light of our "henceforth" assumptions)
R 1,a(b) ~ RI,c(a). We also have R2,G'(b)- RI,G'(b) ~ R2,c(a), namely,
as any length two path from b has as its second node a node from R 1,c,(b),
but all such nodes are also pointed to by a. So, since Va = R2,G'(b) U{a},
we have Va ~ R2,c(a). D

Theorem 3.1, a tournament theory result, yielded a consequence about the
semi-feasible sets, Theorem 3.2. Analogously, the tournament theory result
proven above, Theorem 3.9, also yields our promised result about the semi
feasible sets: P-sel ~ NP /linear.

The linear advice at each length n is simply the element (whose existence
is ensured by Theorem 3.9) that reaches all elements of L=n via extremely
short paths. The nondeterministic interpreter merely guesses the short paths.

Theorem 3.10 P-sel ~ NP/linear.

Proof Let L E P-sel, via P-selector function f. As usual, we assume without
loss of generality that ('Va, b) [f(a, b)= f(b, a)]. Assume also that the special

52 3. The Tournament Divide and Conquer Technique

case jxj = 0 is hard-coded into the advice interpreter (i.e., whether f E £).We
give the advice function, g, and the advice interpreter, A E NP, that prove
L E NP /linear. For each n ~ 1, g(n) will be 1 n+l if L =n = 0 and otherwise
equals Own, where Wn is the length n string in L =n such that, by Theorem 3.9,
each node in the tournament induced on £=n by f (i.e., the tournament in
which there is a node for each member of L =n and for a, b E L =n, a =f. b,
directed edge (a, b) is in the graph if and only if f(a, b) =b) can be reached
from Wn via paths of length at most two. The advice interpreter set A is as
follows.

A = { (x, Ow) I there is a path of length at most two, in the tourna
ment induced on L=n by J, from w to x }.

Clearly, g is of linear length and A E NP. If x E L, then by construction
(x, J(jxl)) E A. If x fl. L, then (x, J(jxl)) fl. A, as if (x, J(jxl)) E A, then we
have a z E {0, 1, 2} and a directed path

from Wn to x, i.e., one satisfying

So, since Wn E L, by the definition of semi-feasibility we also have that each
ai must be in L. Thus, az = x must be in L. This yields a contradiction. 0

Since P-sel is closed under complementation, we have the following corol
lary.

Corollary 3.11 P-sel ~ NP /linear n coNP /linear.

In fact, note that Theorem 3.9 ensures that the guessed paths from Wn

will be very short-of length at most two. So our NP interpreter, when re
solving the question "Is x in L?, jxj = n" in fact need only guess a path
of length at most two, with each element on the path being itself an n-bit
string. So, since we can deterministically check for paths of length at most
one, n nondeterministic guess bits in fact suffice. Thus, we certainly have the
following corollary to the proof.

Corollary (to the proof) 3.12 Each semi-feasible set can be accepted
with linear advice via an NP machine using linear nondeterminism.

Though Theorem 3.10 speaks merely of linear advice, one can say a bit
more about the amount of advice. In fact, the proof of Theorem 3.10 shows
that

P-sel ~ NP /n + 1,

(this is a shorthand for P-sel ~ NP /h(n), where h(n)' = n + 1, and recall that
this means that the advice string must be of length exactly h(n)). Is this
optimal? We now show that, though n + 1 bits suffice, n bits do not suffice.

Theorem 3.13 P-sel ~ NP/n.

3.2 Optimal Advice for the Semi-feasible Sets 53

The proof here is less about computation than about information content.
We'll see that n bits simply cannot hold enough information to disambiguate
a certain family of semi-feasible sets.

Proof We will construct a set, L, consisting mostly of holes. That is, at
widely spaced lengths, our set will include exactly some (possibly empty) left
cut of the strings of that length, and at all other lengths it will be empty (see
Fig. 3.2). Yet, we will ensure that the set is of limited complexity. This will
allow us to conduct a brute-force search, at each shorter length that might
contain strings, of exactly which strings are at those lengths.

2li-l

In particular, let £0 = 2, and for each i ~ 1, let li = 22 . Let
Q = {£0, £1, £2, ... }. We will construct L to ensure that the following three
conditions hold.

L ~ Eio U Ei1 U Ei2 U · · ·. That is, all strings in L have (3.5)
lengths from the set Q.

For each x andy, if !x! = !YI and x :5zex y andy E L, then (3.6)
x E L. That is, at each length Lis a (perhaps empty) left
cut of the strings at that length.

Our proof concludes with the following two claims, and their proofs.

Claim 3.14 Any set L satisfying equations 3.5, 3.6, and 3. 7 is semi
feasible.

Claim 3.15 There is a set L ¢ NP /n satisfying equations 3.5, 3.6, and 3. 7.

Proof of Claim 3.14 Let L satisfy equations 3.5, 3.6, and 3.7. Consider
the following function f.

f(x, y) = l ~;n{x, y)
min{x,y}
max{x,y}

if IYI ¢ Q,
if !xl ¢ Q A IYI E Q,
if !xl E Q A IYI E Q A lxl = !Y!,
if !xl E Q A IYI E Q A !x! # IYIA min{x,y} E L,
if !x! E Q A IYI E Q A !x! # IYIA min{x,y} ¢ L.

It is clear that f is a selector function for L, as no case above outputs an
element not in L if at least one of the arguments is in L. Keeping in mind
the widely spaced left cut structure of L, f can be computed in polynomial
time as follows. The first three cases clearly are in polynomial time. As to

22 22222

the last two cases, recall that Q is ofthe form Q = {2, 22 , 22 , ..• }. So if
2mln{lo:l,llll}

!xl E Q, !YI E Q, and !xl # !Y!, it must hold that max{!xl, IYI} ~ 22 .

Since L is computable in time 22n, that means that a machine running in
time polynomial in !xl + !YI can easily (in the last two cases) compute by

54 3. The Tournament Divide and Conquer Technique

0 0

x ... xo 0

0 0

2 X I 0 0 I 0

1 0 0

0 0

t
string lengths Key: 0 = element is not in L.

X = element is in L.

For example, the "length 2" row in this example
says that 00 E L, 01 ¢ L, 10 ¢ L, and 11 ¢ L.

Fig. 3.2 Typical Structure of L

brute-force search whether min{x,y} E L. Thus, f is a P-selector for L, soL
is semi-feasible. D Claim 3.14

Proof of Claim 3.15 Let N1 , N2, N3 , ... be a standard, easily com
putable list of NPTMs (nondeterministic polynomial-time Turing machines)
such that

NP = {B I (3i) [L(Ni) = B]}.

Let (·, ·) be a fixed, nice, 2-ary pairing function. Let the enumeration
N1, N2, N3, ... be such that, for each i and k, N(i,k) is simply Ni. So in

3.2 Optimal Advice for the Semi-feasible Sets 55

the enumeration N1, N2, N3, ... , each machine Ni will appear infinitely of
ten. Our proof proceeds by diagonalization, in stages.
Stage l: At this stage we define the contents of £=l. If l fl. Q, then set
L =l = 0 and move on to stage l + 1.

If l E Q, then do the following suite of simulations for at most 22' steps
(total). If this number of steps is reached and we have not completed the
following, then let L=l = 0. Say lis the (i, k)th element of Q; that is, define
i and k (which both will depend on l) to be the unique integers satisfying
(i, k) = ll{j I j E Q 1\ j ~ l}ll·

Consider N(i,k). For each of the 2t potential advice strings y of length l,
do the following.

For each of the 2l strings x of length l run N(i,k) { (x, y)). If none of these
2t runs accept, then let rightmosty = 1t-l. Otherwise, let

rightmosty = ma.x{x llxl = ll\ N(i,k)((x,y)) accepts}.

Since for each of the 2t potential advice strings of length l we chose at
most one "rightmost" string, the total number of rightmost strings is at most
2t. So the set

is not empty. Let Jt be an element of Jt, for example, the lexicographically
smallest element of Jl. Set

L=l = {x it= lxl/\ X ~lea: jt}. (3.8)

End of Stage l
By construction, equation 3.5 holds, and by equation 3.8, equation 3.6

holds. By the fact that we allow at most 22' steps in the simulation, equa
tion 3.7 holds. It remains to show that L fl. NP jn. Suppose L E NP /n via
NP language L'. Let i' be such that L(Ni') = L'. Note that, for each k',
N(i',k') = Ni'· For all sufficiently large k', in stage (i',k') the construction

completes without being cut off by the 22' step bound. This is because the
stage l that satisfies (i', k') = ll{j I j E Q 1\ j ~ l}ll requires about

2l2l (2blc) 2

steps {for some positive constants b and c that are dependent only on i),
the three terms respectively being due to the loop over advice strings, the
loop over input strings, and the simulation of an NP machine (converted to an
EXP brute-force machine, and allowing quadratic overhead for the simulation
of that machine on a universal EXP machine). For all sufficiently large l, this
is less than 22'. So for a fixed i', it holds that, for all but finitely many k',
the stage l where l is the (i', k')th element of Q will use no more than 22'

56 3. The Tournament Divide and Conquer Technique

steps. Let k" (implicitly, k" = k"(i')) be one k' for which completion does
occur. Let l" denote the (i', k")th element of Q. Notice that by construction

l" (namely, the construction's choice of Jl") none of the 2 advice strings of

length l" when given as advice to N(i',k")---equivalently to Ni'-yields, at

length l", L =l". In particular, we have the following two claims.

1. If IJt."l = l", then for each length l" advice string, y, either Ni' (Ut.", y))
rejects (yet Jt." E L) or for some length l" string z that is, lexicographi
cally, strictly greater than Jt." it holds that Ni' ((z, y)) accepts (yet z ¢ L).

2. If IJt."l = l" -1, then £=l" is empty but for each advice stringy E Et."
l" there is an x E E such that Ni'((x,y)) accepts.

Thus, L ¢ L' jn. This contradicts our supposition that L E NP /n via NP
language L'. 0 Claim 3.15

0 Theorem 3.13
In fact, it is not hard to modify the proof of Theorem 3.13 to yield the

following more general claim. We leave the proof to the reader. [Hint: Use
the same "large gaps, and 'brute force' short strings" technique used in the
proof of Theorem 3.13, but modify the gaps and the time complexity to be
sensitive to the time bound h(n).]

Theorem 3.16 Let h(n) be any recursive function. P-sel ~

DTIME[h(n)Jin.

3.3 Unique Solutions Collapse the Polynomial Hierarchy

A central focus of computational complexity theory is whether large col
lections of computational objects can be thinned down. The Isolation Tech
nique, the focus of Chap. 4, provides a probabilistic approach to this thinning
process. In this section, we approach the issue of thinning from a different
perspective. We ask whether, given a satisfiable boolean formula, a nondeter
ministic polynomial-time function can cull a single satisfying assignment from
its set of satisfying assignments. We'll soon define exactly what is meant by
a nondeterministic function, and will see that if this thinning could be done,
then the polynomial hierarchy would collapse.

Nondeterministic polynomial-time functions can easily find all satisfying
assignments of satisfiable formulas. Thus, we have the curious case-which
at first may even seem paradoxical-that it is easier to find all solutions
than to cull out one solution. This is not a paradox. We are dealing with
nondeterministic functions. When they are multivalued their various values
appear on distinct paths in a potentially very bushy tree (formal definitions
follow soon). So "simply taking the smallest output and discarding the rest"
cannot be done in any obvious way within the power of nondeterministic
functions, as an individual path has no obvious way of telling whether the

3.3 Unique Solutions Collapse the Polynomial Hierarchy 57

satisfying assignment it obtained and is about to output is lexicographically
smaller than whatever satisfying assignments its many sibling paths may have
obtained.

To put into context the strength one needs to cull satisfying assignments,
note that machines seemingly a bit stronger than NPTMs can cull satisfy
ing assignments unconditionally, and deterministic polynomial-time machines
cannot cull satisfying assignments unless P = NP. Both these claims, as for
malized in the following proposition, are immediate. In particular, part 2
holds since an FPNP function can even, by prefix search, find the lexico
graphically smallest satisfying assignment of a given formula.

Proposition 3.17

1. P = NP {:=:} there is a polynomial-time computable function f such
that

(VF E SAT) [J(F) is a satisfying assignment ofF].

2. There is a function f computable by a polynomial-time machine with an
NP oracle (i.e., f E FPNP) such that

(VF E SAT) [!(F) is a satisfying assignment ofF].

Our case, whether NP functions can cull a single satisfying assignment, is
intermediate (perhaps not strictly~ in logical likelihood between the case of
FP functions and the case of FPN functions.

Curiously enough, though the main result of this section does not seem on
its face to be about semi-feasible sets, a nondeterministic analog of the semi
feasible sets plays a central role in the proof. In particular, the tournament
divide and conquer approach of Sect. 3.1 will be central here, though in the
context of nondeterministic selector functions. First, though, we state some
definitions.

The class NPMV captures the notion of multivalued nondeterministic
function computation. The class NPSV captures the notion of single-valued
nondeterministic function computation.

Definition 3.18

1. Let f be a multi valued function. set- f(x) denotes the set of all values that
are an output of f(x). Note that if f(x) has no output then set-f(x) = 0.

2. We consider any given nondeterministic polynomial-time machine N to
implicitly compute a (potentially partial) multivalued function, namely,
the function !N defined by set-fN(x) = {y I some computation path of
N(x) outputs y}. NPMV denotes the class of functions computed in this
sense by nondeterministic polynomial-time machines.

3. A (potentially partial) multi valued function f is said to be single-valued if
(Vx) [liset-f(x)ll ~ 1]. NPSV denotes the class of all single-valuedNPMV
functions.

58 3. The Tournament Divide and Conquer Technique

Note that there is a function f E NPMV such that, for all F E SAT,
set- f(F) consists of all F's satisfying assignments.

Our notion of "thinning" a multivalued function is the standard one:
refinement. A refinement of multivalued function f is a function g with the
same domain and containing a subset (possibly nonproper) off's values.

Definition 3.19 Given multivalued functions f and g, we say g is a refine
ment off if

1. (\lx) [set-g(x) = 0 -<=? set-f(x) = 0], and
2. (\lx) [set-g(x) ~ set-f(x)].

We now can state the main theorem of this section. If for each NPMV
function there exists an NPSV function that is a refinement of the NPMV
function, then the polynomial hierarchy collapses quite dramatically.

Theorem 3.20 lf all NPMV functions have NPSV refinements, then PH =
zppNP.

Since zppA ~ NPA for all A, we have the following corollary.

Corollary 3.21 If all NPMV functions have NPSV refinements, then
PH=NPNP.

Lemma 3.23 connects the hypothesis of Theorem 3.20 to the equivalent
hypothesis that nondeterministic polynomial-time machines can cull a single
satisfying assignment for any input satisfiable formula.

We will need the following famous result, which we state without proof.

Theorem 3.22 (Cook's Theorem) Let Ni be a standard enumeration of
NPTMs. There is a function !cooK E FP, mapping from strings to boolean
formulas, such that

1. (Vi) (\lx) [Ni(x) accepts -<=? fcooK(Ni,x) is satisfiable],
2. (3gcooK E FP) (Vi) (\lx) [gcooK(fcooK(Ni,x)) = (Ni,x)], and
3. (3hcooK E FP) (Vi) (\lx) (\Ia) [if a is a satisfying assignment of

fcooK(Ni,x), then hcooK(Ni,x, a) outputs an accepting computation
path of Ni(x)].

Lemma 3.23 The following are equivalent:

1. Every NPMV function has an NPSV refinement.
2. (3/ E NPSV) (\IF E SAT) [f(F) is a satisfying assignment of F].2

Proof Consider the NPMV function h defined by

set-h(F) ={a I a is a satisfying assignment ofF}.

2 We use f(F) here as a shorthand, for those inputs on which FE SAT, for the
single element in the one-element set that comprises set-f(F).

3.3 Unique Solutions Collapse the Polynomial Hierarchy 59

If every NPMV function has an NPSV refinement, then h does. This refine
ment satisfies part 2 of the lemma.

Suppose (3! E NPSV) (VF E SAT) [f(F) is a satisfying assignment ofF].

Let 1 be one such f.
Let g E NPMV, via function-computing NPTM Ni. Without loss of gen

erality let Ni be such that paths that output values are (always) accepting
paths (i.e., their final state is an accepting state), and paths that do not
output values are (always) rejecting paths (i.e., their final state is not an
accepting state); since Ni is a function-computing machine, this addition of
accepting final states may seem pointless, but in fact it will be useful in letting
us employ the machinery of Cook's Theorem, which links accepting paths to
satisfying assignments. Let !cooK and hcooK be as in Theorem 3.22. We now
give an NPTM N computing an NPSV refinement of g. On input x, N deter
ministically computes fcooK(Ni, x) and then nondeterministically guesses a
path of NPSV function J. If along our guessed path 1 has no output then
we will make no output along the current path. If along our guessed path
1 does have an output, call it a, then we along the current path first check
whether a is a satisfying assignment of fcooK(Ni, x). If a is not a satisfying
assignment of fcooK(Ni, x) (a strange situation that might in fact occur,
due to Lemma 3.23's part 2 being silent on the issue of what f does, aside
from having at most one output value, when F ¢ SAT), then we make no
output on the current path. If a is a satisfying assignment of fcooK(Ni, x),
then on our current path we deterministically compute hcooK(Ni, x, a)-call
this value path-and then we deterministically compute what value is output
along computation path path of the computation of Ni(x) and output that
value along our current path. 0

We will use two key lemmas-Lemmas 3.25 and 3.27-and one new def
inition in the proof of Theorem 3.20. The new definition extends to partial
nondeterministic functions the notion of semi-feasible computation.

Definition 3.24 Let :F be any (possibly partial, possibly multivalued) func
tion class. We say a set L is :F-selective if there is a multivalued function
f E :F such that

1. (Vx,y) [set-f(x,y) ~ {x,y}], and
2. (Vx,y)[(xELVyEL) => 0i=set-f(x,y)~L].

That is, selector functions, in this generalized sense, (1) never choose strings
that are not among their arguments, and (2) if at least one of the function's
arguments is in the set then they must choose at least one argument and
they must choose no argument that is not in the set. Note that what is
typically referred to in the literature by the notation "P-selective" (i.e., the
semi-feasible) would be referred to as "FPtotat-selective" were one to rigidly
follow the notation of Definition 3.24.

Lemma 3.25 NPSV-sel n NP ~ (NP n coNP)/poly.

60 3. The Tournament Divide and Conquer Technique

We defer the proof of the above lemma until after the proof of the main
theorem, Theorem 3.20.

Theorem 1.16, the Karp-Lipton Theorem, states that if NP has
sparse ::;~-hard sets (equivalently and more to the point here, if NP s;;;
P /poly), then the polynomial hierarchy collapses to NPNP. Can one es
tablish the same strong conclusion from the weaker hypothesis that NP s;;;
(NP n coNP)/poly? Not only is the answer yes, but this stronger result is
in fact essentially implicit in the earlier result, via relativization. Such a sit
uation is referred to, only half-jokingly, as "proof by relativization." We now
give such a proof for the stronger result.

Lemma 3.26 NP s;;; (NP n coNP)/poly ===} PH = NPNP.

Proof By Theorem 1.16,

NP s;;; P /poly ===} PH = NPNP.

Also, it is true that this result relativizes, i.e.,3

('v'A) [NPA s;;; pA /poly ===} PHA = NPNPA]. (3.9)

Assume NP s;;; (NP n coNP)/poly. So SAT E (NP n coNP)/poly, say
via NP n coNP set B. By equation 3.9, taking A= B, we have

NP 8 s;;; P8 /poly ===} PH8 = NPNPB. (3.10)

However, NP s;;; NP 8 s;;; NPNP n coNP = NP (Sect. A.4) and P8 s;;;
pNP n coNP = NP n coNP (Sect. A.4). So by our NP s;;; (NP n coNP)/poly
assumption, the hypothesis of equation 3.10 holds for B. (One can alterna
tively see that, under our assumption, the hypothesis of equation 3.10 holds
via noting that if SAT E B/poly then NP s;;; R~(B/poly) s;;; P8 /poly.)

Thus, by equation 3.10, PH8 = NPNPB. However, since B E NP n coNP,

PH8 = PH and NPNPB = NPNP_ Thus, NP s;;; (NP n coNP)/poly ===}

PH= NPNP. 0

3 We leave it as an exercise to the reader to verify this. The proof given in this book
for the Karp-Lipton Theorem actually does not relativize, as it is based on the
concrete set SAT. To relativize the proof cleanly one, however, may employ the
same idea refocused onto an NP-complete set that, like SAT, is self-reducible, but
that is also nicely relativizable. A good example of such a set is the set LA that we
will now define. Let N1, N2, ... be a standard enumeration of NP (oracle) Turing
machines index such that each machine Ni is i+ni time-bounded on every oracle.
Such enumerations do to exist. Define LA= {Ni#x#pre#pad#pad I (N/'(x) has
an accepting path such that pre is a prefix of the guess bits along that accepting
path) and (Jprefixi+Jpadi = i+ni)}. Note that LA is not just ::;~A-complete for
NPA but even is ::;~-complete for NPA, for each A. LA is also (2-disjunctively)
self-reducible; the doubling of pad ensures that we decrease in length within the
self-reduction.

3.3 Unique Solutions Collapse the Polynomial Hierarchy 61

We'll employ the following slightly stronger form, based on Theorem 1.17,
of this result.

Lemma 3.27 NP ~ (NP n coNP)/poly ==? PH= zppNP.

We now can prove the main theorem.

Proof of Theorem 3.20 Assume that all NPMV functions have NPSV
refinements. Consider the multivalued function !sAT such that, for each x
andy,

set-fsAT(x,y) = {x,y} n SAT.

This function is in NPMV, as it is computed by a nondeterministic
polynomial-time machine that nondeterministically chooses x or y, and then
nondeterministically chooses a variable assignment to the chosen formula,
and then outputs the chosen formula if that assignment satisfies the formula.

By hypothesis, all NPMV functions have NPSV refinements. Let 9SAT be
an NPSV refinement of !sAT· Note that 9SAT is defined exactly if at least one
of its arguments is in SAT, 9SAT is an NPSV function, and if at least one of
9sAT's arguments is in SAT then 9SAT outputs an argument that is in SAT.
Indeed, 9SAT is an NPSV-selector function for SAT. Thus, SATE NPSV-sel.
Note that

{L I {3B E NPSV-sel) [L ~~ B]}

clearly equals NPSV-sel, as such an L has the NPSV-selector function fL
defined, for all x and y, by:

{
{x} if fB(g(x),g(y)) = g(x)

set-fL(x,y) = {y} if !B(g(x),g(y)) = g(y)
0 otherwise,

where fB is the NPSV-selector function forB and g is the many-one reduction
from L to B. Since each NP set ~~-reduces to SAT, it follows that NP ~
NPSV-sel n NP. So by Lemma 3.25 NP ~ (NP n coNP)/poly. Thus, by
Lemma 3.27, PH = zppNP. 0 Theorem 3.20

We now turn to proving the key lemma, Lemma 3.25. There is something
a wee bit surprising about this lemma. In particular, one might expect only
the potentially weaker4 (and also true) claim

NPSV-sel n NP ~ (NPfpoly) n{coNP/poly).

This is because sets in NPSV-sel have selector functions that are merely par
tial, and partial functions usually confound (NP n coNP)fpoly-type proofs
because to prove that a set is in (NP n coNP)fpoly requires a set that is
NP n coNP-like for all advice strings-not just the correct advice string.

4 Though clearly (NP n coNP)/poly ~ (NP /poly) n (coNP /poly), it remains an
open question whether (NP n coNP)jpoly = (NP /poly) n (coNP /poly).

62 3. The Tournament Divide and Conquer Technique

The proof of Lemma 3.25 finesses this by combining the divide and conquer
idea behind this chapter's GEM section with a trick: requiring membership
proofs to be part of the advice. This, plus the fact that NPSV-selector func
tions are only partially partial-the definition of selectivity requires them to
be defined whenever at least one of their arguments is in the set for which
they are selectors-suffices to prove the result.

Proof of Lemma 3.25 Let L be an arbitrary set in NPSV-sel n NP. Let
N L be an NPTM accepting L. Let f E NPSV be a selector function for L.
Without loss of generality, assume

(Vx,y) [set-f(x,y) = set-f(y,x)].

We specify an advice interpreter A E NP n coNP and an advice function g
showing that L E (NP n coNP)/poly.

A= {(x, ((a1, a2, ... , az), (w1, w2, ... , Wz1))) I
z = z' and
(Vi: 1::; i :<:; z) [wi is an accepting path of NL(ai)] and
(3i : 1 ::; i ::; z) [x E set- f(x, ai)]}.

Clearly, A E NP. A is also in NP, as the following NPTM N accepts A.
N accepts immediately if the input is syntactically ill-formed or if z # z'.
Otherwise, N deterministically checks whether (Vi : 1 ::; i ::; z) [wi is an
accepting path of NL(ai)] and N immediately accepts if this check fails.
Otherwise, N rejects immediately if x E {a1, a2, ... , az}. Otherwise, note
that {a1, a2, ... , az} ~ L, as N has seen and checked membership certificates
for each ai. So, by the definition of an NPSV-selector function, for each i it
holds that jjset- f(ai, x)ll = 1. N now nondeterministically guesses and checks
the unique value of set- f(ai, x) for all i. The nondeterministic path(s) that
correctly guess and check for all i which of x and ai is the unique element
in set-f(ai,x) accept if and only if for all i it holds that set-f(ai,x) = {ai}·
This completes our NP algorithm for A.

Our advice function is as follows. At each length n, consider L=n. NPSV
selector function f induces a tournament on L =n as follows. By the definition
of an NPSV -selector function, for each a, b E L =n, a # b, exactly one of
a E set- f(a, b) and b E set- f(a, b) holds, so f induces a tournament in the
same fashion as in Sect. 3.1: for a, b E L=n, a # b, edge (a, b) will be in
our tournament if and only if set-f(a,b) = {b}. By Theorem 3.1, there is a
set Hn ~ En, IIHnll :<:; n, such that each element y of L=n either is in Hn
or for some h E Hn satisfies set- f(y, h) = y. Our advice string for length n
will be ((h1, h2, ... , hz), (w1, w2, ... , Wz)), where (h1, h2, ... , hz) =Hand
each Wi is an accepting path of NL(hi)· This advice function is polynomially
length-bounded.

The set A and this advice function indeed do prove that L E
(NP n coNP)/poly, as the interpreter A-with this advice function-will
at each length n accept exactly those strings that are in Hn or that defeat

3.5 Bibliographic Notes 63

a string in Hn, and by Theorem 3.1 and the properties of NPSV-selector
functions, this describes exactly L =n. 0 Lemma 3.25

One must distinguish between Theorem 3.20 and the following seemingly
similar question, which remains open.

Open Question 3.28 Does UP = NP imply that the polynomial hierarchy
collapses?

The distinction between this question and Theorem 3.20 is that NPSV ma
chines output at most one value, but this value may appear on many paths.
Indeed, it is not known either that UP = NP if all NPMV functions have
NPSV refinements, or that UP = NP only if all NPMV functions have NPSV
refinements.

3.4 OPEN ISSUE: Are the Semi-feasible Sets in
P /linear?

Are the semi-feasible sets contained in P /linear? Note that from Sects. 3.1
and 3.2 we know

P-sel ~ NP /linear n P /quadratic.

Seeking the best of both worlds, we might wonder whether P-sel ~ P /linear
can be established.

We suspect that P-sel Sf: P /linear. However, to prove this might be chal
lenging, as proving this implies Pi= NP. This is so since P-sel ~ NP/linear,
so if P = NP then P-sel ~ P /linear. On the other hand, it remains plau
sible that, via some clever algorithm, one can unconditionally prove that
P-sel ~ P /linear.

Open Question 3.29 P-sel ~ P /linear?

3.5 Bibliographic Notes

Section 3.1 is based on the work of Ko [Ko83]. In that paper, Ko establishes
not just that P-sel ~ P /poly, but even that a slightly more general class,
known as the weakly P-selective sets, is also contained in P /poly. Later work
by Amir, Beigel, and Gasarch [ABGOO], Hemaspaandra et al. [HJRW97], and
Ogihara [Ogi95b] shows that P /poly contains other broad generalizations of
the semi-feasible sets.

Section 3.2 is based on the work of Hemaspaandra and Torenvliet [HT96]
and Hemaspaandra, Nasipak, and Parkins [HNP98], except Theorem 3.7,
which is implicit in a proof of Hemaspaandra et al. [HNOS96a], and
Theorem 3.9, a standard fact from graph theory first noted in the

64 3. The Tournament Divide and Conquer Technique

1950s ([Lan53], see also [Wes96]). An incomparable but related result has been
proven by Burtschick and Lindner [BL97]. They prove that R~(n)-T(P-sel) ~
Ejlinear.

Section 3.3 is based on the work of Hemaspaandra et al. [HNOS96b].
Book, Long, and Selman ([BLS84], see also [BLS85,Sel94]) first introduced
the function classes NPSV and NPMV (Definition 3.18). Refinements (Def
inition 3.19) have been carefully studied by Selman [Sel94]. Lemma 3.23 is
also due to Selman [Sel94]. Semi-feasibility (selectivity) was extended to non
deterministic total functions by Hemaspaandra et al. [HHN+95], and was ex
tended to nondeterministic partial functions (Definition 3.24) by Hemaspaan
dra et al. [HNOS96b]. Wang [Wan95] has studied extending semi-feasibility
to counting classes. Though in this chapter we use "semi-feasible" as a syn
onym for "P-selective," we mention that in the literature "semi-feasible"
is often used in a broader sense that encompasses such nondeterministic
and other analogs of P-selectivity. Lemma 3.26 was first stated, with some
what complex direct proofs, by Abadi, Feigenbaum, and Kilian [AFK89] and
Kamper [Kam91]; the fact that it is implicit in the original Karp-Lipton re
sult [KL80] was noted by Hemaspaandra et al. [HHN+95], whose proof we
follow here.

Lemma 3.27 is due to Kobler and Watanabe [KW98]. Related to the
work of Cai mentioned in the Bibliographic Notes of Chap. 1, from the
hypothesis of Lemma 3.27 one can even conclude that (S~)NP n coNP =
PH [CCH001], which in light of the fact that (S~)NP n coNP ~ zppNP
([Cai01], see also [CCH001]), is at least as strong as Lemma 3.27.

Theorem 3.22, Cook's Theorem, is due to Cook [Coo71], though it is
stated here in a relatively strong form. Levin [Lev75] independently dis
covered Cook's Theorem, and thus it sometimes is referred to in the lit
erature as the Cook-Levin Theorem or, in light of the contributions of
Karp [Kar72], as the Cook-Karp-Levin Theorem. The interesting issue of
whether a Theorem 3.20-like result holds for FP~P remains open. That is,
it is not known whether: If every NPMV function has a refinement com
putable via polynomial-time truth-table access to NP, then the polynomial
hierarchy collapses. It is known that the statement "every NPMV function
has a refinement computable via polynomial-time truth-table access to NP"
fails relative to some oracles ([IT89], see [BT96a]) yet holds relative to a
random oracle ([WT93] and the proof is based on the Isolation Technique of
Chap. 4). Ogihara [Ogi96a] has shown that if every NPMV function has are
finement computable via polynomial-time sublinear-truth-table access to NP,
then the polynomial hierarchy collapses. The issue of footnote 4, i.e., whether
(NP n coNP)/poly equals (NP /poly) n (coNP /poly), has been studied by
Gavalda and Balcazar ([GB91], see also [CHW99]). Though the question re
mains open, Gavalda and Balcazar do give a structural consequence that
would follow from this equality.

3.5 Bibliographic Notes 65

Theorem 3.20, which is due to Hemaspaandra et al. [HNOS96b], states
that the polynomial hierarchy collapses if each NPMV function has an NPSV
refinement. Can more be said? In fact, Hemaspaandra et al. [HNOS96b]
prove-as implicitly does the proof in this chapter-the stronger result that
the polynomial hierarchy collapses if each NP2V function has an NPSV re
finement (where the k in NPkV means "at most k distinct values on any
input"). Other papers have continued to explore what refinement assump
tions imply polynomial hierarchy collapses. In particular, Ogihara [Ogi96a]
proved that if NPMV functions have NPFewV refinements then the polyno
mial hierarchy collapses, where NPFewV (a class first studied, under different
names, by Book, Long, and Selman [BLS84], see also [BLS85,Sel94]) indicates
the class of NPMV functions such that for some polynomial q it holds that
(Yx) [JJset-f(x)JJ ~ q(JxJ)]. Naik et al. [NRRS98] proved, for each k, that if
all NP(k + l)V functions have NPkV refinements then the polynomial hier
archy collapses. Taking an even broader view, Hemaspaandra, Ogihara, and
Wechsung [HOWOO] prove a sufficient condition for when numbers of solu
tions of NP functions can be reduced, and Kosub [KosOO] has shown that, for
finite "solution types," their condition in fact describes every type of solu
tion reduction that holds in all relativized worlds. Hemaspaandra, Ogihara,
and Wechsung [HOWOO] also put these collapse results into an interesting
perspective via proving general lowness results implying the collapses.

4. The Isolation Technique

Brother: And the Lord spake, saying, "First shalt thou take out the
Holy Pin. Then, shalt thou count to three, no more, no less. Three
shalt be the number thou shalt count, and the number of the counting
shalt be three. Four shalt thou not count, nor either count thou two,
excepting that thou then proceed to three. Five is right out. Once
the number three, being the third number, be reached, then lobbest
thou thy Holy Hand Grenade of Antioch towards thy foe, who being
naughty in my sight, shall snuff it. "
Maynard: Amen.
All: Amen.
Arthur: Right! One . .. two . .. five!

-Monty Python and the Holy Gmil

Counting is cumbersome and sometimes painful. Studying NP would in
deed be far simpler if all NP languages were recognized by NP machines
having at most one accepting computation path, that is, if NP =UP. The
question of whether NP = UP is a nagging open issue in complexity theory.
There is evidence that standard proof techniques can settle this question
neither affirmatively nor negatively. However, surprisingly, with the aid of
randomness we will relate NP to the problem of detecting unique solutions.
In particular, we can reduce, with high probability, the entire collection of
accepting computation paths of an NP machine to a single path, provided
that initially there is at least one accepting computation path. We call such
a reduction method an isolation technique.

In this chapter we present one such technique. Based on this technique,
we prove two surprising results relating NP and NL to counting complexity
classes: PP is polynomial-time Thring hard for the polynomial hierarchy, and
NL and UL are equal in the presence of polynomially length-bounded advice
functions.

The organization of this chapter is as follows. In Sect. 4.1, we present
the isolation technique, and show that NP is "randomized reducible" to the
problem of detecting unique solutions. More precisely, for each language L
in NP, there exist a randomized polynomial-time algorithm F and an NP
decision problem A, such that for every string x, if xis a member of L, then
with high probability the output of F on input x is an instance of A with a

68 4. The Isolation Technique

unique solution, and if xis not a member of L, then with probability ~
the output of :F on x is an instance of A with zero solutions or more than
one solution.

In Sect. 4.2, we apply the isolation technique for NP to prove Toda's
Theorem, PH ~ pPP, and we also establish a well-known extension of Toda's
Theorem. In Sect. 4.3, we prove that NL/poly = UL/poly.

4.1 GEM: Isolating a Unique Solution

The isolation technique we use in this chapter is often called the Isolation
Lemma.

4.1.1 The Isolation Lemma

A weight function over a finite set U is a mapping from U to the set of positive
integers. We naturally extend any weight function over U to one on the power
set 2u as follows. For each S ~ U, the weight of S with respect to a weight
function W, denoted by W(S), is ExeS W(x). Let :F be a nonempty family
of nonempty subsets of U. Call a weight function W good for :F if there is
exactly one minimum-weight set in :F with respect to W. Call W bad for :F
otherwise.

Lemma 4.1 (The Isolation Lemma) Let U be a finite set. Let
:F1, ... ,:Fm be families of nonempty subsets over U, let D = IIUII, let
R > mD, and let Z be the set of all weight functions whose weights are at
most R. Let a, 0 <a< 1, be such that a> mf. Then more than (1-a)IIZII
functions in Z are good for all of :F1, . . . , :F m.

Proof Let :F be one family. For a weight function W E Z, let Min Weightw
denote the minimum weight of :F with respect to W, i.e., MinWeightw =
min{W(S) IS E :F}, and let MinWeightSetw denote the set of all minimum
weight sets of :F with respect toW, i.e., Min WeightSetw = { S E :F I W(S) =
Min Weightw}. For x E U, we say that the minimum-weight sets of :F with
respect to W are unambiguous about inclusion of x if there exist some S, S' E
Min WeightSetw such that x E (S \ S') U (S' \ S).

Recall that a weight function WE Z is bad for :F if IIMinWeightSetwll ~
2. Suppose that W is bad for :F. Let S and S' be two distinct members of
Min WeightSetw. Since S =/:- S' there exists some x E U such that x belongs
to the symmetric difference of S and S', i.e., (S \ S') U (S' \ S). Thus, the
minimum-weight sets of :F with respect to W are ambiguous about some
x E U. Conversely, if the minimum-weight sets of :F with respect to W are
ambiguous about some x E U, then there is more than one minimum-weight
sets of :F with respect toW, soW is bad. Thus, W is bad if and only if there

4.1 GEM: Isolating a Unique Solution 69

is some x E U such that the minimum-weight sets of :F with respect to W
are ambiguous about inclusion of x.

Let x E U be fixed. We count the number of weight functions W E Z
such that the minimum-weight sets of :F with respect to W are ambigu
ous about inclusion of x. Let Yl, ... ,YD-1 be an enumeration of U- {x}
and v1, ... , VD-1 E {1, ... , R}. Let A be the set of all weight functions
W such that for all i, 1 :::; i :::; D - 1, W(yi) = vi. Suppose that there
is a weight function W in A such that the minimum-weight sets of :F
with respect to W are ambiguous about inclusion of x. Let W' be an ar
bitrary element in A\ {W} and 8 = W'(x) - W(x). We claim that the
minimum-weight sets of :F with respect to W' are unambiguous about in
clusion of x. To see why, first suppose that 8 > 0. Then, for all S E :F,
W'(S) = W(S) + 8 if x E S and W'(S) = W(S) otherwise. In par
ticular, for all S E MinWeightSetw, W'(S) = W(S) + 8 if x E S and
W'(S) = W(S) otherwise. This implies that MinWeightw' = MinWeightw
and MinWeightSetw, = {S E MinWeightSetw I x f/. S}. Next suppose that
8 < 0. Then, for all S E :F, W'(S) = W(S) -181 if xES and W'(S) = W(S)
otherwise. In particular, for all S E MinWeightSetw, W'(S) = W(S) - 181
if x E S and W'(S) = W(S) otherwise. This implies that MinWeightw, =
MinWeightw -181 and MinWeightSetw' = {S E MinWeightSetw I xES}.
Thus, if 8 > 0 then all minimum-weight sets of :F with respect to W' con
tain s, and if 8 < 0 then no minimum-weight sets of :F with respect to W'
contain s. Hence, for all W' E A\ {W} are the minimum-weight sets of :F
with respect to W' are unambiguous about inclusion of x. This implies that
there is at most one weight function WE A such that the minimum-weight
sets of :F with respect to W are ambiguous about inclusion of x. For each i,
1 .:5 i :::; D- 1, there are R choices for Vi· So, there are at most RD-l weight
functions W E Z such that the minimum-weight sets of :F with respect to
W are ambiguous about inclusion of x. There are RD weight functions in
Z, there are m choices for :F, and there are D choices for x. Thus, the pro
portion of {W E Z I for some i, 1 :5 i :5 m, W is bad for :Fi} is at most

mv:;- 1 = mf <a. So, the proportion of {WE Z I for all i, 1:::; i .:5 m, W
is good for :Fi} is more than 1 - a. 0

4.1.2 NP Is Randomized Reducible to US

US is the class of languages L for which there exists a nondeterministic
polynomial-time Turing machine N such that, for every x E ~·, x E L if
and only if N on input x has exactly one accepting computation path (see
Sect. A.9). USAT is the set of all boolean formulas having exactly one satis
fying assignment and that USAT is complete for US under polynomial-time
many-one reductions (see Sect. A.9).

70 4. The Isolation Technique

We say that a language A is randomized reducible to a language B, de
noted by A~randomizedB, if there exist a probabilistic polynomial-time Turing
machine M and a polynomial p such that, for every x E E*,

• if x E A, then the probability that M on input x outputs a member of B
is at least p(l~l), and

• if x E A, then the probability that M on input x outputs a member of B
is zero.

Using the Isolation Lemma, one can show that every language in NP is ran
domized reducible to USAT.

Theorem 4.2 (VL E NP)[L~randomizedUSAT].

To prove this theorem and other results in this chapter, we will use a
pairing function with a special property regarding the encoding length. For
binary strings x, y, ... , z, we write x#y# · · · #z to denote the string con
structed from this expression by replacing each occurrence of 0, 1, and # by
00, 01, and 11, respectively. More precisely, the encoding is the binary string
of the form

Note that this pairing function satisfies the following conditions:

• Ifx1,x2, ... ,xk andyl,Y2, ... ,Yk satisfy lxll+lx2l+ ··· +ixki = IY1I+
IY2I + · · · + iYki, then lx1#x2# · · · #xki = IY1#Y2# · · · #Yki·

• For every x, y, ... , z E E*, we can recover x, y, ... , z from x#y# · · · #z
in time polynomial in lx#y# · · · #zj.

Proof of Theorem 4.2 Let L be a language in NP. Let p be a polynomial
and A a language in P such that, for all x E E*,

xEL {=::::} (3yEEP(IxD)[(x,y)EA].

We may assume that for all n 2: 0, p(n) ~ 1, and that for all x, (x, OP(Ixl)) rf. A.
For each n ~ 1, let J.L(n) be the smallest power of 2 that is greater than or
equal to p(n). Define

A' = { (x, y) IIYI = J.L(ixi) 1\

(3u, v)[lul = p(jxi) 1\ uv = y 1\ (x, y) E A]}.

Then A' E P and for every x E E*,

x E L {=::::} (3y E E~t(lxl)) [(x,y) E A'].

Since for all x, (x, OP(Ixl)) rf. A, for all x, (x, o~t(lxl)) rf. A'.
For each n 2: 1, we can specify each string y E E~t(n) by bit positions at

which y has a 1; i.e., y can be specified via the set {iII$. i ~ p(n) 1\ Yi = 1}.

4.1 GEM: Isolating a Unique Solution 71

For each n;::: 1, let U(n) = {1, ... , J.t(n)}. Then for every n ;::: 1 the power
set of U(n) represents E~'(n); i.e., each element in E~'(n) can be viewed as
a subset of U(n). For each x E E*, let :F(x) be the set of all y ~ U(ixi)
such that (x, y) E A'. By our assumption, for every x E E*, the empty set
(which corresponds to the string Ol'(lxl>) is not in :F(x). For each n ;::: 1, let
Z(n) be the family of all the weight functions that assign to each number i,
1 ~ i ~ p(n), a positive weight of at most 4~-t(lxl).

Let x be an arbitrary string. Apply Lemma 4.1 with m = 1, U = U(ixi),
Z = Z(ixi), :FI = :F(x), and R = 4~-t(lxl). Then,

• if x E L, then the fraction of the weight functions in Z(lxl) with respect to
which :F(x) has exactly one minimum-weight element is more than ~' and

• if x f/. L, then the fraction of the weight functions in Z(lxl) with respect
to which :F(x) has exactly one minimum-weight element is 0.

For every x E E*, every W E Z(lxl), and every i, 1 ~ i ~ J.t(ixi), W(i) ~
4~-t(lxl). Thus, for every x E E*, every W E Z(lxl), and every y ~ U(lxi),
W(y) ~ 4~-t2 (1xl). Define

B = {(x, W,j) I WE Z(lxl) 1\ 1 ~ j ~ 4~-t2 (lxl) 1\

II{Y E :F(x) I W(y) = j 1\ (x,y) E A'}ll = 1},

where W is encoded as W(l)# · · · #W(~-t(ixi)). Then B E US, which
can be witnessed by the nondeterministic Turing machine M that on
input u behaves as follows: First, M checks whether u is of the form
(x,wi#w2# · · · #wl'(lxl>•j) for some j, 1 ~ j ~ 4~-t2 (lxl), and some
WI,·.·· ,wl'(lxl>• 1 ~WI,··· ,wl'(lxl) ~ 4~-t(lxl). If the check fails, M immedi
ately rejects u. Otherwise, using precisely ~-t(lxl) nondeterministic moves, M
selects y E El'(lxl>; then M accepts u if and only if W(y) = j and (x,y) E A,
where W is the weight function expressed by the string WI #w2# · · · #wl'(ixl),
i.e., for all i, 1 ~ i ~ J.t(ixi), W(i) = Wi· Since BE US, there is a polynomial
time many-one reduction g from B to USAT.

By the above probability analysis, for every x E E*,

• if x E L, the proportion of W E Z(lxl) such that for some j, 1 ~ j ~
4~-t2 (1xl), (x, W,j) E B is at least ~. and

• if x f/. L, the proportion of W E Z(lxl) such that for some j, 1 ~ j ~
4~-t2 (lxl), (x, W,j) E B is 0.

Let N be a probabilistic Turing machine that, on input x E E*, behaves as
follows:

Step 1 N picks a weight function W as follows: For each i, 1 ~ i ~
~-t(ixi), N uniformly, randomly selects a binary string ui having length
2+log ~-t(lxl), then sets the value of W(i) to the binary integer lui, where
ui is the string ui with its leading Os omitted.

Step 2 N picks j, 1 ~ j ~ 4~-t2 (1xl), as follows: N selects a binary string
v having length 2 + 2log ~-t(lxl) uniformly at random. Then N sets j to

72 4. The Isolation Technique

the integer whose binary encoding is 1v, where v is the string v with its
leading Os omitted.

Step 3 N asks its oracle whether g((x, W,j)) E USAT. If the query is
answered positively, then N accepts x. Otherwise, it rejects x.

Let x E E* be an input to NUSAT. Suppose x E L. In Step 1, NUSAT on input
x selects with probability at least ~ a weight function W such that for some
j, 1 $ j $ 4J.L2 (1xl), (x, W,j) E B. Furthermore, in Step 2, NUsAT on input x
selects each j, 1 $ j $ 4J.L2 (1xl), with probability 4~•h.,J). So, the probability

that NUSAT on input x generates a query (x, W, j) that belongs to B is at
least 16i(ixl). Define q(n) = 22p2(n). Since for all n ~ 1, J.L(n) is the smallest

power of 2 that is greater than or equal to p(n), for all n ~ 1, 2p(n) ~ J.L(n).
So, 16i(lxl) ~ 64pl(lxl) ~ 22p,I(Ixl) = ~·Thus, the probability that NUsAT

on input x accepts is at least q(I~D. On the other hand, suppose x fj. L. Then,

NUSAT on x rejects with probability 1. Thus, L$randomized USAT.
0 Theorem 4.2

In the proof above, define

B' = {(x, W,j) I x E E* 1\1 $ j $ 4J.L2 (Ixl) 1\ WE Z(lxl) 1\

II{Y E F(x) I W(y) = j 1\ (x, y) E A'} II is an odd number}.

Then B' E $P. Also, in Step 3 of the program of machine N, replace the
query string by (x, W,j). Call this new machine N. For every x E L, the
same probability analysis holds because 1 is an odd number, so N B' on
input x accepts with probability at least q(I~D. For every x E L, iVB' on

input x rejects with probability 1 because F(x) is empty and 0 is an even
number. This implies that L$randomizedB'. Furthermore, define T to be the
probabilistic oracle Turing machine that on input x, sequentially execute
independent simulation of N on X q(lxl) times, and then accepts if n in at
least one of the q(lxl) simulations and rejects otherwise. For every x E L,
the probability that TB' on input x rejects is at most (1 - q(I~D)9(lxl). Since

q(n) = 22p2 (n) and for all n ~ 0, p(n) ~ 1, for all n ~ 0, q(n) ~ 22. So, the
probability that TB' on input x rejects is at most (1 - i2)22 < !· On the

other hand, for every x E L, the probability that TB' on input x accepts is
0. Thus, we have proven the following theorem.

Theorem 4.3 NP ~ RPaw ~ BPPEBP.

4.2 Toda's Theorem: PH C pPP

4.2.1 PH and BPP$P

By Theorem 4.3, NP ~ BPPEBP. Since pBPPA = BPPA for every oracle A
(see Proposition 4.6 below), it h<Ms that 6.~ ~ BPpEBP.

4.2 Toda's Theorem: PH ~ pPP 73

Pause to Ponder 4.4 Can we extend this inclusion in BppEilP to even
higher levels of the polynomial hierarchy than 6.~?

In this section we show that indeed we can.

Theorem 4.5 For every k 2: 1, E~ ~ BppEBP. Hence, PH ~ BPPEBP.

The proof of Theorem 4.5 is by induction on k. The base case is, of course,
Theorem 4.3. For the induction step, we establish, for each k 2: 1, that
E~+I ~ BPPEBP by combining Theorem 4.3 and our inductive hypothesis,
E~ ~ BPPEBP, in the following three steps:

1. (Apply Theorem 4.3 to the base machine) The proof of
Theorem 4.3 is relativizable, so, for every oracle A, NPA ~ BPPEBPA.
Noting that E~+I = NPr::, we have the following, where the first inclu
sion is via the inductively true E~ ~ BPPEBP and the second is via using
relativized Theorem 4.3 as the oracle ranges over all BPPEBP sets.

mP pBPPmP
EP c NPBPP c BPPEB
k+l- -

2. (Swap BPP and EBP in the middle) By Lemma 4.9 below,
E9pBPPA ~ BPPEBPA, for every oracle A. So,

mPmP
EP c BPPBPP
k+I-

3. (Collapse BPPBPP to BPP, and EePEBP to EeP) By part 2 of

Proposition 4.6 below, BPPBPPA = BPPA for every oracle A. By part 2
of Proposition 4.8 below, E9pEBP = (BP. So,

E~+I ~ BPPEBP.

We will first prove the two collapse results in Step 3, together with character
izations of BPP and (BP. The characterizations will be useful when we prove
the "swapping" property in Step 2.

The results we prove in the rest of the section hold relative to any oracle.
For simplicity, we prove only their nonrelativized versions.

Proposition 4.6

1. (The error probability of BPP computation can be expo
nentially reduced without sacrificing much computation time)
For every L E BPP and every polynomial r, there exist a polynomial p
and a language A E P such that, for every x E E*,
a) if x E L, then the proportion of y E EP(Ixl) such that x#y belongs to

A is at least 1 - 2-r(lxl), and
b) if x ¢ L, then the proportion of y E Ep(lxl) such that x#y belongs to

A is at most 2-r(lxl).
2. The BPP hierarchy collapses; i.e., BPP = pBPP = BPPBPP =

pBPPBPP = BPPBppBPP = 0 0 0 0

74 4. The Isolation Technique

Proof We prove first part 1 of the proposition. Let L E BPP via prob
abilistic Turing machine M. That is, for every x E E*, M accepts x with
probability at least ~ if x E L and with probability at most ~ otherwise. Let
r be any polynomial and let q(n) = 6r(n)+l. Let N be a probabilistic Turing
machine that, on input x, simulates M on input x exactly q(lxl) times, and
accepts then if and only if M accepts in a majority of the simulations. Let
n 2::: 1 and x E En. Suppose that x E L. Let a be the probability that M on
input x accepts and e =a-~· Note that e 2::: ~· The probability that Non
input x rejects is at most

~

= 2q(n) (~ - e2) 2

= (1- 4e2)~.

This is at most (~).i!;l :5 (~) 3r(n) < 2-r(n). Similarly, if x ft L, then the
probability that N on x accepts is at most 2-r(jxJ).

We view the randomized moves of N as being directed by tossing of coins.
More precisely, at each randomized step of N, there are two possible choices
and N selects one of the two by tossing a fair coin, the "head" for on move
and the "tail" for the other. Then the coin tosses of N can be "normalized"
in the sense that there is a polynomial p such that, for every x E E*, N on x
tosses exactly p(lxl) coins. Namely, the machine keeps track of the number of
coin tosses it makes and, at the end of computation, if the number is less than
p(lxl), the machine makes dummy coin tosses to make the total number of
coin tosses equal to p(lxl). Pick such a p and let A be the set of all x#y with
y E EP(JxJ) and such that N on x with coin tosses y accepts. Clearly, A E P
and, for every x E E*, the proportion of y E EP(JxJ) such that x#y E A is
equal to the probability that Non x accepts. So, conditions 1a and 1b both
hold.

We now prove part 2 of the proposition. Let L E BPPA with A E BPP.
The language L is defined in terms of two probabilistic polynomial-time Tur-

4.2 Toda's Theorem: PH ~ pPP 75

ing machines, one for the base computation and the other for the oracle.
Intuitively, we will show below that the two machines can be combined into
a single probabilistic polynomial-time machine without creating much error.

Note that Part 1 in the above holds relative to any oracle. Let r(n) be
an arbitrary strictly increasing polynomial. Then there is a polynomial-time
probabilistic oracle Thring machine D such that, for every x E E*, DA on
input x decides the membership of x in L correctly with probability at least
1 - 2-r(lxl). We may assume that there exists a polynomial p such that, for
every x E E* and every oracle Z, DZ on input x makes at most p(lxl) queries.
Also, we may assume that each query of D on x is at least as long as the
input. We replace the oracle A by A = { x#y I y E A} and replace D by a new
machine D that, on input x E E*, simulates D on input x by substituting for
each query y to A the a query x#y to A. By part 1, there is a polynomial
time probabilistic Thring machine N such that, for every u E E*, N on u
correctly decides the membership of u in A with probability 1- 2-r(lul). Let
M be a probabilistic Thring machine that, on input x E E*, simulates D on
input x and when D makes a query, say u, to the oracle, simulates N on
input u to decide the oracle answer. For every x E E*, Don input x makes
at most p(lxl) queries, and for every query u of D on input x, N on input
u makes an error with probability at most 2-r(lul) :5 2-r(lxl) since lui ~ lxl
and r is an increasing polynomial. So, for every X E E*, the probability of
the paths on which the computation of M differs from that of tJA. is at most
p(lxl)2-r(lxl}. Since DA makes an error with probability at most 2-r(lxl), the
probability that M makes an error is at most (p(lxl) + 1)2-r(lxl). Since r
is an increasing polynomial, for x sufficiently large, the error probability of
M on xis smaller than t· Hence L E BPP. Since BPPBPP = BPP, clearly

BPP8 ppBPP = BPPBPP = BPP via the application of this fact and, more
generally, the BPP hierarchy collapses to BPP by induction. D

For a class C, Cjpoly is the class of all languages L for which there exist
an A E C and a polynomially length-bounded function h : E* - E* such
that, for every x E E*, x E L if and only if (x, h(Oixl)) E A (see Sect. A.6).
We have the following corollary.

Corollary 4.7 BPP ~ P/poly.

Proof Let L E BPP. Let r(n) = n + 1. By part 1 of Proposition 4.6, there
exist a polynomial p and A E P such that, for every x E E*, the proportion
of y E Ep(lxl) for which the equivalence,

x E L {:::::::} (x, y) E A,

does not hold is at most 2-(lxi+I). Let n ~ 1. The proportion of y E Ep(n)
such that II { x E En I X E L {:::::::} (x, y) E A does not hold } II ~ 1 is at most
11Enll2-(n+I) = 2n2-(n+I) < 1. So, there is some y E EP(n) such that, for
every X E En, X E L {:::::::} (x, y) EA. Let h(On) be the smallest such y. Then,

76 4. The Isolation Technique

for every x E En, x E L if and only if (x,h(On)) EA. Since lh(On)l = p(n),
this implies that L E P /poly. 0

Proposition 4.8

1. For every L E EBP, there exist a polynomial p and a language A E P such
that, for every x E E*, x E L if and only if ll{y E EP(Ixl) I x#y E A}ll is
odd.

2. EBpEBP = pEBP = EBP.

Proof To prove part 1, let L be in EBP via a nondeterministic polynomial
time Turing machine M. That is, for every x E E*,

x E L if and only if #accM(x) is odd.

Let p be a polynomial bounding the runtime of M. Define A to be the set
of all x#y, IYI = p(lxl), such that y is an accepting computation path of M
on x (that is, a sequence z of bits representing nondeterministic moves for
M(x) leading to acceptance, on the path it specifies, on or after the move
specified by the lzlth bit of z but before any further nondeterministic move
is attempted) followed by an appropriate number of zeros. Clearly, A E P
and, for every x E E*, the number of y, IYI = p(lxl), such that x#y E A is
#accM(x).

To prove part 2, let L be an arbitrary language in EBPEBP. There exist a
nondeterministic polynomial-time oracle Turing machine M and a language
B E EBP such that, for all x, x E L if and only if the number of accepting
computation paths of M 8 on input xis an odd number. We will construct
a nondeterministic polynomial-time Turing machine M' witnessing that L E
EBP. Let N 1 be a nondeterministic Turing machine witnessing that BE EBP.
As we will see in Proposition 9.3, #Pis closed under addition. So, the function
1 + #accN0 thus belongs to #P. Let N1 be such that #accN1 = 1 + #accN0 •

The function #accN1 flips the parity of #accN0 , in the sense that for all x,
#ace N1 (x) is an odd number if and only if #ace No (x) is an even number.
Thus, N 1 witnesses that B E EBP. Let M' be the nondeterministic Turing
machine that, on input x, simulates M on x but each time M makes a query
to the oracle, instead of making a query M' does the following two steps.
(1) M' guesses a bit, b E {0, 1}, about the oracle answer (where b = 0 is
interpreted as 'Yes' and b = 1 as 'No') and a path of simulation of Nb (i.e.,
No or N1. depending on the choice of b) on input w, where w is the query
string of M. (2) Then M' returns to its simulation of M on input x with the
guessed oracle answer. The machine M' accepts along a given path if and
only if all the simulations of the machines N0 , N1, and M along that path
accepted. We claim that M' witnesses that L E EBP.

For each accepting computation path 7l' of M' on x, let r(7r) be the part
of 7l' corresponding to the computation of M on x and the guesses about
the queries. That is, r(7r) is 7l' with all simulations of N0 and N1 removed.
Only the guessed values of b remain encoded in 7!'. Let t = r(7r) for some

4.2 Toda's Theorem: PH ~ pPP 77

1r. How many accepting computation paths have t as their T-value? Let
y1 , ... , Ym be the query strings along 7r and b1 , ... , bm E {0, 1} be the
guessed values encoded in 1r. Then the number of such paths is the product
of #accN&1 (yi), ... , #accN&.,. (Ym)· This number is odd if and only if all 'the
guesses about the queries are correct. Thus, the parity of the number of ac
cepting computation paths of M' on x equals that of the number of accepting
computation paths of M on x relative to B. Hence, L E EBP. 0

Lemma 4.9 EBPBPP ~ BPPEBP.

Proof Let L E EBPBPP. We show that L E BPPEBP. By part 1 of Propo
sition 4.8, there exist a polynomial p and A E pBPP such that, for every
X E E*,

X E L {===} II{Y E EP(Ixl) I x#y E A}ll is odd.

Furthermore, by part 2 of Proposition 4.6, pBPP = BPP, so A E BPP. Then,
by part 1 of Proposition 4.6, for every polynomial r, there exist a polynomial
p and B E P such that, for every u E E*,

the proportion of v E EP(Iul) such that u#v E B is at least
1 - 2-r(lul) if u E A and at most 2-r(lul) otherwise.

(4.1)

Let r(n) = p(n) + 2. Lets be the polynomial such that, for every x E E* and
y E EP(Ixl), s(lxl) = q(lx#yl). Define (recall that # is the specific function
defined in Sect. 4.1.2)

C = {x#v I v E Es(lxl) 1\

ll{y E EP(Ixl) I (x#y)#v E B}ll is an odd number}.

Clearly, C E EBP. For each x E E*, let

a(x) = ll{y E EP(Ixl) I x#y E A}ll

and, for each x E E* and v E Es(lxl), let

c(x#v) = ll{y E EP(Ixl) I (x#y)#v E C}ll·

By equation 4.1, for every x E E*, the proportion of v E Es(lxl) satisfying the
condition

(Vy E EP(Ixl)) [x#y E A {===} (x#y)#v E B]

is at least 1-2P(Ixl)2-r(s(lxl)) > 1-2P(Ixl)-p(s(lxl))-2 > 1-T 2 = ~ and thus
- - 4'

the proportion of v E Es(lxl) such that a(x) = c(x#v) is at least ~· Thus, for
every x E E*, for at least ~ of v E Es(lxl), a(x) is odd if and only if c(x#v)
is odd. Note that a(x) is odd if and only if x E L and that c(x#v) is odd if
and only if x#v E C. So, for every x E E*, for at least ~ of v E Es(lxl), x E L
if and only if x#v E C. Thus, L E BPpEBP.

Intuitively, the above argument can be explained as follows: We are look
ing at a table whose rows are y's and whose columns are v's, where the y's

78 4. The Isolation Technique

correspond to the nondeterministic guesses for the "parity" computation and
the v's correspond to the random guesses used in the "BPP" computation
(for testing whether a given x#y belongs to A). For each y and z, we place a
letter "X" in the (y, v) entry of the table exactly if the randomized guesses v
for the BPP computation on input x#y lead to an error, i.e., either (x#y E A
and (x#y)#v fl. B) or (x#y fl. A and (x#y)#v E B). For each column v
with no "X" the number of y such that (x#y)#v E B is equal to the number
of y such that x#y E A. So, for such column v, x E L if and only if the
number of y such that (x#y)#v E B is odd. In each row, the fraction of
the entries having an "X" is at most 2-r(s(lxl)). There are only 2P(Ixl) rows.
Thus the fraction of the columns with an "X" is at most 2-r(s(lxl))+p(lxl). As
equation 4.1 holds for any polynomial r, we can select r so that this amount
is less than ±· So, transpose the table: We'll pick v first, then pick y. Then
for more than ~ of v it holds that x E L if and only if the number of y such
that (x#y)#v E B is odd. Hence we can switch the "BPP" part and the
"parity" part. 0

This concludes the proof of Theorem 4.5. We now show below some im
mediate corollaries to Theorem 4.5. Since BPP ~ P /~oly by Corollary 4.7
and pEilP = EBP by part 2 of Proposition 4.8, BPPEil ~ EBP /poly. Thus,
PH~ ESP /poly.

Corollary 4.10 PH~ EBP/poly.

By Lemma 4.9, EBPBPP ~ BppEilP. By relativizing EBP by PH and then
applying Theorem 4.5, we obtain the following result.

Corollary 4.11 ESPPH ~ BppEilP ~ ESP /poly.

4.2.2 PP Is Hard for the Polynomial Hierarchy

We now prove Toda's Theorem.

Theorem 4.12 (Toda's Theorem) PH ~ p#P[ll.

Corollary 4.13 PH ~ p#P = pPP.

Theorem 4.12, Toda's Theorem, follows immediately from Theorem 4.5
in light of the following lemma.

Lemma 4.14 ppEilP ~ p#P[ll. In particular, BPPEilP ~ p#P[ll.

Proof of Lemma 4.14 Let L E ppE!lP. There exist a polynomial p, a
function f E FP, and a language A E pE!lP = EBP (by Proposition 4.8) such
that, for every x E E*,

x E L-<===> II{Y E EP(Ixl) I x#y E A}ll;::::. f(x). (4.2)

4.2 Toda's Theorem: PH ~ pPP 79

Let M be a nondeterministic polynomial-time Turing machine witnessing
that A E EBP. So, for every x E E*, x E A if and only if #accM(x) is odd.
Define so(z) = z and, for each i;:::: 1, define polynomial si(z) with coefficients
inN by

si(z) = 3(si-t(z))4 + 4(si-t(z))3 . (4.3)

Claim 4.15 For every i;:::: 0 and every zEN, if z is even, then si(z) is a

multiple of 22', and if z is odd, then si(z) + 1 is a multiple of 22'.

Proof of Claim 4.15 The proof is by induction on i. The claim trivially
holds for the base case i = 0. For the induction step, let i = i 0 for some
i 0 ;:::: 1 and suppose that the claim holds for values of i that are less than
i 0 and greater than or equal to 0. Suppose that z is even. By the inductive
hypothesis, si_ 1(z) is divisible by 22'- 1

• Since si(z) is divisible by (si-t(z))2

and 22' = (22'-1)2, si(z) is divisible by 22'. Thus, the claim holds for even z.

Suppose that z is odd. By the inductive hypothesis, si_ 1(z) = m22'- 1 -1 for
some m E N. So,

si(z) = 3(m22,_1 -1)4 + 4(m22,_1 -1)3

= 3(m424(2'-1)- 4m323(2'-1) + 6m222(2'-1)- 4m22'-1 + 1)

+ 4(m323(2'-1)- 3m222(2'-1) + 3m22'-1 -1)

= 3m424(2'-1)- 8m323(2'-1) + 6m222(2'-1) -1

= 22' (3m422'- 8m322,_1 +6m2) -1.

Thus, the claim holds for odd z also. 0 Claim 4.15
For each x E E*, let ix = flogp(lxl) + 11 and define rx(z) = (s2.,(z))2

and g(x) = rx(#accM(x)). For every x E E*, rx(z) is a polynomial in z of
degree 222=. The coefficients of the polynomial rx are all nonnegative and
polynomial-time computable. We claim that the function g is in #P. This
can be seen as follows. Let G be a nondeterministic Turing machine that, on
input x, operates as follows:

Step 1 G computes rx(z) = aoz0 + a1z1 + · · · + amzm., where m = 222=.
Step 2 G computes the list I= {i I 0 ~ i ~ 222= I\ ai-=/= 0}.
Step 3 G nondeterministically selects i E I.
Step 4 G nondeterministically selects d, 1 ~ d ~ ai.
Step 5 G simulates M on input x i times.
Step 6 G accepts if and only if M accepts during each of the i simulations.

Then G satisfies g = #acca. By Claim 4.15, the following conditions hold for
every x E E*:

(*) If x E A, then #accM(x) is odd, so g(x)- 1 is a multiple of 22t"', and
thus, g(x) is of the form m2P(Ixl)+l + 1 for some m.

(**) If x r/. A, then #accM(x) is even, so g(x) is a multiple of 22t"', and thus,
g(x) is of the form m2P(Ixl)+l for some m.

80 4. The Isolation Technique

Define
h(x) = L g(x#y).

IYI=P(Ixll

There is a nondeterministic 'lUring machine H such that h = #accH, so
h E #P. In particular, H guesses y E EP(Ixll and simulates G on x#y. By
equation 4.2, (*), and (**), the lowest p(\xl) + 1 bits of the binary repre
sentation of h(x) represent the number of y E EP(Ixll such that x#y E A.
So, for every x E E*, x E L {==::} the leftmost p(\x\) + 1 bits of h(x) is
lexicographically at least 010P0xll-l. This implies that L is decidable by a
polynomial-time 'lUring machine that makes one query to h. Since L was an
arbitrary ppEBP set and h = hL E #P, it follows that ppEBP ~ p#P[ll, the
class of languages decided by a polynomial-time algorithm with one question
to a #P oracle. D Lemma 4.14

So, Theorem 4.12 is established. Corollary 4.13 follows immediately from
Theorem 4.12 in light of Proposition 4.16.

Proposition 4.16 pPP = p#P.

Proof First we show pPP ~ p#P. Let L E PP. There exist a polynomial p,
a language A E P, and f E FP such that, for every x E E*,

x E L {==::} \\{y 1\Y\ =p(\x\) 1\ (x,y) E A}\\?_ f(x).

Let N be a nondeterministic 'lUring machine that, on input x, guesses y E
Ep(lxl), and accepts x if and only if (x, y) E A. Clearly, N can be polynomial
time-bounded. For every x E E*, #accN(x) = \\{y E EP(Ixl) I (x,y) E A}\\.
Since f E FP the membership in L can be tested in p#P[ll. Thus, pPP ~ p#P.

Next we show pPP 2 p#P. Let f be an arbitrary #P function. Let f =
#accN for some polynomial-time nondeterministic 'lUring machine N and
let p be a polynomial that strictly bounds the runtime of N. Then for all x
#accN(x) < 2P(Ixl). Define L = { (x, y) I 0 '.5:. y '.5:. 2P(Ixl) -1/\ #accN(x) ?_ y }.
Define N' to be the nondeterministic 'lUring machine that, on input x E E*,
operates as follows: N' simulates N on input x while counting in a variable
C the number of nondeterministic moves that N makes along the simulated
path. When N halts, N' guesses a binary string z of length p(\x\)- C using
exactly length p(\xl) - C bits. Then N' accepts if and only if the simulated
the path of N on x is accepting and z E 0*. Then for all x #accN(x) =
#accN'(x). Also, for all x E E* and all computation paths 1r of N' on input
x, N' along path 1r makes exactly p(\xl) nondeterministic moves. Define D
to the probabilistic 'lUring machine that, on input (x, y), 0 '.5:. y '.5:. 2P(Ixll- 1,
operates as follows: D uniformly, randomly selects bE {0, 1}, and then does
the following:

• If b = 0, then D uniformly, randomly selects z E {0, 1}P(Ixll, and then
accepts if the rank of z is at most 2P(Ixl) - y and rejects otherwise.

4.2 Toda's Theorem: PH ~ pPP 81

• If b = 1, then D simulates N' on input x by replacing each nondeterministic
move of N' by a probabilistic move. More precisely, each time N' makes a
nondeterministic move, deciding between two possible actions o: and (3, D
selects uniformly, randomly c E {0, 1}, and then D selects o: if c = 0 and
(3 otherwise. D accepts if N' on x along the simulated path accepts and
rejects otherwise.

Clearly, D can be polynomial time-bounded. For every x E E*, the probability
that D on input x accepts is

2P(Ixl)- y #aCCN'(x)
2P<Ixl)+l + 2P(Ixl)+l .

This is greater than or equal to~ if and only if #aCCN' (x) ~ y. Thus, L E PP.
Hence, pPP 2 p#P. D

We can strengthen Corollary 4.13 to show that not only the polynomial
hierarchy but also ppPH is included in pPP.

Corollary 4.17 ppPH ~ pPP.

Proof By Theorem 4.5, PH~ BPPE!lP and by Lemma 4.14, ppEilP ~ pPP_

So, it suffices to prove that, for every oracle X, ppBPPx ~ PPx. It follows
that

ppPH ~ ppBpptBP ~ ppEilP ~ pPP.

Again, we prove only the nonrelativized version. Let L E ppBPP. There exist
a polynomial p, a function f E FP, and A E BPP such that, for every x E E*,

if x E L, then II{Y E EP(Ixl) I x#y E A}ll ~ f(x), and

if x f/. L, then II{Y E EP(Ixl) I x#y E A}ll ~ f(x)- 1.

(4.4)

(4.5)

Let r(n) = p(n) + 2. By part 1 of Proposition 4.6, there exist a polynomial q
and a language B E P such that, for every u E E*,

if u E A, then II { v E Eq(lul) I u#v E B} II ~ 2q(lul) (1 - (4.6)
2-r(luD), and

ifu f/. A, then ll{v E Eq(lul) I u#v E B}ll ~ 2q(lul)2-r(lul). (4.7)

Define s(n) = 2(n + 1 + p(n)). The length of x#y with y E EP(Ixl) is s(lxl).
Define D to be the set of all strings x#yv, withy E EP(Ixl) and v E Eq(s(lxl)),
such that x'#v E B, where x' = x#y. Then Dis in P. For each x E E*,
let d(x) = ll{yv I x#yv E D}ll and define g by g(x) = f(x)2q(s(lxl))(l-
2-r(s(lxl))). Then g E FP. For every x E E*, if x E L, then by equations 4.4
and 4.6, d(x) ~ /(x)2Q(1- 2-R) = g(x), where P, Q, and R respectively
denote p(lxl), q(s(lxl)), and r(s(lxl)). On the other hand, if x f/. L, then by
equations 4.5 and 4. 7

82 4. The Isolation Technique

d(x) ~ (f(x) - 1)2Q + (2P- f(x) + 1)2Q2-R
= f(x)2Q - 2Q + 2P+Q-R- j(x)2Q-R + 2Q-R

= f(x)2Q(1- 2-R)- 2Q(1- 2P-R- 2-R)

= g(x)- 2Q(1- 2P-R- TR).

Since r(n) = p(n) + 2 and s(n) > n, 1-2P-R- 2-R is at least 1--!--! > 0.
So, d(x) < g(x_}· Hence, for every x E E*, x E L if and only if d(x) 2': g(x).
Thus, L E PP . 0

4.3 NL/poly = UL/poly

In the previous sections we saw a number of results that connect the poly
nomial hierarchy to polynomial-time counting complexity classes. Do the
analogs of those results hold for logspace classes? In particular, do the
logspace analogs of PH ~ EBP /poly (Corollary 4.10) and PH ~ pPP (Corol
lary 4.13) hold? Since the NL hierarchy (under the Ruzzo-Simon-Tompa
relativization, see Chap. 9) collapses to NL since NL = coNL (see Sect. A.7),
we can simplify the question of whether the logspace analog of the former
inclusion holds to the question of whether NL ~ EBL/poly and the question
of whether the logspace analog of the latter inclusion holds to the question of
whether NL ~ LPL_ Here the latter inclusion, NL ~ LPL, trivially holds be
cause NL ~ PL. Can we use the isolation technique to prove NL ~ EBL/poly?

Pause to Ponder 4.18 Does NL <:;;:; EBL/poly hold?

The answer to this question is in the affirmative. In fact, we can prove
something stronger: NL/poly = UL/poly. In other words, if all nondetermin
istic logspace machines are given access to advice functions having polynomial
length, then NL and UL are equivalent.

4.3.1 An NL-Complete Set

The Graph Accessibility Problem is the problem of deciding, for a given di
rected graph G and two nodes sand t of G, whether tis reachable from sin G.
We consider a restricted version of the problem in which G has no self-loops,
and s is the first node and t is the last node, where we order the nodes in G ac
cording to the adjacency matrix representation of G. More precisely, we con-
sider the set, GAP, of all aual2 ... alna2la22 ... a2n ' anlan2 ... ann•

n 2': 2, such that the diagonal elements a 11 , ... , ann are each 0, and n is
reachable from 1 in G, where G is the directed graph whose adjacency ma
trix's (i,j)th element is aij· Since GAP, the Graph Accessibility Problem
(without constraints on the numbering of the start and finish nodes, and
without prohibiting self-loops), is well-known to be NL-complete, and since a
logspace machine, given G, s, and t, can swap the names of the source node

4.3 NL/poly = UL/poly 83

s and 1, can swap the names of the sink node t and n, and can eliminate all
self-loops, GAP~~ GAP. GAP is clearly in NL. Hence, our problem GAP is
NL-complete too.

4.3.2 NL/poly = ULjpoly

We show how to apply the Isolation Lemma (Lemma 4.1) to prove NL ~
UL/poly. Suppose we wish to decide the membership in GAP of an arbitrary
n-node directed graph without self-loops. Let our universe U(n) be the set of
all potential edges in such a graph. Then IIU(n)ll = n(n -1). Let our weight
functions map each edge in U(n) to an integer between 1 and 2n3 • For a given
n-node directed graph G without self-loops, and for each i, 1 ~ i ~ n, define
:F(n, G)i to be the set of all simple paths in G from 1 to i. We view each
element of :F(n, G)i as a subset ofU(n). Since :F(n, G)i is a collection of simple
paths from 1 to i, no two elements in :F(n, G)i specify identical paths. Then
a weight function W is good for :F(n, G)i if and only if the minimum-weight
path in G from 1 to i with respect to W is unique. Now apply Lemma 4.1
with m = n, U = U(n), Z = Z(n), :F1 = :F(n, G)!, ... , :Fn = :F(n, G)n,
D = n(n -1), R = 2n3 > 2mD, and a=!· Let Z(n) be the set of all weight
functions whose values are at most 2n3 . Then we have the following lemma.

Lemma 4.19 Let n ~ 2 and let G be ann-node directed graph. Let U(n),
Z (n), and :F(n, G)t, ... , :F(n, G)n be as stated above. Then more than half
of the edge-weight functions in Z are good for :F(n, G)!, ... , :F(n, G)n·

Suppose we wish to select, for each n ~ 2, a sequence of some m(n)
weight functions, Wt. ... , Wm(n) E Z(n), such that for all n-node directed
graphs G, there is some i, 1 ~ i ~ m(n), such that Wi is good for
:F(n, G)I, ... , :F(n, G)n· How large m(n) should be? The following lemma
states that m (n) can be as small as n 2 •

Lemma 4.20 Let n ~ 2. Let U(n), Z(n), and :F(n,G)I, ... ,:F(n,G)n be
as stated above. There is a collection of edge-weight functions Wt. ... , Wn2
in Z(n) such that, for every n-node directed graph without self-loops, G, there
is some k, 1 ~ k ~ n 2, such that Wk is goodfor:F(n,G) 1, ... ,:F(n,G)n·

Proof of Lemma 4.20 Let n ~ 2. By Lemma 4.19, for every n-node di
rected graph without self-loops, G, the proportion of edge-weight functions in
Z (n) that are good for :F(n, G) 1 , ... , :F(n, G)n is more than a half. So, for all
n-node directed graphs without self-loops, the proportion of (Wt. ... , Wn2)
such that for all k, 1 ~ k ~ n 2 , Wk is bad for :F(n,G) 1, ... ,:F(n,G)n
is less than 2-n2. There are 2n(n-l) directed n-node directed graphs with
out self-loops. So, the proportion of (Wt. ... , Wn2) such that, for some n
node directed graph without self-loop G, for all i, 1 ~ i ~ n2 , Wi is bad
for :F(n,G) 1, ... ,:F(n,G)n is less than 2n(n-l)2-n2 < 1. This implies that

84 4. The Isolation Technique

there is some (W1 , ... , ~Vn2) such that for all directed n-node directed graph
without self-loop G, there is some i, 1 :::; i :::; n 2 , such that Wi is good for
F(n,G) 1 , ..• ,F(n,G)n· 0 Lemma 4.20

We define our advice function has follows. For every n 2': 2, h maps each
string oflength n to a fixed collection (W1 , ... , Wn2) ofn2 legitimate weight
functions possessing the property in Lemma 4.20. For n = 1, h maps each
string of length n to the empty string. The domain size D is n(n- 1) and the
largest weight R is 2n3 . So, by encoding each weight in binary, the encoding
length of h(n) will be O(n4 logn).

Now we prove the following theorem.

Theorem 4.21 NL ~ UL/poly, and thus, NL/poly = UL/poly.

In fact, we will prove the following result, from which Theorem 4.21 im
mediately follows.

Theorem 4.22 There is a UL machine that solves GAP using a polynomi
ally length-bounded advice function.

Proof For simplicity, in the following, let n 2': 2 be fixed and let W1 · · · Wn2
be the advice for length n (i.e., what the advice function gives, call it h). Also,

let G be an n-node graph G whose membership in GAP we are testing.
We need to define some notions and notation. For each i, 1 :::; i :::; n 2 ,

and j, 1 :::; j:::; n, define MinWeight(i,j) to be the weight of the minimum
weight paths from 1 to j with respect to the weight function Wi; if j is
not reachable from 1 in G, then MinWeight(i,j) = oo. For each i, 1 :::; i :::;
n 2 , and d 2': 0, define Reach(i, d) to be the set of all nodes j, 1 :::; j :::;
n, that are reachable from 1 via paths of weight at most d with respect
to the weight function wi, define Count(i,d) = IIReach(i,d)ll, and define
WeightSum(i, d) = ~j MinWeight(i,j), where j ranges over all elements in
Reach(i, d); also, we say that Wi is d-nice if, for every j E Reach(i, d), there
is a unique minimum-weight path from 1 to j in G with respect to Wi.

Due to our construction of h, every minimum-weight path has weight at
most n(2n3) = 2n4 • So, for every i, 1 :::; i :::; n 2 , and for every d, d 2': 2n4 ,

it holds that Reach(i, d) = Reach(i, d + 1), Count(i, d) = Count(i, d + 1),
and WeightSum(i, d) = WeightSum(i, d + 1). Note that 1 is the only node
that can be reached from 1 without traversing edges. So, for all i, 1 :::; i :::;
n 2 , it holds that MinWeight(i,1) = 0, Reach(i,O) = {1}, Count(i,O) = 1,
WeightSum(i, 0) = 0, and Wi is 0-nice.

We prove that if Wi is d-nice and if we know Count(i, d) and
WeightSum(i, d), then for any j, 1 :::; j :::; n, we can test, via unambigu
ous logspace computation, whether j belongs to Reach(i, d). Recall that in
the previous section we presented a nondeterministic logspace procedure for
guessing a path, 7rj, from 1 to a given node j. Let us modify this procedure
as follows:

• For each node j, 1 :::; j :::; n, attempt to guess a path from 1 to j having
weight at most d (with respect to Wi) and having length at most n- 1.

4.3 NLjpoly = UL/poly 85

Count the number of j for which the guess is successful (call this number
C) and compute the sum of Wi (1r i) for all successful j (call this number S).

• Output "successful" if C = Count(i, d) and S = WeightSum(i, d). Output
"failure" otherwise.

Note that if Wi is d-nice and both Count(i, d) and WeightSum(i, d) are cor
rectly computed, then there is only one computation path in the above along
which it holds that C = Count(i, d) and S = WeightSum(i, d). Furthermore,
the space requirement for this procedure is 0 (log n), since the guessing part
can be sequential, C ~ n, and S ~ n(2n4) = 2n5 •

Now modify this procedure further, so that (i) it takes a number j,
1 ~ j ~ n, as an additional input, (ii) it memorizes whether the guess is
successful for j, and if so, it memorizes the weight of the path it guesses,
and (iii) if the computation is successful (namely, when C = Count(i, d)
and S = WeightSum(i, d)) it outputs the information that it has memo
rized in (ii). We call this modified version ReachTest. For ad-nice Wi, given
Count(i, d) and WeightSum(i, d), ReachTest(j) behaves as an unambiguous
logspace procedure. Since the modification does not change the space require
ment, if Wi is 2n4-nice, then ReachTest(n) will discover, via unambiguous

logspace computation, whether G E GAP.
Now we have only to develop a UL procedure for finding an i, 1 ~

i ~ n2 , such that Wi is 2n4-nice, and for computing Count(i, 2n4) and
WeightSum(i, 2n4) for that i. We design an inductive method for accom
plishing this task. We vary i from 1 to n 2 and, for each i, we vary d from 0 to
2n4 . For each combination of i and d, we test whether Wi is d-nice, and if the
test is passed, we compute Count(i, d) and WeightSum(i, d). Note for every
i, 1 ~ i ~ n2 ' and for every d, 0 ~ d < 2n4 ' that if wi is not d-nice, then
Wi is not (d + 1)-nice. Thus, if we discover that Wi is not d-nice for some
d, then we will skip to the next value of i without investigating larger values
of d. Recall that for every i, 1 ~ i ~ n2 , Wi is 0-nice, Reach(i,O) = {1},
Count(i, 0) = 1, and WeightSum(i, 0) = 0. Iterating the variables i and d
requires only O(log n) space. So, it suffices to prove that there is a UL pro
cedure that given i, 1 ~ i ~ n 2 , and d, 0 ~ d ~ 2n4 - 1, such that wi is
d-nice, Count(i, d), and WeightSum(i, d), tests whether Wi is (d + 1)-nice,
and if so computes Count(i, d + 1) and WeightSum(i, d + 1). To obtain such
an algorithm, the following fact is useful.

Fact 4.23 Let 1 ~ i ~ n2 and 0 ~ d ~ 2n4 - 1. Suppose that Wi is d-nice.
Then the following conditions hold:

1. For every u, 1 ~ u ~ n, the condition u E Reach(i, d + 1)- Reach(i, d)
is equivalent to: u ¢ Reach(i,d) and there is some v E Reach(i,d) such
that (v, u) is an edge of G and MinWeight(i, v) + Wi(v, u) = d + 1.

2. Wi is (d+ 1)-nice if and only if for every u E Reach(i, d+ 1)- Reach(i, d)
there is a unique node v such that MinWeight(i,v) + Wi(v,u) = d + 1.

86 4. The Isolation Technique

Proof of Fact 4.23 Part 1 as well as the left to right direction of part 2
is straightforward. To prove the right to left direction of part 2, suppose Wi
is not (d + 1)-nice but is d-nice. Then there exists some u E Reach(i, d + 1) -
Reach(i, d) such that there are two distinct paths from 1 to u, with respect
to Wi. Since u E Reach(i, d + 1) - Reach(i, d), the weight of the two paths
should be d + 1. So, they are minimum-weight paths. 0 Fact 4.23

Now we build a UL algorithm for the incremental steps. Let 1 ~ i ~ n 2

and 1 ~ d ~ 2n4 . Suppose that Wi is (d -1)-nice and that Count(i,d- 1)
and WeightSum(i, d - 1) are known.

Step 1 Set counters c and s to 0.
Step 2 For each node u, 1 ~ u ~ n, do the following:

(a) Call ReachTest to test whether u E Reach(i,d -1). Then
• if the ReachTest outputs "failure," then output "failure" and halt,

else
• if ReachTest asserts that u E Reach(i, d -1), then skip to the next

u, else
• if ReachTest asserts that u ¢ Reach(i, d -1), then proceed to (b).

(b) Set the counter t to 0, then for each node v such that (v,u) is an
edge in G call ReachTest to test whether v E Reach(i, d - 1) and
• if ReachTest returns "failure," then output "failure" and halt, else
• ifReachTest asserts that v E Reach(i, d-1) and MinWeight(i, v)+

Wi(v,u) = d, then increment t.
Next,
• if t = 0, then move on to the next u without touching c or s, else
• if t = 1, then increment c and add d to s, else
• if t > 1, then assert that wi is not d-nice and halt.

Step 3 Set Count(i,d) to Count(i,d- 1) + c, set WeightSum(i,d) to
WeightSum(i, d -1) + s, and halt.

The correctness of the algorithm follows from Fact 4.23. It is clear that the
space requirement is O(log n). Note that Wi being d-nice guarantees that
ReachTest(i, d) produces exactly one successful computation path. So, there
is a unique successful computation path of this algorithm, along which exactly
one of the following two events occurs:

• We observe that Wi is (d + I)-nice and obtain Count(i, d + 1) and
WeightSum(i, d + 1).

• We observe that Wi is not (d +I)-nice.

Thus, we can execute the induction step by a UL algorithm. Putting
all together, we have a UL machine that decides GAP with h (i.e.,
W1 W2 · · · Wn2 on inputs of length n) as the advice. This completes the proof
of Theorem 4.22. 0 Theorem 4.22

4.5 Bibliographic Notes 87

4.4 OPEN ISSUE: Do Ambiguous and Unambiguous
N ondeterminism Coincide?

In Sect. 4.3 we showed that the classes NL and UL are equal under
polynomial-size advice. Can we get rid of the polynomial-size advice, i.e.,
is NL equal to UL? One tempting approach would be to derandomize the
Isolation Lemma, however no one has yet succeeded along that path. It is
now known that the equivalence holds if there is a set in DSPACE[n] that
requires circuits of size at least 2cn for some c > 0. In particular, NL = UL
if SAT requires circuits of size at least 2cn for some c > 0.

Also, what can we say about the question of whether NP = UP?
There is an oracle relative to which NP =f:. UP. Since there is also an
oracle relative to which NP = UP (e.g., any PSPACE-complete set, as
NPPSPACE = upPSPACE = PSPACE), relativizable proof techniques can
not settle the NP = UP question. In fact, it even remains an open question
whether the assumption NP = UP implies a collapse of the polynomial hier
archy.

4.5 Bibliographic Notes

Part 2 of Proposition 4.6 is due to Ko [Ko82]. Lemma 4.9 is due to
Schoning [Sch89]. Proposition 4.8 is due to Papadimitriou and Zachos [PZ83].
Regan [Reg85] first noted the closure of #P under addition. The obser
vation applies to #L as well. Proposition 4.16 is due to Balcazar, Book,
and Schoning ([BBS86], see also [Ang80,GJ79]). Buntrock et al. [BDHM92]
proved that EBLEBL = EBL. The oracle, mentioned in Sect. 4.4, relative to which
NP =f:. UP is due to Rackoff [Rac82].

The Isolation Lemma was established by Mulmuley, Vazirani, and Vazi
rani [MVV87]. Their version deals only with a single collection of sets. Our
version, which deals with multiple collections of sets, is taken from the work
of G8.1 and Wigderson [GW96].

Toda's Theorem is due to Toda [Tod91c], and Lemma 4.14, Theorem 4.5,
Theorem 4.12, Corollary 4.10, and Corollary 4.17 are all from his semi
nal paper. Part 1 of Proposition 4.6 is often written as BPP = BP · P,
where BP· is what is known as the BP quantifier or the BP operator.
Heller and Zachos [ZH86] introduced this quantifier and first proved part 1
of Proposition 4.6. Corollary 4. 7 generalizes Adleman's [Adl78] early re
sult RP ~ P /poly, and can be found in Bennett and Gill [BG81] and
Schoning [Sch86b]. One other form of Toda's Theorem is ppPH ~ BP. PP.

Toda and Ogiwara [T092] showed that c=pPH ~ BP . C=P and, for ev
ery k ~ 2, that ModkpPH ~ BP · ModkP. Tarui [Tar93] showed that R,
the one-sided error version of BP·, can replace the BP· on the right-hand
side regarding PP and C=P, i.e., ppPH ~ R. PP and c=pPH ~ R. C=P.

88 4. The Isolation Technique

Gupta [Gup93] showed that R · C=P = BP · C=P. Green et al. [GKR+95]
observed that PH is included in the class of decision problems whose mem
berships are determined by the "middle bit" of #P functions.

The isolation technique used in the celebrated paper by Toda is the one
by Valiant and Vazirani [VV86]. Roughly speaking, in order to reduce the
cardinality of an unknown nonempty set S of nonzero vectors in {0, 1 }n,
one applies a sequence of filters. Each filter can be written as b · x = 0,
where · is the inner product modulo 2 of n dimensional vectors and only
vectors satisfying b · x = 0 are passed through the filter. Valiant and Vazirani
show that, for any nonempty S ~ {0, l}n- {On}, if a sequence of n random
filters b1 , • • • , bn E {0, l}n is chosen, the probability that at some point i,
0 ~ i ~ n, there is exactly one vector in S that pass through all the filters
up to bi is at least ~. Thus with this technique, one needs quadratically
many bits to achieve a constant success probability in order to reduce the
cardinality to one. We may ask whether it is possible to use fewer bits to
achieve a constant success probability. Naik, Regan, and Sivakumar [NRS95]
developed a reduction scheme that uses a quasilinear number of bits to achieve
constant success probability.

Toda's Theorem has applications in circuit theory. A translation of
Theorem 4.5 into circuit classes is: AC0 (the class of languages recognized
by families of polynomial-size, constant-depth, unbounded fan-in AND-OR
circuits) is included in the class of languages recognized by families of size
210g°C 1> n, depth-2 probabilistic circuits with a PARITY gate at the top and
polylogarithmic fan-in AND gates at the bottom. This inclusion was first
proven by Allender [All89a] using a different technique. Later, Allender and
Hertrampf [AH94] showed that, for every prime number p, the class ACCP
the class of languages recognized by families of polynomial size, constant
depth, circuits consisting of unbounded fan-in ANDs, unbounded fan-in ORs
and unbounded fan-in MODULO p (computing whether the number of ls
in the inputs is not divisible by p) gates-is included in the following three
classes oflanguages: (a) the class of languages recognized by depth-4, polylog
arithmic bottom-fan-in, size 210&0

(1) n circuits consisting of unbounded fan-in
ANDs, unbounded fan-in ORs, and unbounded fan-in MODULO p gates; (b)
the class of languages recognized by depth-3, polylogarithmic bottom-fan
in, size 210&0

(
1

) n circuits consisting solely of MAJORITY gates (computing
whether the majority of the inputs are ls); and (c) the class of languages rec

ognized by depth-2, polylogarithmic bottom-fan-in, size 210&0
(1) n probabilis

tic circuits with a MODULO p gate at the top and AND gates at the bottom.
They also showed that if the ACCp class is uniform, then the classes (a), (b),
and (c) can be all uniform. Kannan et al. [KVVY93] independently proved
the uniformity result regarding the inclusion involving class (c). Yao [Ya.o90]
showed that the inclusion involving class (b) holds for nonprime modulo p
as well. Tarui [Tar93] showed that AC0 is included in the class of languages
recognized by depth-2, polylogarithmic bottom-fan-in, size 2logo(l) n proba-

4.5 Bibliographic Notes 89

bilistic circuits with a MAJORITY gate at the top and AND gates at the
bottom. Beigel and Tarui [BT94] showed that in the inclusion involving class
(c), deterministic circuits suffice. Beigel, Reingold, and Spielman [BRS91]
showed that the class of languages accepted by a constant depth, polynomial
size circuits with any symmetric gate (i.e., the output depending only on the
number of ls in the inputs) and unbounded fan-in ANDs and ORs elsewhere
is included in the class of languages recognized by a depth-2, size 210g 0 <1l n

circuits with essentially the same symmetric gate at the top and polyloga
rithmic fan-in AND gates at the bottom.

Another application of the isolation technique is the probability one "in
clusion" of NPMV in FP~P. Watanabe and Toda [WT93] proved that with
probability one relative to a random oracle NPMV (the class of multivalued
nondeterministic polynomial-time functions) has a refinement (see Chap. 3)
in FP~P, the class of functions computable in polynomial time with parallel
access to an NP oracle.

Wigderson [Wig94] showed how to apply the Isolation Lemma to prove
NL ~ EBL/poly. In an expanded version of that paper, Gal. and Wigder
son [GW96] asked whether there was any use of the multiple collection version
of the Isolation Lemma. Allender and Reinhardt [RA99] gave an affirmative
answer to that question by proving Theorem 4.22. Chari, Rohatgi, and Srini
vasan [CRS95] developed an isolation method that uses fewer random bits
than that of Mulmuley, Vazirani, and Vazirani. The results that relate the
NL = UL question to the circuit complexity of SAT and that of DSPACE(n),
mentioned in Sect. 4.4 are by Allender, Reinhardt, and Zhou [ARZ99]. For the
fact that "standard" graph accessibility problem is NL-complete, see [Sav70].

5. The Witness Reduction Technique

Pause to Ponder 5.1 Is SAT in P?

Don't you feel cheated when someone tells you the answer to a question
before you've had a chance to ponder the issue for yourself? Sure you do,
but this happens all the time. For example, if you are reading this book, you
probably already know the beautiful theory of NP-completeness that was
built by Cook, Levin, and Karp a few decades ago. So you already know the
standard, striking, subtle answer the field has built to Pause to Ponder 5.1,
namely, "We don't know whether or not SAT is in P, but we do know that
SAT is in P if and only if all of the following thousand problems are in P,
and we also know that SAT is in P if and only if at least one of the following
(same) thousand problems is in P." (For reasons of space, we omit the list
of one thousand NP-complete problems.) Basically, your ability to consider
Pause to Ponder 5.1 as a fresh problem has been pretty thoroughly tainted.

We cannot give you back your intellectual virginity regarding NP
completeness. However, in this chapter, we will try to do the next best thing.
In particular, in Sect. 5.1 we pose a seemingly simple question, Pause to Pon
der 5.5, that you perhaps have not seen before. Of course, the question is not
as important as "P = NP"-after all, what question is?-but the question
turns out to raise some quite subtle and interesting issues. In answering it,
one might happen to build a theory of one's own that, at least in its general
flavor, is not too dissimilar to the theory of NP-completeness. So, we urge
you to take some time to pause, ponder, and-as an intellectual challenge
and exercise-investigate Pause to Ponder 5.5, which is framed in the fol
lowing section. Section 5.2 presents a theory that was built as an attempt to
understand what the answer to Pause to Ponder 5.5 might be.

5.1 Framing the Question: Is #P Closed Under Proper
Subtraction?

For the purpose of the rest of this chapter, we will use natural numbers and
binary strings interchangeably, via the standard natural bijection that asso
ciates the natural number n with the lexicographically n + 1st string. That
is, the number 0 corresponds to the empty string, the number 1 corresponds

92 5. The Witness Reduction Technique

to the string 0, the number 2 corresponds to the string 1, the number 3 cor
responds to the string 00, and so on. In light of this bijection, we will usually,
in this chapter, speak of integers rather than strings. Since actual Turing ma
chines operate only on strings, when we say that f(n) is a polynomial-time
computable operation, we mean the runtime is polynomial in the length of
the string corresponding to n, and in fact the actual input to the Turing ma
chine is the string corresponding to n-since in this chapter integers are just
alternate interpretations of binary strings via the already-mentioned bijec
tion. For example, there certainly is a Turing machine that takes two strings
and, in polynomial-time, outputs the string corresponding to the sum of the
integers corresponding to its two input strings, and so addition can be said
to be a polynomial-time computable operation.

For the rest of this chapter, we use the term operation to describe any
mapping from N X N toN.

Definition 5.2 Let a be an operation and let :F be a class of functions from
N toN. We say that :F is closed under (the operation) a if

(Vf1 E :F)(Vh E :F)[hh,h E :F],

where hh,h(n) = a(f1(n), h(n)).

This definition merely captures one's natural intuition about what it
means to be closed under an operation. In the definition we have used the
operation a as a 2-argument function, but when the operation is a "tradi
tional" one, such as addition or proper subtraction, we will feel free to write
expressions such as f 1(n) + h(n) rather than addition(b(n), h(n)).

Let us consider two examples.

Example 5. 3 #P is closed under addition. This can be seen as follows. Let
f1 and h be #P functions. By the definition of #P, this means there are
nondeterministic machines N1 and N2 such that, on each input x, f 1(x)
equals the number of accepting paths of N 1(x) and h(x) equals the number
of accepting paths of N2(x). To prove that #P is closed under addition,
consider the nondeterministic machine N that, on input x, makes one initial
nondeterministic choice, namely, whether it will simulate N 1 or N 2 • Then the
machine simulates the machine it chose. Note that, in effect, the computation
tree of N(x) is a tree that has a root with two children, one child being the
computation tree of N 1 (x) a':nd the other child being the computation tree of
N2(x). So it is clear that the number of accepting paths of N(x) is exactly
b(x) + h(x).

Example 5.4 #Pis also closed under multiplication. The proof is similar to
that for addition. Let ft and h again be #P functions. As in the previous
example, by the definition of #P this means that there are nondeterministic
machines N1 and N2 such that, on each input x, ft(x) equals the number of

5.2 GEM: A Complexity Theory for Feasible Closure Properties of #P 93

accepting paths of N 1(x) and h(x) equals the number of accepting paths of
N2(x). Consider a nondeterministic machine N that on input x nondetermin
istically guesses one computation path of N1 (x) and one computation path
of N2(x) and then accepts if both guessed paths are accepting paths. Clearly
the number of accepting paths of N(x) is exactly fl(x)h(x), thus showing
that #P is closed under multiplication.

It is not hard to see that #P has a variety of other closure properties
involving binomial and multinomial coefficients. However, our interest is not
in properties that are easy to show that #P has. Rather, we are interested
in properties that it might have, and yet for which it currently seems hard
(or impossible) to prove that #P has them. If this seems strange, consider
as motivation the question of whether SAT is in P. It might be the case that
SATE P. However, it probably is hard or impossible to prove that SATE P;
certainly, no one has yet proven SAT E P. Nonetheless, the theory of NP
completeness does imply interesting things about whether SAT E P, namely,
that among all NP problems, SAT is a problem that is, logically speaking,
least likely to be in P: If SAT is in P, then all NP problems are in P.

This brings us to our problem. Of course, an NPTM (nondeterministic
polynomial-time Turing machine) cannot have a negative number of accepting
paths. So if we are interested in closure under subtraction, we must restrict
our attention to proper subtraction, i.e., the operation, from N X N toN, that
is defined by a e b = max{O, a- b}.

Pause to Ponder 5.5 Is #P closed under proper subtraction?

Section 5.2 provides a theory that explores this question, but we urge the
reader to ponder the question first, as an interesting exercise. In case one gets
stuck, the footnote to the present sentence gives some very strong hints as to
how one can go about this. 1

5.2 GEM: A Complexity Theory for Feasible Closure
Properties of #P

This is a good point at which to explain the meaning of this chapter's title,
the Witness Reduction Technique. To us, the term ''witness reduction" ac
tually encapsulates both an intuition and a technique. The intuition is that

1 There are two promising approaches. One approach is that one can attempt
to find a complexity class collapse that completely characterizes whether #P
is closed under e. (Hint: Such a characterization can be obtained). Another
approach is to show that, in a sense very similar to that in which SAT is an NP
problem that is "logically least likely" to be in P (i.e., if it is, then all problems
are), e is a polynomial-time computable operation under which #Pis "logically
least likely" to be closed (i.e., if #Pis closed under e, then #P is closed under
every polynomial-time computable operation). The following section will follow
both these approaches.

94 5. The Witness Reduction Technique

reducing the number of accepting paths (i.e., "witnesses") of nondetermin
istic machines is difficult, and often has severe consequences. It is true that
Example 5.3 makes it clear that adding, on each input, one accepting path to
the number of accepting paths of a machine is possible (and indeed, is easy).
The intuition of witness reduction says that removing one accepting path on
every input on which the machine had a nonzero number of accepting paths
will not be so easy, and may not be possible. Indeed, we'll eventually see, in
Sect. 5.3, that if one could do this-which after all is not general subtraction
but is just decrementation-some surprising complexity class collapses would
follow.

By witness reduction we are also referring to a very informal and loose
technique, which will be used often in this chapter. The goal of the technique
is to show that if a class, often #P, has some closure property that reduces
the number of witnesses, then some complexity class collapse occurs. The
idea of the technique, for the case of #P, is to jump back and forth between
#P functions and nondeterministic machines accepting languages. This is
possible because every nondeterministic polynomial-time machine not only
defines a #P function but also defines an NP language. However, beyond that,
if one can make one's #P function of a special form, then the function may
define a language in a more restrictive class. For example, if a #P function on
each input either computes the integer 0 or the integer 1, then each machine
constructing that function implicitly defines a UP language (and indeed the
same UP language for each such machine). The general scheme of the witness
reduction technique is that given the assumption that some particular closure
property holds, we wish to prove that some collapse occurs, e.g., UP= PP,
as follows:

1. We take some set in the larger class, e.g., PP, and take the machine for
that set and (perhaps after some normalization/manipulation) coerce the
machine into a #P function.

2. Then we use the assumed closure to create a new #"'f function.
3. Then we take that new #P function and coerce it back into a machine,

in particular into a machine defining a language in the smaller class,
e.g., UP.

Of course, the scheme just described is an abstracted and idealized tem
plate. Though in some cases one can see it used in exactly the form described
above-e.g., the proof of Theorem 5.9-often the template has to be used
in more creative ways. For example, in the main theorem of this section
our proof regarding proper subtraction-a large complexity class collapse is
pieced together by linking two smaller collapses each of which is individually
obtained via separate uses of the above template.

This concludes our comments about the flavor of the witness reduction
technique. Now let us turn to discussing how we will approach a particular
problem, namely, Pause to Ponder 5.5. As mentioned in footnote 1, we will

5.2 GEM: A Complexity Theory for Feasible Closure Properties of #P 95

pursue in parallel two different approaches to studying whether #P is closed
under proper subtraction.

One approach is to build a theory much like the theory of NP
completeness. We do not know whether SAT is in P, but one consequence
of the fact that SAT is NP-complete is that SAT is not in P unless all NP
sets are in P. Similarly, we will show that, though we do not know whether
#P is closed under proper subtraction, it holds that #P is not closed under
proper subtraction unless it is closed under all polynomial-time computable
operations.

The other approach is to seek to completely characterize, in terms of
complexity class collapses, the issue of whether #P is closed under proper
subtraction. In particular, we will see that #P is closed under proper sub
traction if and only if every probabilistic polynomial-time set is in fact in
unambiguous polynomial time (i.e., UP = PP). This is a very dramatic col
lapse, and easily implies NP = coNP, as will be made explicit later in this
section as Theorem 5.7.

The following theorem, which is proved via the witness reduction tech
nique, simultaneously realizes the goals of both the approaches discussed
above.

Theorem 5.6 The following statements are equivalent:

1. #P is closed under proper subtraction.
2. #P is closed under every polynomial-time computable operation.
3. UP= PP.

Proof That part 2 implies part 1 is immediate. We will also show that
part 1 implies part 3, and that part 3 implies part 2, thereby establishing the
theorem.

Let us show that part 1 implies part 3. So assume that #P is closed under
proper subtraction. It certainly suffices to show that this implies both PP ~
coNP and coNP ~ UP, as these together yield PP ~ UP. Since UP ~ PP
holds without any assumption, we may then conclude UP = PP.

Let L be an arbitrary PP language. So, from the alternate definition of
PP in Fig. A.19, there is a polynomial q and a polynomial-time predicate R
such that

L = {x lll{y IIYI = q(ixi) 1\ R(x,y)}ll ~ 2q(lxl)-l}. (5.1)

Letting, if needed, qnew(n) = qorig(n)+1 and, forb E {0, 1}, Rnew(x, yb) =
Rorig(x, y), it is clear that in equation 5.1, we may without loss of generality
require that, for all n, it holds that q(n) ~ 1, and we do so. (The case
q(ixi) = 0 is what we are sidestepping here.)

There is an NPTM that on input x guesses each y such that IYI = q(ixi),
and then tests R(x, y). Thus there is a #P function f such that x rf. L ==>
f(x) < 2q(lxl)-l and x E L ==> f(x) ~ 2q(lxl)-l. The function g(x) =
2q(lxl)-l -1 is also a #P function, as q is a fixed polynomial and q(n) ~ 1.

96 5. The Witness Reduction Technique

Since #P is by our assumption closed under proper subtraction, and as
f and g are both #P functions, we have that h E #P, where

h(x) = f(x) e g(x).

Since h is a #P function, there is an NPTM N such that, on each x, h(x)
equals the number of accepting paths of N(x). However, note that f(x) 8
g(x) = 0 if x ~ L, and f(x) e g(x) ~ 1 if x E L. Thus, viewed as an NP
machine, L(N) = L. So our arbitrary PP language is in NP. Thus PP f;: NP.
Since PP = coPP, this implies PP f;: coNP.

Still under the assumption that #P is closed under proper subtraction,
we now seek to prove that coNP f;: UP. Let L be an arbitrary coNP language.
Let N be an NPTM accepting L. Viewing N as a machine defining a #P
function /, note that x E L ===? f(x) = 0 and x ~ L ===? f(x) ~ 1. The
constant function g(x) = 1 is a #P function. Since #P is by assumption
closed under proper subtraction, h(x) = g(x) 8 f(x) must also be a #P
function. However,

x E L ===? h(x) = 1

and
x ~ L ===? h(x) = 0.

So the NP machine corresponding to h proves that L E UP. Since L was an
arbitrary coNP language, coNP f;: UP.

Summing up, we have shown that if #P is closed under proper subtraction
then

PP f;: coNP and coNP f;: UP,

and thus, as discussed earlier in the proof, we have shown that part 1 implies
part 3.

We now show that part 3 implies part 2. So, assume that UP= PP. Let
op: N X N---+ N be any polynomial-time computable operation. Let f and g
be arbitrary #P functions. We will show that h(x) = op(f(x),g(x)) is itself
a #P function.

It is not hard to see-and we suggest as an easy exercise that the reader
verify these-that

B1 = {(x,n) I f(x) ~ n} E PP

and
Bg = {(x,n) I g(x) ~ n} E PP.

So the language

V = {(x,n1,n2) I (x,n1) E B1 A (x,n1 + 1) ~ B1 A

(x,n2) E Bg A (x,n2 + 1) ~ Bg}

must also be in PP, as V 4-truth-table reduces to the PP language B 1 ffi Bg
(with ffi denoting disjoint union: Y ffi Z = {Ox I x E Y} U {1x I x E Z}). How
ever, PP is closed under bounded-truth-table reductions by Theorem 9.17.

5.2 GEM: A Complexity Theory for Feasible Closure Properties of #P 97

UP = PP by assumption, so V E UP. (If one wants to see this without having
to employ Theorem 9.17, one can do so by noting-in fact we will prove this
and more as Theorem 5.7-that UP= PP implies that UP= pPP, and so
we are done as pPP easily contains all sets that bounded-truth-table reduce
to sets in PP.)

Since f and g are #P functions, there is a polynomial q such that, for all
x, max{!(x),g(x)} ~ 2q(lxD. Consider the NP machine, N, that on input x
does the following:

1. Nondeterministically choose an integer i, 0 ~ i ~ 2q(lxl).
2. Nondeterministically choose an integer j, 0 ~ j:::::; 2q(lxll.
3. Nondeterministically guess a computation path of the UP machine for V

on input (x, i, j). If the guessed path rejects then our simulation's current
path rejects. If the guessed path accepts then nondeterministically guess
an integer k, 1 ~ k ~ op(i,j), and accept. (Note: If op(i,j) = 0 then
we will in this step generate no accepting paths, as no such k can be
generated.)

So h(x) = op(f(x),g(x)) must be a #P function, since for each x, N(x) is
an NPTM having exactly op(f(x),g(x)) accepting paths. This is so as the V
test in step 3 above succeeds only when i = f(x) and j = g(x), and even that
case succeeds on exactly one path of the machine for V, as that machine itself
is a UP machine. Thus, since op was an arbitrary polynomial-time operation
and f and g were arbitrary #P functions, we have shown that part 3 implies
part 2. 0

To help get an intuition as to how strong the collapse "UP = PP" of
Theorem 5.6 is, we state the following result that shows that it implies a
huge number of collapses of more familiar complexity classes.

Theorem 5. 7 The following statements are equivalent:

1. UP= PP.
2. UP = NP = coNP = PH = EBP = PP = PP U ppPP U ppPPPP U

Proof UP ~ NP ~ PP. So, since PP is closed under complementation,
coNP ~ PP. Also, if NP = coNP then PH= NP. Thus, if UP= PP then
UP = NP = PP = coNP = PH. Since pUP ~ PH, under our assumption
it holds that pUP =UP. Consider ppE9P. By Lemma 4.14, this is contained
in pPP, so by our assumption that UP = PP it is contained in pUP, which
as just noted under our assumption equals UP. So under our assumption
ppE9P = UP, and so ppE9P = PP = EBP = UP. We are now done by easy
induction, via repeated use of Lemma 4.14, e.g., taking the case of a "stack"
of three PP's, PPppPP ~ PPppEDP ~ PPpPP ~ ppPP ~ ppE9P =UP. (Note:

by drawing on facts that are not hard but that we have not proven, such
as that ppUP = PP, one could give an alternate proof that does not invoke
Lemma 4.14.) 0

98 5. The Witness Reduction Technique

Theorem 5.6 shows that proper subtraction is, among all polynomial-time
computable operations, the one most resistant to being a closure property of
#P. Is it the only operation to have this distinction? In fact, it is not. Just
as there are many sets that are NP-complete, so also are there a variety of
polynomial-time computable operations that, like proper subtraction, seem
deeply resistant to being closure properties of #P. If the notion of "deeply
resistant to being closure properties" seems overly informal (since either they
are or they are not closure properties-though we note that NP sets either
are in P or are not in P, yet most people feel comfortable informally thinking
of SAT as an NP set that is most unlikely to be in P), then in light of
Theorem 5.6, we can simply seek polynomial-time operations u for which one
can prove that u is a closure property of #P if and only if all polynomial-time
computable operations are closure properties of #P. Here, we look at just
one other such property, namely, integer division, i.e., the operation, from
N x N toN, that is defined by a 0 b = la/bJ.

Of course, an NPTM cannot have a fractional number of accepting paths,
and thus studying division itself would be difficult. However, by studying
integer division, we need not address that problem. Yet there is still a problem
left, namely, division by zero. Throughout this chapter, closure will in general
be defined via Definition 5.2. However, integer division is an exception. To
avoid problems with division by zero, we formalize this exceptional case not
by Definition 5.2, but rather by Definition 5.8, which explicitly contains a
clause regarding that case.

Definition 5.8 Let F be a class of functions from N toN. We say that F
is closed under integer division (0) if

(V!l E F)(Vf2 E F : (Vn)[h(n) > 0])[!10 hE F],

where the 0 above is the integer zero (i.e., the integer represented by the empty
string).

Theorem 5. 9 The following statements are equivalent:

1. #P is closed under integer division.
2. #P is closed under every polynomial-time computable operation.
3. UP=PP.

Proof Of course, part 2 trivially implies part 1. By Theorem 5.6, parts 2
and 3 are equivalent. Thus, we need only prove that part 1 implies part 3
and we are done.

Suppose that #P is closed under integer division. Let L be any PP set.
We seek to prove that L E UP. It is not hard to see that if L E PP, then
there is an NPTM N and an integer k ~ 1 such that

1. on each input x, N(x) has exactly 21x1k computation paths, each contain
ing exactly ixik binary choices,

5.3 Intermediate Potential Closure Properties 99

2. on each input x, x E L if and only if N(x) has at least 21x1k-I accepting
paths, and

3. on each input x, N(x) has at least one rejecting path.

The number of accepting paths of N defines a #P function, call it f(x).
Consider the function g(x) = 21x1k-I, which clearly is a #P function. So,
by our hypothesis, the function h defined by h(x) = f(x) 0 g(x) must also
be a #P function. Note that if x E L then h(x) = 1, and if x fl. L then
h(x) = 0. Thus, the nondeterministic machine corresponding to h is itself a
UP machine for L. So L is in UP. 0

Finally, note that we have in fact proven more in this section than was
explicitly claimed. In particular, note that in the proof of Theorem 5.9, the
function that we divided by, g(x) = 21x1k-I, though certainly a #P function,
is also a polynomial-time computable function. Thus, the proof actually es
tablishes that #P is closed under integer division (i.e., iff and g are in #P
and g is strictly positive then f(x) 0 g(x) is in #P) if and only if #P is
closed under integer division by natural-valued polynomial-time computable
functions (i.e., iff is a #P function and g is a polynomial-time computable
function whose output is always a natural number greater than zero, then
f(x) 0 g(x) is in #P), and both these conditions are themselves equivalent
to UP= PP. Similarly, it also holds that #Pis closed under proper subtrac
tion if and only if #P is closed under proper subtraction by natural-valued
polynomial-time computable functions, and both these conditions are them
selves equivalent to UP = PP.

5.3 Intermediate Potential Closure Properties

In the previous section, we saw that some operations, such as addition, are
closure properties of #P. We also saw that if #Pis closed under either proper
subtraction or integer division, then #P is closed under all polynomial-time
computable operations and UP= PP.

In this section, we study a different collection of operations-operations
that #P is not known to possess, but that also are not known to have the
property that #P is closed under them if and only if #P is closed under all
polynomial-time operations. Thus, for these operations, it remains possible
that #P is closed under them, yet is not closed under proper subtraction.
Again returning to the analogy with NP-completeness theory, these opera
tions are in some sense analogous to potentially "intermediate" sets-sets,
such as the set of all primes, that are in NP yet are neither known to be NP
complete nor known to be in P. Among the closure properties that, as far
as is currently known, fall into this strange intermediate territory, are taking
minimums, taking maximums, proper decrement, and integer division by two.
To be rigorous-both about what we mean by these operations and because
the latter two of these operations stretch our notion of operation from 2-ary

100 5. The Witness Reduction Technique

operations to 1-ary operations-let us explicitly define these operations. The
first two parts are just an application of Definition 5.2 to the particular two
argument operators.

Definition 5.10

1. We say that #P is closed under minimum if, for each f,g E #P, the
function h(x) = min{f(x),g(x)} is in #P.

2. We say that #P is closed under maximum if, for each f, g E #P, the
function h(x) = max{f(x),g(x)} is in #P.

3. We say that #P is closed under proper decrement if, for each f E #P,
the function h(x) = f(x) e 1 is in #P.

4. We say that #P is closed under integer division by two if, for each f E
#P, the function h(x) = lf(x)/2J is in #P.

Regarding closure under proper decrement, the following partial results
are the best known. The two parts of the theorem do not match perfectly,
yet they are not too far apart: SPP is the "gap analog" of UP.

Theorem 5.11

1. If #P is closed under proper decrement, then coNP ~ SPP (equivalently,
NP ~ SPP).

2. If UP = NP, then #P is closed under proper decrement.

Proof We will first prove part 1. Assume that #P is closed under proper
decrement. Let L be an arbitrary NP language. Let N be an NPTM for L,
and let f be the #P function defined by the cardinality of N's accepting
paths. Since #P is closed under proper decrement, g(x) = f(x) e 1 is a
#P function. So there is an NPTM, N', and a polynomial, p, such that
on each input x it holds that N'(x) has exactly 2P(Ixl) paths, and exactly
g(x) of those are accepting paths. It follows, by reversing the accepting and
rejecting path behavior of each path of N', that the function 2P(Ixl)- g(x) is
a #P function. Since #P is closed under addition, it follows that the function
f(x)+(2p(lxl) -g(x)) is a #P function. However, as this function equals 2p(lxl)
if f(x) = 0 and equals 2P(Ixl) + 1 otherwise, the NPTM whose accepting path
cardinalities define this #P function is itself a machine showing that L E SPP.
Thus NP ~ SPP. Since SPP = coSPP, NP ~ SPP and coNP ~ SPP are
equivalent statements.

We turn to part 2 of the theorem. Assume that UP = NP. Let f be
an arbitrary #P function. Let N be an NPTM such that f(x) expresses
the number of accepting paths of N on input x. Let B be the set of all
strings (x, ¢) such that ¢ is an accepting path of N(x) and there exists an
accepting path of N(x) that is lexicographically larger than ¢. B E NP, so
since UP= NP by assumption, B is in UP. Let N' be an NPTM accepting
B such that on each input x it holds that N'(x) has at most one accepting
computation path. We describe an NPTM, N", such that on each input x

5.3 Intermediate Potential Closure Properties 101

the number of accepting paths of N"(x) is f(x) e 1. On any input x, N"
nondeterministically guesses a computation path c/J of N(x) and then on its
current path simulates N'((x,c/J)). So, all N(x)'s accepting paths except the
lexicographically largest one will contribute one of the accepting paths of
N"(x), and the lexicographically largest accepting path of N(x) will generate
zero accepting paths. Thus, we indeed have proper-decremented f. D

Regarding closure of #P under integer division by two, it is known to have
seemingly unlikely consequences, but no "if and only if" characterization is
known.

Theorem 5.12 If #P is closed under integer division by two, then EBP =
SPP (and thus PH ~ PP).

Proof This proof is similar in spirit to part 1 of Theorem 5.11. Assume
that #P is closed under integer division by two. Let L be an arbitrary EBP
language. Let N be an NPTM and p be a polynomial such that (i) on each
input x it holds that N(x) has exactly 2P(Ixl) computation paths, and (ii) on
each input x it holds that N(x) has an odd number of accepting paths if
and only if x E L. Let f be the #P function defined by the cardinality of
N's accepting paths. Since #Pis by assumption closed under integer division
by two, and is unconditionally closed under multiplication multiplication by
fixed constants,

g(x) = 2(f(x) 0 2)

is a #P function.
Also, the number of rejecting paths of N(x), namely, f'(x) = 2P(Ixl)_ f(x),

is clearly a #P function. Since #P is closed under addition, we have that

f'(x) + g(x) = (2P(Ixl)- f(x)) + 2(f(x) 0 2)

is a #P function. However, f'(x)+g(x) equals 2P(Ixl) if f(x) is even and equals
2p(lxl)- 1 if f(x) is odd. So the NPTM whose accepting path cardinalities
define this #P function is its~f a machine showing that L E coSPP. Thus
EBP <; coSPP. Since SPP = coSPP, we conclude that EBP <; SPP. Thus, since
SPP ~ EBP holds unconditionally, EBP = SPP.

So if #P is closed under integer division by two, then EBP = SPP. Note
that Corollary 4.11 certainly implies that PH <; ppEilP. So if #P is closed
under integer division by two, then PH <; ppSPP. However, ppSPP = PP
(see Fig. A.20), so PH<; PP. D

Regarding closure of #P by minimum or maximum, no "if and only if"
characterization is known, though some necessary conditions are known. Of
course, since both minimum and maximum are polynomial-time computable
operations, it goes without saying, via Theorem 5.6, that UP = PP is a
sufficient condition.

102 5. The Witness Reduction Technique

Theorem 5.13

1. If #P is closed under minimum then NP = UP.
2. If #P is closed under maximum or under minimum then C=P = SPP.

Proof We first prove part 1. Let L be any NP language, fix an NPTM
accepting L, and let f be the #P function defined by the machine's num
ber of accepting paths. Assume that #P is closed under minimum. Then
min{f(x), 1} is a #P function, but the NPTM with this number of accepting
paths on each input x in fact is a machine proving that L E UP.

We now prove part 2. Following the alternate definition in Sect. A.l2, a
language L is in C=P if there exists a polynomial q and a polynomial-time
predicate R such that, for each x,

X E L ~ II{Y JIYI = q(lxl) 1\ R(x, y)}ll = 2q(lxJ)-l.

Note that for strings x that do not belong to L, all this says is that the
number of strings y of length q(lxl) for which R(x, y) holds is not 2q(lxD-l.
However, those numbers could be either greater than or less than 2q(lxl)-l_
indeed, perhaps greater than 2q(lxl)-l on some inputs and less than 2q(lxl)-l
on other inputs. This makes it hard to exploit maximization or minimization
to get useful conclusions. What we first need is a new characterization of C=P
in which all rejection cardinalities fall "on the same side" of the acceptance
cardinality. We state this in the following lemma. This lemma is somewhat
related to some propositions in Chap. 9. In particular, Proposition 9.7 and
(via a "multiplying a GapP function by negative one" tweak) Proposition 9.8
can alternatively be seen as following from the lemma.

Lemma 5.14 A language L is in C=P if and only if there exists a polyno
mial r and a polynomial-time predicate S such that, for each x,

1. if x E L then II{Y IIYI = r(lxl) 1\ S(x, y)}ll = 2r(lxD-2 , and
2. ifx ¢ L then II{Y IYI = r(lxl) 1\ S(x,y)}ll < 2r(lxD-2 •

Proof of Lemma 5.14 Recall that a language L is in C=P exactly if
there exists a polynomial q and a polynomial-time predicate R such that, for
each x, x E L ~ II{Y JIYI = q(lxl) 1\ R(x, y)}ll = 2q(ixJ)-l, Let L be an
arbitrary C=P language, and let q and R satisfy the definition just given. Let
r(n) = 2q(n). Let S(x, z) be the predicate that accepts exactly if

where "·" denotes concatenation of strings. Let f(x) denote II{Y JIYI
q(lxl) 1\ R(x, y)}ll· The number of strings z of length r(lxl) for which S(x, z)
accepts is exactly

h(x) = f(x)(2q(lxl)- f(x)).

5.4 A Complexity Theory for Feasible Closure Properties of OptP 103

Note, crucially, that this function peaks when f(x) = 2q(lxD-l, at which
point h(x) takes on the value 2q(lxl)-l2q(lxl)-l = 2r(lxD-2. For all val
ues of f(x), 0 :::; f(x) :::; 2q(lxl), other than f(x) = 2q(lxl)-l, h(x) <
2q(lxl)-l2q(lxl)-l = 2r(lxD-2 • Thus, r and S have exactly the property we
were seeking. 0 Lemma 5.14

We continue with the proof of part 2 of Theorem 5.13. We will prove
separately the claim for maximum and for minimum.

Assume that #P is closed under maximum. Let L be an arbitrary C=P
language. Let randS be as in Lemma 5.14. So clearly there is a #P function
f such that, for each x,

1. X E L ==> f(x) = 2r(lxD-2 , and
2. X fj. L ==> f(x) < 2r(lxD-2 •

The function g(x) = 2r(lxl)-2 -1 clearly belongs to #P. By our assumption of
closure under maximum, h(x) = max{f(x),g(x)} is a #P function. However,
if x E L then h(x) = 2r(lxD-2 , and if x fj. L then h(x) = 2r(lxD-2 - 1. Thus,
L E SPP. As L was an arbitrary C=P language, C=P ~ SPP, and thus
C=P = SPP as SPP ~ C=P holds unconditionally.

We turn to the case in which we assume that #P is closed under minimum.
Let L be an arbitrary C=P language. Let randS be as in Lemma 5.14. Let
(polynomial-time) predicate S'(x,y) be defined such that it holds exactly
when -.S(x, y) holds. So, via the NPTM that guesses strings y of length
r(lxl) and then checks S'(x, y), clearly there is a #P function f such that,
for each x,

1. X E L ==> f(x) = (3/4)2r(lxl), and
2. X fj. L ==> f(x) > (3/4)2r(lxl).

The function g(x) = 1 + (3/4)2r(lxl) clearly belongs to #P. By our as
sumption of closure under minimum, h(x) = min{!(x), g(x)} is a #P func
tion. However, if x E L then h(x) = (3/4)2r(lxl), and if x fl. L then
h(x) = 1 + (3/4)2r(lxD. Thus, L E coSPP. However, SPP = coSPP, thus
L E SPP. So, again, we may conclude that C=P = SPP. 0

5.4 A Complexity Theory for Feasible Closure
Properties of OptP

#P, which captures the cardinality of the accepting path sets of NPTMs, is
not the only computationally central class of functions. Another important
class of functions is OptP, which captures the notion of maximizing over the
outputs of an NPTM. This can be formalized as follows. Consider special
NPTMs for which each path outputs some nonnegative integer-paths that
do not explicitly do so are by convention viewed as implicitly having output
the integer 0. A function f is an OptP function if there is some such machine,
N, for which, on each x,

104 5. The Witness Reduction Technique

f(x) = max{i EN I some path of N(x) has i as its output}.

Just as we say that proper subtraction is, among all polynomial-time com
putable operations, in some sense the "least likely" closure property of #P,
can we also find a polynomial-time operation that is a "least likely" closure
property of, for example, OptP? And if so, is there also some complexity class
collapse that characterizes whether OptP has all polynomial-time computable
closure properties?

The answer is somewhat surprising. For OptP proper subtraction again
is a "least likely" closure property. The same also holds for the well-studied
function class SpanP. For both OptP and SpanP, there is a complexity class
collapse that completely characterizes whether the class is closed under all
polynomial-time computable operations. However, in all three cases-#P,
OptP, and SpanP-the characterizations differ, notwithstanding the fact that
proper subtraction in each case is a least likely closure property.

Theorem 5.15 The following statements are equivalent:

1. OptP is closed under proper subtraction.
2. OptP is closed under every polynomial-time computable operation.
3. NP = coNP.

Proof Part 2 immediately implies part 1.
We now argue that part 3 implies part 2. Assume NP = coNP. Let f and g

be arbitrary OptP functions. Let Nt and N9 be NPTMs that prove that these
are OptP functions. That is, on each input x, the maximum value output
among all paths of Nt(x) will be f(x), and on each input x, the maximum
value output among all paths of N9 (x) will be g(x). Let op: N x N--+ N be
any polynomial-time computable operation. Define

Lt = {(x,i) I f(x) > i}

and
L9 = {(x,i) I g(x) > i}.

Clearly, Lt E NP and L9 E NP. Since NP = coNP, Lt E NP and L9 E NP,
say via, respectively, NPTMs N1 and N2.

We now describe an NPTM that, viewed as a machine defining an OptP
function, computes op(f(x),g(x)). On input x our machine will guess a com
putation path of Nt(x) and will guess a computation path of N9 (x), and it
will find the output of each of these computation paths. Let us call those
outputs WJ and w9 , respectively. Our machine then guesses a path p1 of
Nl((x,wt)) and guesses a path p2 of N 2 ((x,w9)). The current path of our
machine then outputs op(w1,w9) if

(Pl is an accepting path of N1((x,wt))) 1\
(P2 is an accepting path of N2((x, w 9))),

5.5 OPEN ISSUE: Characterizing Closure Under Proper Decrement 105

and outputs 0 otherwise.
This machine will output 0 on each of its paths that does not guess paths

having f(x) as Wf and having g(x) as w9 , or that does guess such paths but
makes a bad guess for Pl or P2· It will correctly output op(f(x),g(x)) on each
path that does guess paths achieving as their outputs f(x) and g(x) and that
also guesses accepting paths of N 1 and N2. Note that some path indeed will
make the correct guesses.

We now argue that part 1 implies part 3. Assume that OptP is closed
under proper subtraction. Let L be an arbitrary NP language. Consider an
NPTM that simulates a standard NPTM for L but that on each rejecting path
outputs 0 and on each accepting path outputs 1. This machine proves that
the characteristic function of L is an OptP function. The function g(x) = 1
is also an OptP function.

Since OptP is by assumption closed under proper subtraction, h(x) =
g(x) e f(x) is an OptP function. Let N be an NPTM that computes h in the
sense of an OptP machine, i.e., on each input x, the largest value output by
N(x) is always h(x). Note that h(x) = 0 if x E L and h(x) = 1 if x fj. L. So
consider the NPTM, N', that on each input x guesses a path of N(x) and
accepts (on the current path) if the guessed path outputs 1. L(N') = L, so
our arbitrary NP language in fact belongs to coNP. Thus NP = coNP. D

We leave as an exercise for the reader to prove for the function class SpanP
(see Sect. A.16) the analog of Theorems 5.6 and 5.15.

Theorem 5.16 The following statements are equivalent:

1. SpanP is closed under proper subtraction.
2. SpanP is closed under every polynomial-time computable operation.
3. ppNP =PH= NP.

5.5 OPEN ISSUE: Characterizing Closure Under
Proper Decrement

The open issue we would most like to bring to the reader's attention is a very
natural one, yet it has long resisted solution. In Sect. 5.3, we saw a necessary
condition-NP ~ SPP-for #P to be closed under proper decrement, and
we also saw a sufficient condition-UP = NP-for #P to be closed under
proper decrement. Can one find a complete characterization?

Open Question 5.17 Proper decrement is the (unary) operation a(n)
n 91, i.e., a(n) = max{n -1, 0}. Find standard complexity classes C and V
such that:

#P is closed under proper decrement if and only if C = V.

106 5. The Witness Reduction Technique

5.6 Bibliographic Notes

The closure of #P under addition and multiplication, Examples 5.3 and 5.4,
was known to researchers, and appeared in notes, as far back as the early
1980s [Reg85,Reg01]. A variety of other closure properties of #P were ob
tained (see the discussion in [H093]) by Cai et al. [CGH+89] and Beigel and
Gill [BG92].

Section 5.2 is due to Ogiwara and Hemachandra [OH93], except that
the term ''witness reduction" and the discussion of the general "philoso
phy" of witness reduction at the start of the section reflect the viewpoint
of Gupta [Gup95]. The text before Theorem 5.9 mentions in passing that,
in addition to proper subtraction and integer division, other operations are
known to be closure properties of #P if and only if UP = PP. Such operations
include various operations having to do with the span and plurality tests on
sets of functions, and can be found in Ogiwara and Hemachandra [OH93].

Section 5.3 is due to Ogiwara and Hemachandra [OH93], except that
part 1 of Theorem 5.11 is due to Toran (see [OH93]). Also, part 2 of
Theorem 5.11 here extends the following result of Ogiwara and Hemachan
dra [OH93]: If coNP ~UP, then #P is closed under proper decrement. To
see the relationship between that result and part 2 of Theorem 5.11, note
that coNP ~ UP ===} UP = coUP = NP = coNP. Thus coNP ~ UP ===}

UP= NP. However, the converse is not known to hold.
Part 1 of Theorem 5.11 shows that if #Pis closed under proper decrement,

then NP ~ SPP. We note here a different conclusion that also follows from
the same hypothesis, and in doing so we will introduce a new, flexible class
for dealing with modulo-based computation. For each k 2:: 2, define the class
FTMkP ("finely tuned mod k") to be the collection of all L satisfying: For
every polynomial-time computable function f : E* ---+ {0, 1, ... , k- 1 }, there
is an NPTM N such that, for each x,

1. if x rj_ L then N(x) has no accepting paths, and
2. if x E L then the number of accepting paths is congruent, mod k, to

f(x).

It is not hard to see that, for each k 2:: 2, FTMkP ~ ModZkP, where the
ModZkP are the "ModZ" classes defined by Beigel [Bei91b]. We can now
state the additional claim that holds regarding proper decrement.

Theorem 5.18 If #P is closed under proper decrement then, for each k 2::
2, it holds that NP ~ FTMkP.

The proof is simple. Given an NP language L, consider the machine that
computes it. That defines a #P function g. Since by assumption #Pis closed
under proper decrement, each of the following k functions is a #P function:
kg(x) eo, kg(x) e 1, ... kg(x) e (k-1). Now note that, for each polynomial
time function f : E* ---+ {0, 1, ... , k- 1}, there thus will be a #P function
that on each input x evaluates f(x), sees what it is congruent to modulo k,

5.6 Bibliographic Notes 107

and then simulates the machine whose number of accepting paths define
the appropriate one of the k functions mentioned above. So L indeed is in
FTMkP.

Section 5.4 is due to Ogiwara and Hemachandra [OH93]. For SpanP
and OptP, Ogiwara and Hemachandra in fact prove that a variety of other
operations-including proper division, spans, and, in the case of SpanP,
pluralities-are also "least likely" polynomial-time computable closure prop
erties.

Regarding Sect. 5.5, we mention that for the case of integer division by
two (rather than proper subtraction by one), and even some more general
division patterns, Gupta [Gup92] has obtained a complete characterization,
in terms of complexity class collapses, regarding whether GapP has such a
closure property. However, for #P the issue remains open.

Though this chapter is concerned, except in parts of Sect. 5.3, with oper
ations that operate on two arguments, one can also study operations on one
argument. For this case, Cai et al. ([CGH+89], see the discussion in [H093])
showed that #P is closed under any finite sum of multiples of binomial coeffi
cients whose upper element is the input and whose lower element is a constant,
and Hertrampf, Vollmer, and Wagner ([HVW95], see also [Bei97]) showed
that every one-argument operation other than those fails, in at least one rel
ativized world, to be a closure property of relativized #P. They also achieve
a similar characterization for multi-argument operations. This approach
seeking which operations fail in at least one relativized world to be closure
properties-differs from both the approaches (namely, characterizing closures
in terms of complexity class collapses, and linking the relative likelihood of
closure properties) pursued in Sect. 5.2. In some sense, it gives a somewhat
less refined resolution than the approach of Sect. 5.2. For example, consider
an operator under which #Pis closed if and only if UP= PP (equivalently,
UP= coUP= PP) and consider another operator under which #Pis closed if
and only if UP = coUP. Having such characterizations gives perhaps greater
insight into the relative likelihood that #P has these closure properties than
does merely knowing that for each of the two operations there is some rela
tivized world in which #P is not closed under the operation. On the other
hand, obtaining "if and only if" characterizations linking the collapses of com
plexity classes to whether #P has a given operation is relatively difficult, and
no such complete characterizations have yet been obtained for many natural
operations, e.g., those discussed in Sect. 5.3-though, even in those cases,
the partial results that are known are sufficient to yield, via standard oracle
results, the fact that there are relativized worlds in which the operations are
not closure properties of #P.

Gupta ([Gup95], see also [Gup92]) has suggested a very interesting al
ternate approach to closure properties. Given that it seems unlikely that
UP= PP, and thus unlikely that #Pis closed under proper subtraction, he
frames a different question: Is the proper subtraction of two #P functions

108 5. The Witness Reduction Technique

such that it can be "approximated with high probability" by a function that
is in a certain probabilistic version of #P? In his study, Gupta includes a fas
cinating essay linking whether functions fail to be closure properties to the
fact that they reduce the number of witnesses (this should be contrasted with
the later work of Hemaspaandra, Ogihara, and Wechsung on the reduction
of numbers of solutions [HOWOO] and of Durand, Hermann, and Kolaitis on
the reduction of numbers of witnesses [DHKOO]). In this book, the Isolation
Technique chapter is also about witness reduction, and Gupta links the work
underlying that chapter with the theory of closure properties. In addition,
Gupta introduced, independently of Fenner, Fortnow, and Kurtz [FFK94],
the class GapP. Fenner, Fortnow, and Kurtz studied some closure properties
that GapP possesses, and Gupta ([Gup95,Gup92], see also [Bei97] regarding
one-argument properties of GapP that fail in some relativized world) built,
analogously to Sect. 5.2, a rich complexity theory for those properties that
GapP seems not to possess. Beyond that, he also built a subtle and cohe
sive complexity theory for the class of functions that are quotients of GapP
functions [Gup95,Gup92].

Yet another alternative approach to closure properties involves asking
whether a class is "almost" closed under an operation, in the sense that
some amount of extra pre- or post-processing brings the operation within
the reach of the class. This approach has been investigated by Ogihara et
al. [OTTW96], and there also, the consequences of the Isolation Technique
(Chap. 4) play an important role.

Reduction not of the cardinality of accepting paths but rather of the
cardinality of the acceptance type of NPMV functions has been studied by
Hemaspaandra, Ogihara, and Wechsung [HOWOO]. Their results contrast
sharply with the theme of this chapter, as they show that in that setting
cardinality reduction is possible in many cases. In fact, Hemaspaandra, Ogi
hara, and Wechsung [HOWOO] give a sufficient condition for such cardinality
reduction. They also show that for many cases not meeting the sufficient con
dition cardinality reduction is not possible unless the polynomial hierarchy
collapses toE~, and Kosub [KosOO] has shown that for each finite-cardinality
type case not meeting the sufficient condition there is at least one relativized
world in which cardinality reduction for that case is not possible.

Finally, throughout this chapter, we have discussed and characterized
whether classes (#P, OptP, and SpanP) are closed under all polynomial-time
computable operations. However, for each of these three function classes C, it
is reasonable to ask whether Cis closed under all C-computable operations. In
fact, Ogiwara and Hemachandra [OH93] have shown that, for each of these
three classes, it holds that: C is closed under all polynomial-time computable
operations if and only if C is closed under all C-computable operations.

6. The Polynomial Interpolation Technique

A standard view of mathematical statements is that they should be accom
panied by succinctly written, easily verifiable certificates. To wit, open one of
your favorite mathematics or theoretical computer science textbooks (if you
have one; if not, perhaps the present text will become your favorite). You'll
see that all the formal statements there are accompanied by strings of text
called proofs, which the author believes to be easily verifiable by anyone with
enough background.

Pushing a little harder on that "easily verifiable" property of certificates,
one arrives at the concept of algorithmic verification of mathematical state
ments. It is this concept that led Alan Turing to invent his "computation"
model: the Turing machine.

Thus when we talk about standard Turing machine computation, mathe
matical statements are thought of as deterministically verifiable. For example,
we often view NP as the class of languages with the property that every mem
ber has short, deterministically verifiable certificates but no nonmember has
such certificates.

The interactive proof system, the focus of this chapter, reflects a new
approach to verification. Two features are added to proof systems: the use
of randomness and interactions with a machine (or a set of machines) that
provides information. We no longer require that mathematical statements
possess deterministically verifiable proofs. The mathematical correctness of
statements is verified through interactions between two machines, called the
verifier and the prover. While the computational power of the verifier is lim
ited to polynomial time endowed with the ability to use randomness, the
power of the prover is unlimited. The objective of the verifier is to determine
with a high level of confidence whether the input is a valid statement, while
the objective of the prover is to make the verifier believe that the statement
is valid with as high confidence as possible, regardless of what probabilistic
choices the verifier makes. A language has an interactive proof system if there
is a protocol that has the following two properties: (1) for every member, a
prover is able to make the verifier believe with very high probability (close to
one) that it is a valid member, and (2) for every nonmember, the possibility
that the verifier believes that the nonmember is a valid member is close to
zero no matter what the prover does.

110 6. The Polynomial Interpolation Technique

What kinds of languages can be verified by interactive proof systems?
What are the relationships between this new system of proofs and the tra
ditional system of succinct proof verification? Would there be any difference
if more provers were added to the system? Precise answers to these ques
tions have been given, through remarkable developments in the technique of
constructing protocols between the verifier and the provers. The technique
consists of two parts: (1) converting membership questions into arithmetic
formulas and then (2) verifying evaluation of such formulas with gradual,
random instantiation of the variables in the formula (polynomial interpola
tion).

In this chapter we swim through the progress in this area by outlining
the development of the technique. In Sect. 6.1 we prove that p#P has inter
active proof systems. In Sect. 6.3, improving upon the technique for p#P, we
prove that the class of languages with interactive proof systems is precisely
PSPACE. In Sect. 6.4 we prove that the class of languages with multiple
prover interactive proof systems is precisely NEXP. Section 6.2 presents an
application of the polynomial interpolation technique to the problem of enu
merating candidates for the permanent function.

6.1 GEM: Interactive Protocols for the Permanent

6.1.1 Interactive Proof Systems

Let us formally define interactive proof systems (see Fig. 6.1). An interactive
proof system has two components, a verifier and a set of provers. A verifier is
a polynomial time-bounded probabilistic oracle Turing machine with k query
tapes and k query states for some k ~ 1. For each i, 1 ::::; i ::::; k, the ith query
tape and the ith query state are associated with a unique machine, called
a prover. For each k ~ 1, when the verifier enters the kth query state, the
contents of the kth query tape are read by the kth prover and its answer to
the query replaces the query; all these actions take place in one step. The
provers can use unlimited computational resources and randomness, and can
remember previous interactions with the verifier. However, when there is more
than one prover, they cannot communicate with each other.

Definition 6.1 For any k ~ 1, a language L has a k-prover interactive
proof system if there exists a polynomial time verifier V interacting with k
provers such that, for every x E E*, the following conditions hold:

1. (Completeness) If x E L, then there is a set of k machines
P1, ... , Pk, such that that V accepts x with probability greater than ~
with P1, . . . , Pk as provers.

2. (Soundness) If x fj L, then through interactions with any set of
provers, V on input x rejects with probability greater than ~.

6.1 GEM: Interactive Protocols for the Permanent 111

Work Tapes

Fig. 6.1 A two-prover interactive proof system

IP (respectively, MIP) is the class of all languages L that have one-prover
interactive proof systems {respectively, k-prover interactive proof systems for
some k).

We'll drop the "one-prover" whenever it is clear from the context that there
is only one prover.

6.1.2 Low-Degree Polynomials and Arithmetization

One of the two basic ingredients of the polynomial interpolation technique is
arithmetization-transforming computational problems to those of evaluating
(algebraic) formulas involving polynomials. Two properties of polynomials
are crucial:

• Low-degree, nonzero polynomials have a small number of zeros.
- (Univariate Polynomials) Iff is a polynomial of degree dover a field F,

then the number ofroots off is at most d. (See the proof of Lemma 6.2.)
- (Multivariate Polynomials) If f is an s-variate polynomial of total

degree at most dover a field F, then the number of elements of ps that
are roots off is at most dJIFJJd-l. (See Lemma 6.32).

• Low-degree polynomials have a robust characterization, in the following
sense:

- (Univariate Polynomials) Iff is a polynomial of degree d over a field
F, then f can be specified uniquely either by the d + 1 coefficients off
or by a list of d + 1 points that f passes through. (See Lemma 6.28.)

112 6. The Polynomial Interpolation Technique

- (Multivariate Polynomials) If f is an s-variate polynomial of total
degree at most d over a field F, then for every y, z E ps, it holds that
L:o<i<d+l -rd(y + iz) = 0, where for every i, 0 ::=; i ::=; d + 1, 'Yi =
(df1)(-1)i. (See Lemma 6.31.)

To develop interactive proof systems for p#P(= pPP), PSPACE, and NEXP,
we use some some specific properties of these traditional complexity classes.

• p#P: We show that the permanent function, which is complete for #P,
has an interactive proof system, i.e., the permanent can be verified in
teractively. The basic property we use is that the permanent of a matrix
can be uniquely recovered from the permanent of its minors (see part 3 of
Proposition 6.3).

• PSPACE: We arithmetize the reachability problem on the computation
tree of a deterministic polynomial-space Turing machine. There are no
branches in the computation tree of a deterministic Turing machine, so
for every k 2: 1, if there is a length 2k path from a configuration u to
a configuration v, then there is a unique "middle point" configuration w
such that there is a length 2k-l path from u tow as well as a length 2k-l
path from w to v. We will transform this observation into a sequence of
verification.

• For NEXP, we arithmetize the computation of an exponential-time nonde
terministic Turing machine by applying the tableau method. We obtain a
characterization of each NEXP language L: For every x, there is a 3CNF
formula IPx having exponentially many clauses over exponentially many
variables, and x E L if and only if the formula IPx is satisfiable. We develop
a protocol for verifying that IPx is satisfiable.

6.1.3 A Robust Characterization of Low-Degree Univariate
Polynomials

As stated in the following lemma, low-degree polynomials that are different
from each other cannot agree at many points. For a ring R and a set of
variables X1, ... ,Xm, R[Xr, ... ,Xm] denotes the set of all polynomials in
Xr, ... ,Xm with coefficients in R.

Lemma 6.2 (The number of roots of a polynomial) Let R be a ring
without zero divisors. Let d 2: 1 be an integer such that if the multiplicative
group of R is finite, then its order is greater than d. Let f and g be polynomials
in R[X] of degree at most d that are different from each other. Then f(r) =
g(r) for at most d values of r.

Multivariate polynomials have a similar property (see in Lemma 6.32 in
Sect. 6.4).

Proof Let h(X) = f(X)- g(X). Then his a nonzero polynomial of degree
e, 0 :::; e ::::; d. Let a be the coefficient of xe in h(X). Since there is no zero
divisor in R, h'(X) = h(X)/a is defined. Then, for every r E R, f(r) =

6.1 GEM: Interactive Protocols for the Permanent 113

g(r) {::::::::} h'(r) = 0. Since the coefficient of xe in h'(X) is 1, there are at
most d roots of h'. So, f(r) = g(r) for at most d values of r. 0

6.1.4 The Permanent Function

Let n ~ 1 be an integer. By Mn(Z) we denote the set of all n x n matrices
over Z. For A= (aij) E Mn(Z), the permanent of A, denoted by perm(A), is
L:.,.Til<i<nai.,.(i)• where 7r ranges over all permutations of {1, ... ,n}. The
dimenszon of A, denoted by dim(A), is n. If n ~ 2, for each i, j, 1 ~ i,j ~ n,
the (i,j)th minor of A, denoted by Ailj• is the matrix constructed from A
by striking out the ith row and the jth column simultaneously.

Proposition 6.3

1. For each f E #P, there exist two polynomial-time computable functions
R1 and R2 such that, for every x E :r;*, the following two conditions hold:
• R1 (x) is a square matrix all of whose entries are nonnegative integers.
• f(x) = R2((x,perm(R1(x)))).

2. The problem of computing the permanent of matrices whose entries are
nonnegative integers belongs to #P.

3. Let A E Mn(Z), for some n ~ 2. Then

perm(A) = L perm(Alli)ali·
l~i~n

4. Let A E Mn(Z), for some n ~ 1. Let m be an integer such that each
entry of A is in the interval [-2m, 2m]. Then

perm(A) E [-2n(m+logn), 2n(m+logn)].

5. Let A = (aij),B = (bij) E Mn(Z), for some n ~ 1. Define E(y)
yA + (1 - y)B = (aijY + bij(1 - y)) and f(y) = perm(E(y)). Then
perm(A) = f(1) and perm(B) = f(O). Also, f E Z[y], the degree off is
at most n, and for every m E Z,

perm(E(m)) = f(m).

6. Let n ~ 1 and let E(y) E Mn(Z[y]) be such that each entry of E(y) is a
linear function in y. Let m be such that the coefficients of each entry of
E(y) are in the interval [-2m, 2m]. Then each coefficient ofperm(E(y))
is in the interval [-2n(m+2logn),2n(m+2logn)].

Proof For part 1, see the Bibliographic Notes. To prove part 2, let N be
the nondeterministic Turing machine that, on input A= (aij) E Nnxn, for
some n ~ 1, behaves as follows:

Step 1 For each i, 1 ~ ... ~ n, N guesses a number ji, 1 ~ ji ~ n.

114 6. The Polynomial Interpolation Technique

Step 2 Let 1r be the function that maps each i, 1 ~ i ~ n, to k N tests
whether 1r is a permutation of {1, ... , n}. If 1r does not pass the test, N
rejects A. Otherwise, N proceeds to Step 3.

Step 3 N sets P to the product P = TI 1<i<n ai.,.(i)· N computes t =
flog(P + 1)l --

Step 4 N nondeterministically guesses a string y of length t. If the rank of
yin Et is less than or equal toP, then P accepts A. Otherwise, P rejects
A.

Let A be an input to N. Let n be the dimension of A. Note that, for every
permutation a of { 1, . . . , n}, there is exactly one set of guesses j 1 , . . . , jn
in Step 1 such that the mapping 1r defined by j 1, .•. ,jn is a. Let a be a
permutation of { 1, ... , n}. Suppose that N selects a as 1r in Step 1. Then 1r

passes the test in Step 2, so N enters Step 3. The number of accepting paths
N produces for a in Step 3 is P, which is equal to TI1<i<n aia(i). So, the total
number of accepting computation paths of Non input -A is perm(A). Let H
be the largest entry of A. Then H < 2IAI. So, the product P in Step 3, if N
arrives at Step 3, is less than 2niAI, sot~ niAI. Since n ~ IAI, t ~ 1AI2. This
implies that N can be made to run in polynomial time.

Part 3 can be proven by routine calculation.
Part 4 holds because the absolute value of the permanent is bounded by

n!(2m)n ~ nn2mn ~ 2n(m+logn).

To prove part 5, let n, A, and B be as in the hypothesis. Define E(y) =
yA + (1- y)B and f(y) = perm(E(y)). For all mE Z, f(m) = perm(E(m)).
In particular, f(O) = perm(B) and !(1) = perm(A). Note that

f(y) = L rr (ai.,.(i)Y + bi.,.(i)(1- y)),
.,. l~i~n

where 1r ranges over all permutations of { 1, ... , n}. For all permutations 1r

and all integers i, 1 ~ i ~ n, ai.,.(i)Y + bi.,.(i)(1- y) is a linear function in y.
So, TI1<i<n(ai.,.(i)Y + bi.,.(i)(1- y)) is a polynomial in y of degree at most n.
This implies that f(y) is a polynomial in y of degree at most n.

Part 6 holds because for each d, 0 ~ d ~ n, the absolute value of the
coefficient of yd in perm(E(y)) is bounded by

n!(2m)n(~) ~ (n!)2(2m)n ~ 2n(m+2logn)_

0

6.1.5 An Interactive Proof System for the Permanent

In the rest of the section we prove that p#P has an interactive proof system.

Theorem 6.4 p#P ~ IP.

6.1 GEM: Interactive Protocols for the Permanent 115

Combining Theorem 6.4 and Toda's Theorem, PH ~ p#P (see
Theorem 4.12), we learn that every language in the polynomial hierarchy
has an interactive proof system.

Corollary 6.5 PH~ IP.

To prove Theorem 6.4, we'll develop an interactive protocol for the per
manent function of integer matrices.

Let L E p#P. By parts 1 and 2 of Proposition 6.3, it is #P-complete to
compute the permanent of matrices whose entries are nonnegative integers.
So, we may assume that there is a polynomial time-bounded Turing machine
M that decides L with perm as an oracle. Since M is polynomial time
bounded, there is a polynomial p such that for every x E E* M satisfies the
following two conditions:

• Regardless of its oracle, M on input x makes at most p(lxi) queries.
• For each potential query A of M on input x, dim(A) ~ p(ixi) and every

entry of A is in the interval [-2p(lxi),2P(Ixl)].

We will construct an interactive proof system (P, V) for L. Let x E E* be
a string whose membership in L we are testing and n = lxl. The verifier V
simulates M on input x deterministically, and accepts or rejects accordingly.
When M is about to make a query A to its oracle perm, instead of making that
query toP, V executes the protocol presented in Fig. 6.2. During the protocol,
V maintains a list of matrix-integer pairs, A= [(BI, VI), ... , (Bm, vm)], such
that P has promised that for all i, 1 ~ i ~ m, perm(Bi) =Vi, where for some
d;::: m;::: 1, BI, ... ,Bm E Md(Z) and VI, ... ,vm E Z. At the start of the
protocol V obtains from the prover P a value u that P claims is perm(A) and
sets A to [(A, u)]. Then V interacts with P to reduce the dimension of the
matrix entries in A to 1. At that point, since the number of pairs in A will
not exceed the dimension of the matrices, there is only one pair (B, v) in the
list and the prover has promised that perm(B), which is the unique entry of
B by definition, is v. So, V checks whether what the prover has promised is
correct. If so, V returns to the simulation of M assuming that perm(A) = u.
Otherwise, V terminates its computation by rejecting the input x.

We claim that this protocol witnesses that L E IP. To prove our claim we
need to show the following:

1. The protocol is complete, i.e., for every x E L, there exists a prover P
such that V accepts x with probability at least ~ through interactions
with P.

2. The protocol is sound, i.e., for every x E L, and every prover P, V accepts
x with probability at most ~.

3. V can be polynomial time-bounded.

116 6. The Polynomial Interpolation Technique

Step 1 Send AtoP and obtain from P a value u. Set A to [(A,u)].
Step 2 (a) Let (B,v) the unique element of A. Remove (B,v) from A.

(b) Set d to dim(B). If d = 1, then goto Step 4.
(c) For each i, 1 :5 i :5 d, send B11i toP and obtain from P a value Vi that

P claims is perm(Blli)·
(d) Test whether v = L:;1:5i:5dbljVj; if the test fails, reject x.
(e) Set A to [(Blll•v1), ··· ,(Blld,vd)] and proceed to Step 3.

Step 3 Repeat (a)-(f) untiliiAII = 1:
(a) Remove the first two elements (B,v) and (C,w) from A.
(b) Let y be a variable and m = dim(B)(= dim(C)). Compute the matrix

E(y) = (eii(Y)) E Mm(Z[y]) defined for all i, j, 1 :5 i,j :5 m, by

eij (y) = biiY + (1 - y)Cij,

where B = (bij) and C = (Cii)·
(c) Send E(y) to P and obtain a polynomial f(y) E Z[y] that P claims is

perm(E(y)).
(d) Test whether v = /(1) and w = f(O); if the test fails, then reject x.
(e) Pick r E {0, ... , 2p(n) -1} under discrete uniform distribution and com

puteD= E(r) = (eii(r)) and z = f(r).
(f) Append (D,z) into A.
Return to Step 2.

Step 3 Test whether v is the unique entry in B. If the test succeeds, return to
the simulation with u and if the test fails, reject x.

Fig. 6.2 Interactive protocol for the permanent function

6.1.5.1 Completeness of the Protocol. In order to see why the protocol
is complete, let x be an arbitrary member of L. Let P be the prover that
always provides correct answers to the queries of V. Since P will always
provide correct answers, regardless of the probabilistic choices of V, all tests
in Fig. 6.2 will succeed. This implies that V on x through interactions with P
will follow the computation path that M on input x would with perm as the
oracle, and thus, will accept x. So, the probability that V on input x accepts
with P as the prover is 1. Thus, the protocol is complete.

6.1.5.2 Soundness of the Protocol. In order to prove that the protocol is
sound, let x be an arbitrary element in L. Let p be the maximum probability
of acceptance that V on input x has through interactions with any prover.
We claim that p < .!. We prove the claim by contradiction. Assume, to the
contrary, that p ;::: t. Let P be a prover that achieves p as the acceptance
probability of V on input x.

Note that, to achieve a nonzero probability of acceptance, P has to provide
an incorrect answer in Step 1 of the protocol to at least one query that V
produces on input x. To see why, assume that P provides a correct answer
in Step 1 of the protocol to each query that V produces on input x. Take
an arbitrary computation path, 7r, of Von input x through interaction with

6.1 GEM: Interactive Protocols for the Permanent 117

P. Suppose that V on input x along path 1r terminates before V completes
its simulation of M on x. Since V never accepts during the execution of the
protocol, this implies that V rejects x along path 1r, and thus, 1r does not
contribute to the probability of acceptance of Von input x. So, suppose that
V on input x along path 1r completes its simulation of M on input x. By
assumption, P provides the correct answer in Step 1 to each query that V on
input x makes. So, the answers that V obtains from P along path 7r are those
M on input x would receive with perm as the oracle. This implies that the
computation of M on input x that is simulated by V on input x along path 1r

is precisely that M on input x with oracle perm. Since M is deterministic and
x E L, this implies that V on input x along path 1C' rejects. Hence, regardless
of whether V finishes its simulation of M on input x, V on input x along
path 1C' rejects. This implies p = 0, a contradiction.

By the above discussion, suppose that V has made a query A having
dimension greater than 1 to P and P has provided a value u f. perm{A) to
the query A in Step 1 of the protocol. Then V sets the value of A to [{A, u)].
We will examine the subsequent execution of Steps 2 and 3. To simplify our
discussion, call a matrix-integer pair {B, v) in A correct if v = perm{ B);
otherwise, call the pair incorrect. Call A correct if every matrix-integer pair
in it is correct; otherwise, call A incorrect. Note that the following three
conditions hold:

• Immediately after Step 1, A is incorrect because its unique element (A, u)
is incorrect by our supposition.

• In V halts before reaching Step 4, then V does so by rejecting x.
• In Step 4, V returns to its simulation of the machine M on input if A is

correct and rejects x otherwise.

We will show that the probability that V reaches Step 4 and A becomes
correct before V reaches Step 4 is less than ~.

First suppose that A is incorrect at the beginning of Step 2. Let (B, v)
be the unique matrix-integer pair in A and d be the dimension of B. We
can assume that d > 1. Otherwise, V will immediately jump to Step 4 and
the incorrectness of A will be preserved. Suppose that V has obtained from
P in the subsequent Step 2{ c) v1 , ..• , Vd as the permanents of the minors
Bql! · · · , B 11d• respectively. In the subsequent Step 2{d), V tests whether
V = El<i<d b1iVi· Suppose that this test succeeds. Then, since perm{ B) =
El<i<d oljperm{Blll) and v f. perm{B), it must be the case that for at least
one -i,-1 ~ i ~ d, perm{Bqi) f. Vi· Thus, A at the beginning of subsequent
Step 3 is incorrect. In other words, if V does not reject x in Step 2, then
the property that A is incorrect should be preserved during Step 2, and A
remains incorrect at the beginning of Step 3.

So, suppose that the list A is incorrect at the beginning of Step 3. If A
has only one element, V immediately returns to Step 2 without modifying
A, so the incorrectness of A is preserved. So suppose that A has at least
two elements. Let { B, v) and { C, w) be the pairs that V pops from A in

118 6. The Polynomial Interpolation Technique

Step 3(a). Suppose that there remains at least one incorrect pair in A. If
so, since the incorrect pair will not be removed from A in the subsequent
Steps 3(b) through 3(f), the incorrectness of A will be preserved in the sub
sequent Steps 3(b) through 3(f). So, suppose that there remains no incorrect
pair in A after popping (B,v) and (C,w). Since A is incorrect, it must be the
case that at least one of (B, v) and (C, w) is incorrect. Let f be the polyno
mial that P provides for the permanent of E(y) = yB + (1 - y)C. Suppose
that f survives the test in Step 3(d). Then /(1) = v and /(0) = w. Since E
satisfies perm(B) = perm(E(1)) and perm(C)= perm(E(O)) and, by our as
sumption, either v =f:. perm(B) or w =f:. perm(C), we have f(y) =f:. perm(E(y)).
Since dim(B) =dim(C)~ dim(A) ~ p(n), perm(E(y)) is a polynomial of de
gree at most p(n). So, by the Polynomial Interpolation Lemma (Lemma 6.2),
there are at most p(n) many r for which perm(E(r)) = f(r). Thus, the prob
ability that the pair (D,z) that V produces from (B,v) and (C,w) is correct
is at most :~~) . This implies. that the probability that the incorrectness of

A is preserved during a single run of the loop body is at least 1 - :J[!.), . The
number of times that the loop body of Step 3 is executed is

L (i- 1) ~ p(n)(p~n) -1),

l:::=;i:::=;dim(A)-1

so the probability that the unique pair in A in Step 4 is incorrect is at least

p(n)(p~n)-1)

(1- p(n)) > 1- p3(n)
2P(n) - 2P(n) ·

So, P fails with probability at least 1- ~:~~f. This is greater than ~ provided
p(n) ~ 14, so p < ~- This is a contradiction. Thus, the protocol is sound.

6.1.5.3 Running-Time Analysis. To prove that V is polynomial time
bounded, we may assume that in Step 3(c), the prover returns the polynomial
f to V by providing integers no, ... ,ad, such that f(r) = adrd+ · · · +a1r+
no, where d = dim(E(r)). Let A be a query of M and d = dim(A). Assuming
that V reaches Step 4, V executes Step 3(e) m = L::2<i<d(i- 1) = d{d2l)
times. For each i, 0 ~ i ~ m, let ti be the smallest-integer f such that
the interval (-2t, 2t] contains all the integers that have been seen either as
coefficients of polynomial entries in E(y) or entries of matrices in the list A
by the end of the ith execution of Step 3(c). Then t0 ~ p(n). For every i,
1 ~ i ~ m, each entry of E(y) in the ith execution of Step 3(c) takes the
form of b + (1 - y)c such that lbl, lei ~ 2t;_ 1 and a random value assigned
to y is selected from (0, 2P(n) - 1]. This implies that for every i, 1 ~ i ~ m,
ti ~ti-l +p(n). Thus, tm ~ (m+1)p(n) ~ (d(d21) +1)p(n) ~ d2p(n) ~ p3(n).
Then, by part 4 of Proposition 6.3, for every integer matrix B that appears
during the protocol, log iperm(B)I is at most

6.2 Enumerators for the Permanent 119

p(n)(p3 (n) + logp(n)).

This is less than p5 (n) for p(n) ~ 2. Also, by part 6 of Proposition 6.3, for each
polynomial f(y) appearing during the protocol, the log of each coefficient of
f is at most

p(n)(p3 (n) + 2logp(n)).

This is less than p5 (n) for p(n) ~ 2. Thus, all the integers that appear during
the execution of the protocol are at most p5 (n) bits long. Modify V so that it
will spend at most p5 (n) steps for reading a number supplied by the prover.
Then V will be polynomial time-bounded and able successfully to execute
the protocol for every input x E L while interacting with P. This concludes
the proof of Theorem 6.4.

6.2 Enumerators for the Permanent

PH ~ p#P (by Theorem 4.12) and perm is complete for #P (by part 4 of
Proposition 6.3), so we may not hope to be able to compute the permanent
function in polynomial time unless PH = P. Then we ask: Is there an easy
way to generate, given an integer matrix A, a short list of candidates for
perm(A) so that one of the candidates is the correct value of perm(A)? We
combine the polynomial interpolation technique and the self-reducibility of
the permanent (i.e., the permanent of ann x n matrix with n ~ 2 can be
reduced to the problem of computing the permanents of all its minors), we
show that we cannot hope to have such an enumeration algorithm either,
unless P = PP.

We first formalize the concept of candidate generation.

Definition 6.6 Let f : E* ~ N be a function. A function E is an enumera
tor for f if for every x E E* there exist some m ~ 1 and some a1, ... , am E N
such that

1. E(x) = (m, a 1 , ... , am) and
2. f(x) E {at, ... , am}·

Theorem 6. 7 If there is a polynomial-time computable enumerator for
perm, then perm E FP.

Proof Suppose that there is a polynomial-time enumerator E for the per
manent function. Let n ~ 1. Let A = (a;j) be ann x n matrix whose per
manent we want to compute. Let m be the smallest integer such that each
entry of A has absolute value at most 2m. Then, IAI, the encoding length of
A, is at least n2 + m. By part 4 of Proposition 6.3, jperm(A)I ~ 2n(m+logn).
l<or all n, m ~ 1, (n2 + m) 2 > n(m + logn). So, jperm(A)I < jAj2 . Let
s = 2rlog !All + 1. Then 28 > 2jperm(A)j. We reduce the problem of com
puting perm(A) to the problem of computing perm(A) mod Q; for some s

120 6. The Polynomial Interpolation Technique

distinct primes Q1, ... , Q8 • Once these values have been computed, since
Q 1 · · · Q8 ~ 28 > 2lperm(A)I, using the Chinese Remainder Theorem, we
can recover the exact value of perm(A).

To compute perm(A) mod Q for a prime number Q, we execute the fol
lowing algorithm that uses a subroutine :F.

Step 1 Set An to the n x n matrix such that for all integers i and j,
1 ~ i, j ~ n, its (i, j)th entry is aij mod Q.

Step 2 Set An to the n X n matrix such that for Execute the following for
i =n-1, ... ,1.

(a) Construct from Ai+l ani xi matrix Bi(X), defined as

L 8k(X)alkAllk·
l~k~i+l

Here for every k, 1 ~ k ~ i + 1, a1k is the (1, k)th entry of Ai+l, A11k
denotes the (1, k)th minor of Ai+1, and

II (X- j)(i- j)-1,
jE{l, ... ,i+l}-{k}

where for all j E {1, ... , i + 1}- {k }, (i- j)-1 is the multiplicative
inverse of i - j in ZQ .

(b) Present Bi(X) to the subroutine :F to obtain candidate polynomials
91, ... ,9t for perm(Bi(X)), where t2n 2 :5 Q and these polynomials
are pairwise distinct modulo Q. Set ri to the smallest r E {0, ... , Q-
1} such that for all j, k, 1 ~ j < k ~ t, 9;(r) ¢. 9k(r) (mod Q).

(c) Set Ai to Bi(ri) mod Q.
Step 3 Compute v1 = perm(Al), where v1 is the only entry of A1.
Step 4 Execute the following for i = 1, . . . , n - 1.

(a) Let 91, ... ,9t be the candidates generated for perm(Bi(X)) in
Step 2(b). Find the unique k, 1 ~ k ~ t, such that 9k(ri) mod Q =Vi.

(b) Compute Vi+l as (L: 1~j~i+l 9k(j)) mod Q.
Step 5 Output Vn as perm(A) mod Q.

Note that for every i, 1 :5 i :5 n- 1, in Step 2(a), each entry of Bi(X) is
an element of ZQ[X] of degree at most i, so perm(Bi(X)) is a polynomial
in ZQ[X] and has degree at most i2 ~ n 2 . Note also that for every i, 1 ~
i :5 n- 1, it holds that perm(AiH) = L:l<t<i+l perm(Bi(t)) (mod Q).
In Step 2(b) above, since perm(Bi(X)) is a pOlynomial of degree at most
i2 :5 n 2 , by Lemma 6.32, for each pair (j, k), 1 :5 j < k ~ i, there are at most
n 2 many values of r in {0, ... ,Q -1} such that 9;(r) = 9k(r) (mod Q).
Since there are (~) < t 2 combinations of j and k,

ll{rlrE {0, ... ,Q-1}/\

(3j,k)[1 :5 j < k :5 t 1\ 9;(r) = 9k(r) (mod Q)]}ll < t2n 2 .

6.2 Enumerators for the Permanent 121

So, if t 2n2 ::::; Q, then there is at least one r E {0, ... , Q -1} such that for all
j, k, 1::::; j < k::::; t, gj(r) ¢. gk(r) (mod Q). Thus, for all i, 1 ::::; i::::; n- 1,

the value Ti is defined as long as the number t of candidates that :F generates
satisfies t2n 2 ::::; Q.

To describe how :F works we need to introduce a new function h. The
domain of h, domain(h), is the set of all square matrices N such that each
entry of N is a polynomial belonging to N[X] having degree at most dim(N).
For all N E domain(h) perm(N) is a polynomial belonging to N[X] having
degree at most (dim(N))2. The value of h(N) is an integer that encodes the
coefficients of perm(N). For each matrix N E domain(h), let i(N) denote the
smallest integer t such that every coefficient of every entry of N is less than
2t. Then there exists some integer constant c > 0 such that, for all matrices
N E domain(h) and all i, 0 ::::; i ::::; (dim(N))2, the coefficient Ci of Xi in
perm (N) is less than

m!(m + 1)m(2l(N))m < 2c(m+l(N)). (6.1)

Then we define the value of h(N) to be

L (2c(m+l(N)))iCi.

O~i~m2

Then by equation 6.1, the coefficients 0 0 , ... ,Cm2 can be recovered from
h(N). Furthermore, we claim that his a #P function. To see why, consider
a nondeterministic Turing machine U that, on input N, does the following:

• U tests whether N E domain(h). If the test fails, U immediately rejects N.
• U guesses i E {0, ... , (dim(N))2} and for each j, 1 ::::; j ::::; dim(N), an

integer dj E {0, ... , dim(N)}. U tests whether i = 2: 1~j~dim(N) dj. If the
test fails, U immediately rejects N.

• For each j, 1 ::::; j ::::; dim(N), U guesses an integer PJ E {1, ... , dim(N)}.
Let 7r be the mapping from {1, ... , dim(N)} to itself defined for all i,
1 ::::; i ::::; dim(N), by 1r(i) =Pi· U tests whether 7r is a permutation. If the
test fails, U immediate rejects N.

• U computes the product P for all j, 1 ::::; j ::::; dim(N), of the coefficient of
Xd; in the (j, 1r(j))th entry of N.

• U guesses an integer k, 1 ::::; k ::::; 2c(dim(N)+l(N))i P, and then accepts N
otherwise.

It is easy to see that U can be polynomial time-bounded and, for all N E
domain(h), #accu(N) = h(N). Thus, hE #P.

Since h is a member of #P, by part 1 of Proposition 6.3, there is a
polynomial time reduction to (Rt.R2) such that for every N E domain(h)
h(N) = R2(N,perm(R1(N))). Define the action of the oracle :F as follows:
On input N E domain(h), :F does the following:

• :F computes W = R1(N) and evaluates E(W) to obtain candidates
v1, ... , Vp for perm(W).

122 6. The Polynomial Interpolation Technique

• For each i, 1 ::::; i :$ p, :F computes the ith polynomial 9i from R2(W, vi)
by taking modulo Q.

• Trash all the candidate polynomials of degree greater than m 2 , where m is
the dimension of N. Also, if a polynomial is repeated in the list, eliminate
duplicates.

• Return the list of remaining polynomials.

Since R1, R 2 , and E are all polynomial time computable, the procedure :F
runs in polynomial time. So, there is some o: > 0 such that, for all N E
domain(h), the number of candidates that :F produces on input N is bounded
by (dim(N) + l(N)y)l ..

During the execution of the procedure for computing perm(A) mod Q,
for each query N made to :F, dim(N) ::::; n::::; IAI and l(N) ::::; logQ::::; IAI.
Suppose that the prime numbers Q1, ... , Q8 lie in the interval [IAI.B, IAI'"~]
for some (3, 'Y ~ 1. Then the number of candidates t that :F outputs at each
query during the computation is at most

for all but finitely many A. The requirement for Q is that t 2n2 ::::; Q. So,
IAI 2"'+4 :$ IAI.B has to be met. Let (3 = 2o: + 4 and 'Y = 2{3. The number
of primes we need is IAI 2 . The following theorem, which we state without a
proof, is well known and useful.

Theorem 6.8 (The Prime Number Theorem) For every integer l ~ 1
there are at least 21 primes in the interval [21, 221].

Since (3 ~ 1 and 'Y = 2(3, by Theorem 6.8, there are at least IAI 2 primes
in the interval [IAI.B, I AI'"~]. Since the largest prime we deal with is at most
I AI'"~, by a trivial division procedure we can find in time polynomial in IAI
the primes we need. This implies that the permanent is polynomial time
computable. This proves the theorem. 0

6.3 IP = PSPACE

In this section we prove the following result.

Theorem 6.9 IP = PSPACE.

We divide the proof into two parts: IP s,:;; PSPACE and PSPACE s;;; IP.

6.3.1 IP ~ PSPACE

Lemma 6.10 IP s;;; PSPACE.

6.3 IP = PSPACE 123

Proof Let L E IP. Take an interactive proof system for L. Let V be the
verifier and p be a polynomial bounding the runtime of V. Without loss of
generality, we may assume that the prover provides a single-bit answer to
each query of V. We may also assume that there exist polynomials m, q, and
r such that, for every input x, the verifier makes exactly q(ixi) queries to the
prover, each having length m(lxl), and tosses exactly r(lxl) coins before the
first query, after the last query, and between every two consecutive queries.

We can assume that the objective of P is to maximize the probability that
V accepts, regardless of whether the input belongs to L or not. To see why,
suppose that the input belongs to L. The completeness condition requires
that there is a prover that makes V accept with probability more than ~,
and this is the same as requiring that the highest acceptance probability that
is achieved by any prover is more than ~-Next suppose that the input does
not belong to L. Then the soundness condition requires that regardless of the
protocol of the prover, the acceptance probability of V is less than {-. This
is the same as requiring that the highest probability that is achievable is less
than i·

We claim that the highest acceptance probability can be achieved by a
prover that works deterministically. Here the reader should be cautioned that
deterministic provers are not necessarily oracles, for provers can select their
answers based on the history of communication.

To prove the claim, first note that we can assume that there is a recursive
function f : E* --t N such that, for every x E E*, V on input x asks exactly
f(x) queries to the prover, regardless of its coin tosses and of the prover.
Suppose there is no such f exists. Since V witnesses that L E IP, there is a
prover P such that, for every x E L, V on input x runs for at most p(ixi)
regardless of its coin tosses and of the prover. Define V to be the machine
that, on input x, simulates Von input x for at most p(ixi) steps, i.e., if Von
input x along the simulated path attempts to make the (p(lxl) + l)st step, V'
aborts the simulation. While executing the simulation V' counts the number
of queries that V on input x makes to the prover along the simulated path of
V on input x. When the simulation is either completed or aborted, V adds
dummy queries (e.g., about the empty string) to make the total number of
queries equal to p(ixi) and then accepts if Von input x along the simulated
path accepts. For all x E E*, the number of queries that V' on input x
makes is p(ixi). For all x E L, the probability that V' on input x accepts
through interactions with P is equal to the probability that V on input x
accepts through interactions with P. For all x ELand for all prover P', the
probability that V' on input x accepts through interactions with P' is not
greater than the probability that Von input x accepts through interactions
with P'. So, V' is an interactive proof system for L.

Now, suppose that V has just made its last query to the prover. Since
it can compute the function f using its unlimited computational power, the
prover knows that this is the last query of V. Let p and a respectively be

124 6. The Polynomial Interpolation Technique

the highest probability of acceptance that can be achieved beyond this point
provided that the prover answers with a 0 and provided that the prover
answers with a 1. These two probabilities are well-defined, since the runtime
of V is bounded, so using its unlimited computational power, the prover can
calculate them. Parameterize the strategy of the prover at this very point
with o:, 0 ~ o: ~ 1, in such a way that it provides a 0 as the answer with
probability o:. Then the overall probability that V accepts beyond this point
is

o:p + (1 - o:)a =a+ (p- a)o:.

This is maximized at o: = 1 if p ~ a and at o: = 0 if p < a. So, in order to
maximize this amount, the prover has only deterministically to answer with
a 0 if p ~ a and with a 1 otherwise. Thus, the strategy of the prover at
this point could be deterministic. Since the same argument could be made
for any "query" point, working up from the last query to the first query, we
can argue that the entire strategy of the prover could be made deterministic
without decreasing the probability that V accepts.

For each X E E*, let Hx denote the set of all possible communication
histories between V and some prover. Here a communication history between
V and a prover is the record of all the queries and answers exchanged between
them before some computational step. More precisely, for each x E E*, the
following strings constitute Hx:

• The empty string .>..
• All strings of the form Y1#b1$ · · · $yk#bk for some k, 1 ~ k ~ p(Jxi),

Y1, ... ,yk E Em(lxl), b1, ... ,bk E {0,1}. Here for each i, 1 ~ i ~ k, Yi is
the ith query of V to the prover and bi is the prover's answer to Yi·

• The strings of the form Y1 #b1 $ · · · $yk-1 #bk-1 $yk for some k, 1 ~ k ~
p(Jxi), Y1, ... ,yk E Em<lxl), b1, ... ,bk-1 E {0,1}. Here for each i, 1 ~ i ~
k, Yi is the ith query of V to the prover, for each i, 1 ~ i ~ k -1, bi is the
prover's answer to Yi, and the answer to Yk is yet to be given.

For all x E E* and w E Hx, define R(x, w) to be the maximum probability
that V on input x accepts when the history of communication has w as a
prefix. Then R(x, >.) is the highest acceptance probability that Von input x
through interactions with any prover. So, for all x E E*,

3
x E L {::::::::} R(x, >.) ~ 4.

To prove that L E PSPACE it now suffices to show that R is polynomial-space
computable.

Consider the procedure RCOMP, described in Fig. 6.3, for computing
R(x,w) given x E E* and wE Hx.

It is easy to see that the procedure works correctly. Let us analyze the
space requirement of this procedure. For all x E E*, RCOMP(x, .>.) has recursion
depth 2q(jxi). When a recursive call is made in either Step 2 or Step 3(b),

6.3 IP = PSPACE 125

Step 1 If w is of the form Y1#b1$ · · · $yq(lzl)#bq(lxl), then do the following:
(a) SetS to 0.
(b) For each binary string 1r of length (q(lxl) + 2)r(lxl), do the following:

(i) Simulate the computation of V on input x along path 1r assuming
that for each i, 1 ~ i ~ q(lxl), the prover's answer to the ith query
is bi,

(ii) Check whether V accepted in the simulation and whether for every
i, 1 ~ i ~ q(lxl), the ith query of V in the simulation was Yi·

(iii) If both tests succeed, increment S by 1.
(c) Return S/2(q(lzl)+2)r(lzl).

Step 2 If w is of the form Y1#b1$ · · · $yk, then return
max{RCOMP(x, w#O), RCOMP(x, w#1)}.

Step 3 If either w = A or w is of the form Y1#b1$ · · · $yk#bk for some k <
q(lxl), then do the following:
(a) Set S to 0.
(b) For each string z of length m(lxl), compute p = RCOMP(x, w$z) and add

p to S.
(c) ReturnS.

Fig. 6.3 Algorithm RCOMP for computing R

some pieces of information need to be stored: the current location in the
RCOMP program, the sum S (Step 3 only), the current value of p (Step 3
only), which of the two recursive calls is being executed (Step 2 only), and
the output of the first recursive call in the case when the second recursive
call is about to be made in Step 2. Since the total number of coin tosses
of V is (q(lxl) + 2)r(lxl), R has precision of (q(lxl) + 2)r(lxl) bits. So, the
amount of information to be stored is O((q(lxl)+2)r(lxl)) = O(q(ixi)r(ixi)).
Thus, the entire procedure requires O(q(lxi)2r(lxl)) space. Hence, RCOMP is a
polynomial-space algorithm, and thus, L E PSPACE. 0

6.3.2 PSPACE ~ IP

Now we prove the other inclusion of Theorem 6.9.

Lemma 6.11 PSPACE ~ IP.

We first provide a brief overview of the proof of Lemma 6.11. Let L be an
arbitrary language in PSPACE. Let D be a polynomial space-bounded Turing
machine witnessing that L E PSPACE. We develop a protocol for verifying
computation of D. The idea behind the protocol is Savitch's Theorem, which
states that for all space-constructible function S(n) = n(log n), nondetermin
istic S(n)-space-bounded computation can be deterministically simulated in
space S 2 (n). To describe the theorem we use the concept of configurations. A
configuration of the machine D describes the contents of its tapes, the posi
tions of its head, and its state. Here we assume that D is a one-tape machine

126 6. The Polynomial Interpolation Technique

and that there exists a polynomial s such that, for all x E E*, the config
uration at each step of D on input x can be encoded as a string in Es(lxl).
Also, we assume that, for each x E E*, if D on input x accepts then D does
so by erasing all the tape squares it has ever visited and moving its head to
position 1. This implies that for every x E E", there is a unique accepting
configuration of D on input x. Finally, assume that there is a polynomial r
such that, for all x E E*, D on input x halts at step 2r(lxl). Then, for all
x E E*, x E L if and only if the unique accepting configuration of D on input
x is reached in exactly 2r(lxl) steps.

Suppose we are testing the membership of x E E* in L. We define a
family of polynomials Rj, 0 ~ j ~ r(lxl), with the following property: For all
j, 0 ~ j ~ r(lxl), and all configurations C and C' of D on input x,

1
{ 1 if C' is reachabl~ from C by D

Rj(w, w) = in exactly 21 steps,
0 otherwise.

Here w and w' are respectively the encoding of C in Es(lxl) and the encoding
of C' in Es(lxl) 0 Let Co be the initial configuration of Don input X. Let cl be
the accepting configuration of Don input x, in which the tape head of Dis at
position 1 and each tape square has a blank. Let wo and w1 be respectively the
encoding of Co and the encoding of C1. Then x E L {::::::::} Rr(lxl)(wo, w1) = 1.
We develop a protocol for testing whether Rr(lxl)(wo,wl) = 1. The basis of
the protocol is an arithmetic characterization (called arithmetization) of the
predicate R.

Two properties of R play a crucial role here. First, for every k ~ 1, and
every pair of configurations C and C' of Don input x,

Rk(w,w') = 1 {::::::::}

(3z E Es(lxll)[(Rk-l(w,z) = 1) 1\ (Rk-l(z,w") = 1)],

where w is the encoding of C and w' is the encoding of C'. Second, the
predicate Ro(w, w') can be written as a polynomial of 2s(n) variables (cor
responding to the bits of w and w') having a small total degree.

Proof of Lemma 6.11 Let L be an arbitrary language in PSPACE. Let D
be a machine witnessing that L E PSPACE. We first make a few assumptions
about the machine D:

1. D has only one tape and the tape is one-way infinite.
2. The state set of D is Q = { q1. ... , qM} and the alphabet of D is r =

{al.···,aN}·
3. There is a polynomial p having the following two properties:

• For every x E E*, D on input x uses at most p(lxl) tape squares.
• For every n ~ 0, p(n) ~ max{M, N}.

4. For each n ~ 1, there is a unique accepting configuration of D for any
input of length n. For example, for all input y E E*, we can assume that

6.3 IP = PSPACE 127

when it is about to accept or reject y, D writes a blank on tape squares
1, ... ,p(lyl), moves the head to the leftmost position, and then enters a
unique accept state.

Let !:1 ~ (Q X r) X (Q X r X { + 1, 0, -1}) be the transition function of D, where
((q, a), (q', a', d)) E !:1 signifies that if the current state is q and the symbol
currently scanned is a, then in one step D overwrites the currently scanned
a by an a', enters state q', and changes the head position by d squares on the
tape.

Let x E E* be a string whose membership in L we are testing. As in the
tableau method, we encode each configuration of D on input x using a set of
boolean variables. We will use the following boolean variables:

• stt[i], i = 1, ... , M.
For every i, 1 :::;; i :::;; M, stt[i] = 1 if and only if the current state is qi.

• pos[i], i = 1, ... ,p(lxl).
For every i, 1 :::;; i :::;; p(lxl), pos[i] = 1 if and only if the head is located on
the ith tape square.

• sym[i,j], i = 1, ... ,p(lxl), j = 1, ... , N.
For all i, 1 :::;; i :::;; p(lxl), and j, 1 :::;; j :::;; N, sym[i, j] = 1 if and only if aj

is stored in the ith tape square.

Let s(n) = M + (N + 1)p(n). Then s is a polynomial in n and the total
number of variables used is s(lxl). Fix an enumeration of the s(lxl) variables.
Let a be an assignment to the s(lxl) variables. We say that a is legitimate if
the following conditions hold:

• There is exactly one i, 1 :::;; i :::;; M, such that stt[i] = 1.
• There is exactly one i, 1 :::;; i :::;; p(lxl), such that pos[i] = 1.
• For every i, 1 :::;; i :::;; p(lxl), there is exactly one j, 1 :::;; j :::;; N, such that

sym[i, j] = 1.

Then, there is a one-to-one correspondence between the set of all potential
configurations of D on input x and the set of all legitimate assignments.

Proposition 6.12 There exists a polynomial Ro E Z[6, ... , ~s(lxl), 01, ... ,
Os(lxl)] that satisfies the following conditions:

1. An expression of Ro can be computed in polynomial time. Furthermore,
for any integer Q 2:: 2 and a,{3 E (ZQ)s(lxll, R 0 (a,{3) mod Q can be
evaluated in time polynomial in lxl + logQ.

2. Ro is a polynomial in degree at most p(lxl) + 2 in each variable.
3. For all a, {3 E {0, 1 }s(lxl), R 0 (a, {3) = 1 if both a and {3 are legitimate and

D on input x reaches {3 from a in one step and R 0 (a, {3) = 0 otherwise.

Proof of Proposition 6.12 For simplicity we attach the subscripts~ and
0 to the above s(lxl) variables to indicate that they are appearing in the ~
part and in the 0 part, respectively.

128 6. The Polynomial Interpolation Technique

Define
Equal(b, c) = 2bc- b- c + 1.

Then, for all b,c E {0, 1}, Equal(b,c) = 1 if b = c and Equal(b,c) = 0
otherwise. For each integer k ~ 2, and k boolean variables Yl, ... , Yk, define

Uniq[k](Yt, ... , Yk) = (1- II (1- Yi)) II (1- YiYJ)·
l~i~k l~i<j~k-1

Then, for every k ~ 2, Uniq[k](YI, ... ,yk) is a polynomial of degree kin
each variable. Also, for all k ~ 2 and Yl, ... ,yk E {0, 1}, Uniq[k](Yl, ... ,yk)
is equal to 1 if exactly one of Yl, ... , Yk is 1 and is equal to 0 otherwise. Let
S be the set of all possible transitions of D; i.e.,

S = {(i,j,k,l,m,d) II :5 i $p(jxl) 1\1 $j $ M 1\1$ k $ N 1\

1 $ l $ M 1\ 1 $ m $ N 1\ dE { +1, 0, -1} 1\ 1 $ i + d $ p(jxl) 1\

((qj, ak), (q1, am, d)) E ~}.

Define
Ro(e, 8) = A(e)>.(8) L p(e, 8, r),

rES

Here

A(e)=
Uniq[p(jxl)](pose[l], ... , pose[p(ixl)]) Uniq[M](stte[l], ... , stte[M])

II Uniq[N](syme[i, 1], ... , syme[i, N]),

).(8) =
Uniq[p(ixl)](pos9 [l], ... , pos9 [p(lxl)]) Uniq[M](stto[l], ... , stto[M])

II Uniq[N](sym9 [i, 1], ... , sym9 [i, N]),
l~i~p(lxl)

and, for each 1" = (inJr, knlr, mn dr) E S,

p(e, 8, r) =
pose[ir]poso[ir + dr]stte[jr]stto[kr]syme[in lr]symo[ir + dn mr]

II II Equal(syme[t, u], sym9 [t, u]).
tE{l, ... ,p(lxl)}\{i.,.} l~u~N

Since Uniq checks that exactly one of the input variables is 1, A(e) = 1
if and only if e is legitimate. Similarly, A(8) = 1 if and only if 8 is legiti
mate. Also, for all6-tuple r = (i,j,k,l,'m,d) E S, and a.,(3 E {o,l}s(lxl),

A(a.)A((3)p(a.,(3,r) = 1 if

(i) both a. and (3 are legitimate and

6.3 IP = PSPACE 129

(ii) the changes corresponding to the transition ((qj, ak), (qz, am, d)) are made
to the variables posi, posi+d• sttj, sttz, symi,k> and symi,m> and for other
places a and (3 are equal to each other;

otherwise, A.(a)A.(f3)p(a, (3, T) = 0. Thus, for all a, (3 E {0, 1 }s(lxl),
A.(a)A.(f3)p(a,(3,T) = 1 if both a and (3 are legitimate and (3 is the con
figuration that results from a in one step of D and A.(a)A.(f3)p(a, (3, T) = 0
otherwise. For each variable y that is present in A., the degree of y in A. is
at most p(lxl) if y is a pos variable, at most M if it is a stt variable, and
at most N if it is a sym variable. On the other hand, the degree of each
variable in p is at most 1. So, the degree of each variable in R0 is at most
max{p(lxl), M, N} + 1. Since for every n ~ 0, p(n) ~ max{M, N}, the degree
of each variable in R0 is at most p(lxl) + 1. The set S has only polynomially
many elements. Thus, the expression for Ro can be computed in time poly
nomial in lxl. Now given Q ~ 2 and a,(3 E (ZQ)s(lxD, Ro(a,(3) mod Q can
be evaluated in time polynomial in lxl +log Q. This proves the proposition.

D Proposition 6.12
For each k E {1, ... , r(lxl)}, define the polynomial Rk(e, B) to be

E
1'tE{0,1}

Then it is easy to see that the following proposition holds.

Proposition 6.13

1. For every k E {0, ... , r(lxl)}, Rk has degree at most p(lxl) + 1 in each
variable.

2. For all k, 0 ~ k ~ r(lxl), and a,(3 E {0, 1}s(lxl>, Rk(a,(3) = 1 if both
a and (3 are legitimate and (3 is reachable from a by D on input x in
exactly 2k steps and Rk(a, (3) = 0 otherwise.

Now, let Cini E {0, 1 }s(lxl) be the initial configuration of D on input x
and Cfin E {0, 1 }s(lxl) be the unique accepting configuration of D on any
input of length lxl. Then

x E L <==:::} Rr(lxi)(Cini,Cfin) = 1.

We develop an interactive protocol for verifying that Rr(lxi)(Cini,Cfin)
1. To explain the protocol we need to define some notation. For each k E

{1, ... ,r(lxl)}, l E {1, ... ,s(lxl)}, a,(3 E zs(lxl), and 'Y = ("11, ... ,"fz-1) E
z!- 1 ' define

G[k,l,a,f3,"f](Y) = L
ez+tE{0,1} e•(lzi)E{0,1}

Rk-1(a,('Y1, ... ,"fl-1,y,el+1, ··· ,es(lxl)))

Rk-1(("11, · ·· ,"fl-1,y,el+1, ··· ,es(ixi)),(3),

130 6. The Polynomial Interpolation Technique

and for each k E {1, ... , r(lxl)}, l E {0, ... , s(lxl)}, a, (3 E z•<lxll, and
'Y = ('Y1, ... , 'Yz) E Z1, define

G'[k, l, a, (3, 'Y] = L L
el+l E{0,1} e•(l:oll E{0,1}

Rk-1(a, ('Y1, ... ,'""fz, e1+1, · · · , e•(lxl)))

Rk-1(('Y1, ··· ,'""fz.el+l! ··· ,es(lxl)),(3).

Then, by Proposition 6.13, we have the following result.

Proposition 6.14

1. For all k E {1, ... , r(lxl)}, l E {1, ... , s(lxl)}, a, (3 E z•<lxll, and 'Y E
z1- 1 , G[k, l, a, (3, 'Y](y) is a polynomial in y of degree at most 2p(lxl) + 2.

2. For all k E {1, ... ,r(lxl)}, l E {0, ... ,s(ixl) -1}, a,(3 E z•<lxll, and
'Y E Z1, G'[k, l, a, (3, 'Y] = G[k, l + 1, a, (3, 'Y](O) + G[k, l + 1, a, (3, 'Y](1).

3. For all k E {1, ... , r(lxl)}, l E {1, ... , s(lxl)}, a, (3 E z•<lxll, 'Y =
('Y1, ... ,'""fl-1) E Z1- 1, and 'YI E Z, G'[k,l,a,f3,'Y'] = G[k,l,a,f3,'Y]('Yz),
where 'Y1 = b1 , . . . , 'YI) .

4. For all k E {1, ... , r(lxl)} and a, (3 E z•<lxll, G'[k, 0, a, (3, t:] = Rk(a, (3),
where E denotes the empty string.

5. For every k E {1, ... , r(lxl)} and a, (3, 'Y E z•<lxll, G'[k, s(ixl), a, (3, 'Y] =
Rk-1(a, 'Y)Rk-1('Y, (3).

For each k, 1 $ k $ r(lxl), and a, (3, 'Y E z•<lxll, define

H[k, a, (3, 'Y](Y) = Rk-1(('Y- a)y +a, ((3- 'Y)Y + 'Y)).

Here ('Y - a)y + a is shorthand for

(('Y1- at)y + a1, · · · , bs(lxll- a•(lxi))Y + a•(lxl))

and ((3- 'Y)Y + 'Y is shorthand for

(({31- 'Y1)Y + 'Y1, .'. · 1 (f3s(lxl)- 'Ys(lxi))Y + 'Ys(lxl)),

where for each i, 1 $ i $ s(lxl), ai, f3i, and 'Yi are respectively the ith
component of a, the ith component of (3, and the ith component of 'Y· Then
we have the following result.

Proposition 6.15 For all k E {1, ... , r(lxl)}, and a, (3, 'Y E z•<lxll,

1. H[k, a, (3, 'Y](Y) is a polynomial in y of degree at most p(lxl) + 2,
2. H[k,a,{3,'""f](O) = Rk-1(a,'""f), and
3. H[k,a,f3,'Y](1) = Rk-1('Y,(3).

6.3 IP = PSPACE 131

This routine takes as input two integers M ~ 2 and t ~ 1 and outputs a number
in {0, ... , M - 1} under uniform distribution with a sampling error occurring
with probability less than or equal to 2-t.
Let f. be the smallest integer such that 2t ~ M. Repeat the following at most t
times.

(*) Use f. fair coin tosses to select an integer Y between 0 and 2t - 1. If Y ::; M,
then quit the loop and return Y.

If none of the trials are successful, then accept x.

Fig. 6.4 The sampling algorithm

Define the polynomial m by m(n) = r(n)(2p(n) + 2)(s(n) + 1) + 3. The
protocol uses the following sampling algorithm that, on input M and t, out
puts an integer between 0 and M -1 uniformly at random, where a sampling
error occurs with probability less than or equal to 2-t (the equality holds if
and only if M is a power of two).

It is not hard to see that the sampling algorithm works as desired. The
number l satisfies 2l-l < M ::; 2t. So, in a single execution of the loop body,
the probability that the number Y is greater than or equal to M is 0 if M
is a power of two and less than ~ otherwise. Since at most t rounds will be
executed to find an appropriate Y, the error probability is precisely 0 if M
is a power of two and less than 2-t otherwise. For each execution of the loop
body, and for each i, 0 ::; i ::; M - 1, the chances that the selection Y is equal
to i is precisely 2-l. So, the resulting distribution is uniform.

We can assume that the prover has a binary encoding of an integer Q E
[2m(lxl), 22m(lxl>] which is supposedly a prime number and a certificate of its
primality that can be verified in polynomial time. This assumption is valid.
By the Prime Number Theorem (Theorem 6.8), such a prime exists and the
following theorem, which we state without a proof, shows that every prime
has a polynomial-time verifiable certificate having polynomial length.

Theorem 6.16 The set of all prime numbers written in binary belongs
to NP.

Now we are ready to present the protocol in Fig. 6.5.
We claim that this protocol witnesses that L E IP. By definition m, r,

and s are all polynomials. So, the entire computation requires polynomially
many steps. The probability that the sampling algorithm fails is less than
2-m(lxl) since the parameter t is set to m(lxl). The total number of samples

generated is r(lxl)(s(lxl)+1). Since m(lxl) = r(lxl)(2p(lxl)+2)(s(lxl)+1)+3,
the probability that a sampling error occurs during the execution of the entire
protocol, regardless of whether x E L or not, is less than k·
Claim 6.17 The protocol is complete.

132 6. The Polynomial Interpolation Technique

Step 1 Obtain from the prover a prime number Q in the interval
(2m(lzl), 22m(lzll] and a short certificate of its primality. Set Vr(lzi),O = 1,
a= C,,..,, and f3 = Cjin·

Step 2 Repeat the following fork= r(lxl), ... , 1:
(a) Repeat the following for l = 1, ... , s(lxl):

(i) Obtain from the oracle a polynomial g E ZQ(Y] of degree at most
2p(lxl) + 2, which the oracle claims is G(k, l, a, {3, ')'1 · · · ')'1-I](y).

(ii) Test whether Vk,l-1 = g(O) + g(1) (mod Q). If the test fails, imme
diately reject x. Otherwise, proceed to the part (iii) of Step 2(a).

(iii) Randomly sample a number ')'I E ZQ by running the Sampling
Algorithm in Fig. 6.4 with M = Q and t = m(lxl). Set Vk,l =
g(-yz) mod Q.

(b) Let')'= -y1 • · · 'Ys(lzl)· Obtain from the oracle a polynomial hE ZQ(y] of
degree at most p(lxl) + 1, which the oracle claims is H[k, a, /3, -y](y) mod
Q. Test whether vk,s(lzl) = h(O)h(1) (mod Q). If the test fails, imme
diately reject x.

(c) Randomly sample a number p E ZQ by running the Sampling Algorithm
in Fig. 6.4 with M = Q and t = m(lxl). Set Vk-I,o = h(p) mod Q. Set a

to ('Y- a)p +a mod Q and f3 to ({3- -y)p +')'mod Q.
Step 3 Test whether vo,o = Ro (a, {3) (mod Q). If the test succeeds, accept x.

Otherwise, reject x.

Fig. 6.5 Interactive protocol for PSPACE

Proof of Claim 6.17 Suppose that x E L. Then Vr(lxl),o =
G'[r(lxl), 0, Cini, Cfin, €] = 1. By Proposition 6.14, for all k E {1, ... , r(lxl) },
l E {0, ... ,s(lxl) -1}, a.,(3 E (ZQ)s(lxll, and 'Y = ("11 , ... ,"(!) E (ZQ) 1, if
Vk,l = G'[k, l, a., (3, 'Y] (mod Q), the prover can provide a polynomial g E
ZQ[Y] such that Vk,l = g(O)+g(1) (mod Q) and such that, for all 'Y!+I E ZQ,
g('Yz+d = G'[k,l + 1,a.,f3,"f'] (mod Q), where "(1 = ("11 , •• • ,"fl+I)·

Furthermore, by Proposition 6.15, for all k E {1, ... , r(lxl) }, and a., (3, 'Y E
(ZQ)s(lxl), if Vk,s(lxl) = G'[k, s(lxl), a., (3, 'Y] (mod Q), then the prover can
provide a polynomial h E ZQ[Y] such that Vk,s(lxl) = h(O)h(1) (mod Q)
and such that, for all r E ZQ, h(r) = G'[k -1,0,a.',(3',€] (mod Q), where
a.'= ('Y- a.)r +a. mod Q and (3' = ((3- 'Y)r + 'Y mod Q.

By the above observations, there is a prover P such that the verifier
accepts x with probability one through interactions with P assuming that a
sampling error never occurs. Since the verifier accepts when a sampling error
occurs, the probability that the verifier accepts through interactions with P
is 1. Thus, the protocol is complete. 0 Claim 6.17

Claim 6.18 The protocol is sound.

Proof of Claim 6.18 Suppose that x fl. L. Then G'[r(lxl), 0, Cini,

C fin, €] = Rr(lxl) (Cini, C fin) = 0. So, Vr(lxi),O =/:- G'[r(lxl), 0, Cini, C fin, €].
By Proposition 6.14, for all k E {1, ... ,r(lxl)}, l E {0, ... ,s(lxl)- 1},

6.4 MIP = NEXP 133

a.,/3 E (ZQ)s(lxll, 'Y = ('YI. ... ,'Y!) E (ZQ)1, and all polynomials g(y) E
Z[y] of degree at most 2p(lxl) + 2, if vk,l ¢. G'[k, l, a., /3, 'Y] (mod Q) and
Vk,l = g(O) + g(1) (mod Q), then g(y) ¢. G[k, l, a., /3, "(](y) (mod Q), and
thus, by Lemma 6.2, there are at most 2p(lxl) + 2 values of 'YI+l such that
Vk,!+l = G'[k, l, a., /3, 7'] (mod Q), where "(1 = ("11 , · · · , 'YI+d· This implies
that for all k E {1, ... , r(lxl)}, l E {0, ... , s(lxl) - 1 }, a., f3 E (ZQ)s(lxl),
'Y = ("11, ... ,"fl) E (ZQ)1, and all polynomials g(y) E ZQ[Y] of degree
at most 2p(lxl) + 2, if vk,l ¢. G'[k, l, a., /3, 'Y] (mod Q) and g passes the
part (ii) of Step 2(a), then, for 'YI+l chosen uniformly at random in ZQ,
with probability at most 2P(I~)+4, Vk,l+l = G'[k, l, a., /3, 'Y'] (mod Q), where

'Y' = ('Yb ... ''YI+I)·
Furthermore, by Proposition 6.15, for all k E {1, ... , r(lxl)}, a., /3, 'Y E

(ZQ)s(lxl), and all polynomials h E ZQ[Y] of degree at most p(lxl) + 1, if
vk,s(lxl) ¢. G'[k, s(lxl), a., /3, 'Y] (mod Q) and vk,s(lxl) = h(O)h(1) (mod Q),
then h ¢. H[k, a., /3, "f]. Thus, for all k E {1, ... , r(lxl)}, a., /3, 'Y E (ZQ)s(lxl),
and all polynomials h E ZQ[Y] of degree at most p(lxl) + 1, if vk,s(lxl) ¢.
G'[k, s(lxl), a., /3, 'Y] (mod Q) and h passes the test in Step 2(b), then, for p
chosen uniformly at random in ZQ, with probability at most p(lxJ+2 , Vk-l,O =
G'[k - 1, 0, a.', /3', f] (mod Q), where a.' = ('Y - a.)p +a. mod Q and /3' =
(/3- 'Y)P + 'Y mod Q.

Finally, if v0 ,0 ¢. G'[O, 0, a., /3, f] (mod Q), then the verifier deterministi
cally rejects x in Step 3.

By the above observations, the probability that the verifier accepts x is at
most <2P(Ixl)+2)r~xl)(s(lxl)+l). Since m(n) = r(n)(2p(n) + 2)(s(n) + 1) + 3 and

Q ;:::: 2m(lxl), this is at most k. Thus, the probability that the verifier accepts
xis at most k + k = ~·Hence, the protocol is sound.

6.4 MIP = NEXP

D Claim 6.18
D Lemma 6.11

In this section we study the power of multiprover interactive proof systems.
We stipulate that the provers here do not talk among themselves; otherwise,
one prover could simulate all the other provers, and thus, the computational
power of the system is the same as that of PSPACE. We will show that there
is a big jump in the computational power when one extra prover is added to
the system. Namely, we will show in this section that the two-prover inter
active proof systems recognize precisely those languages in nondeterministic
exponential time. We also show that with more than two provers the verifier
can recognize all languages in nondeterministic exponential time.

Theorem 6.19 MIP = NEXP.

134 6. The Polynomial Interpolation Technique

6.4.1 Probabilistic Oracle Protocols and MIP ~ NEXP

In order to prove Theorem 6.19 we introduce the concept of probabilistic
oracle protocols.

Definition 6.20 A language L has a probabilistic oracle protocol if there
exists a probabilistic polynomial time-bounded omcle Turing machine M such
that, for every x E E*, the following conditions hold:

1. (Completeness) If x E L, then there exists some omcle H such that
M on input x relative to H accepts with probability greater than ~.

2. (Soundness) If x fl. L, then for every omcle H M on input x relative
to H accepts with probability less than ~.

The difference between the above definition and Definition 6.1 is that here
only one prover is involved and the unique prover behaves as an oracle.

Theorem 6.21 For every language L, L is in MIP if and only if L has a
probabilistic omcle protocol.

Proof For the "only-if" part, suppose that L is a language in MIP. Take a
verifier V witnessing L E MIP. Let k ~ 1 be the number of provers that V
communicates with. Without loss of generality, we may assume that provers
provide single-bit answers. By following an argument similar to the one we
had in the proof of Lemma 6.10 on page 123, we can assume that these provers
are deterministic.

We modify the queries of V. Let x be an input to the system. Suppose that
Vis about to make a query, say y. Let i, 1 :$ i :$ k, and j ~ 1 be such that the
query y that Vis about to make is to a query to Pi and Von input x has made
j -1 queries to H so far. Then we replace this query by (x, i,j, y, W), where x
is the input to the system and W is the history of communication between V
and Pi. More precisely, W = Y1#b1$Y2#b2$ · · · $y3-1#bj-l• where for each
i, 1 :$ i :$ j- 1, Yt is the fourth component (the y part) of the ith query of V
to Pi and bt is the answer that Pi provided to that query. This modification
makes the queries of V unique, in the sense that no queries are made twice.
This modification does not change the probability of acceptance since the
additional four pieces of information, i.e., x, i, j, and W, are already known
to the prover.

As the provers are deterministic and the queries are unique, we can turn
V into an oracle Turing machine N by replacing the provers with a single
oracle. Then for every x E E*, the largest probability that N on input x
accepts with any oracle is equal to the largest probability that Von input x
accepts with any set of k provers. So, the two conditions in Definition 6.20
hold. Thus, L has a probabilistic oracle protocol. This proves the "only-if"
part.

For the "if" part, suppose that there is a polynomial time-bounded prob
abilistic oracle Turing machine N witnessing that L has a probabilistic oracle

6.4 MIP = NEXP 135

Step 1 V executes the following lOp(lxl) times:
(a) V simulates Non input x using P1 as the oracle.
(b) V calls the Sampling Algorithm (in Fig. 6.4) with M = p(lxl) and t =

p(lxl) and uses it to select one query Yi that is made during this round
of simulation and asks Yi to P2.

Step 2 V accepts x if for all i, 1 ~ i::; lOp(lxl), the answer of P2 to Yi is equal
to that of P1 and the number of simulations of N on input x that accepted
is at least 5p(lxl). Otherwise, V rejects x.

Fig. 6.6 The two-prover protocol

protocol. We may assume that there is a polynomial p such that, for every
x E E*, N on input x always makes exactly p(lxl) queries. We may also
assume that the oracle provides single-bit answers. Let V be a verifier with
two provers, P 1 and P2, that, on input x, executes the algorithm in Fig. 6.6

6.4.1.1 Completeness of the Protocol. We claim that this is a complete
two-prover interactive proof system for L. Obviously, V is polynomial time
bounded. We need to show that the protocol is complete. and sound. We first
show that the protocol is complete. Let x be any member of L. The following
lemma, called Chebyshev's Inequality, which we state without a proof, is well
known and useful for our analysis.

Lemma 6.22 (Chebyshev's Inequality) Let X be a random variable
with expectation a: and variance a. Then for all 8 > 0

a
Pr[IX - a: I 2:: 8] ~ 82 .

Since x E L, there exists an oracle H relative to which N on input x
accepts with probability p > ~·Suppose that both P1 and P2 provide answers
as if they were H. Then the consistency tests between P1 and P2 all succeed.
So, the probability that V accepts is equal to the probability that more
than half of the simulations in Step 1 accept. Since the coin flips of V are
independent, the expectation a: of the number of accepting computations that
V finds is p(lOp) > ~ and the variance a of this number is p(l- p)(lOp) <
~.where pis shorthand for p(lxl). Then, by Lemma 6.22), the probability
that the number of accepting paths is less than or equal to 5p is less than or
equal to

This quantity is less than 230 < i for p(n) 2:: 2. As we can make the polynomial
p arbitrarily large, the probability of acceptance is greater than ~ for x.
Hence, the protocol is complete.

136 6. The Polynomial Interpolation Technique

6.4.1.2 Soundness of the Protocol. Next we prove that the protocol is
sound. Let x be an arbitrary member of L. Let n = lxl and m = 10p(n). We
need to show that, for every pair of provers (P1, P2), the probability that V
on input x accepts through interactions with P1 and P2 is strictly less than
~-The number of times that the sampling algorithm is executed is lOp(lxl).
The probability that the sampling algorithm fails is less than 2-P(Ixl). So, the
probability that a sampling error occurs during the execution of the entire
protocol is 1~;{~~jjl. This is at most 110 for p(n) 2::: 10.

We claim that a pair of deterministic provers (P1, P2) can achieve the
highest acceptance probability . To see why, note that we can assume that
the goal of (PI. P2) is to maximize the acceptance probability of V on input
x through interactions with them. Also, note that an additional role of P2
is correctly to guess the answer that P1 provided. Upon receiving a query,
P2 can use its unlimited computational power to calculate the probability
that P1 provided a 0 as an answer. Then P2 can maximize the probability
by answering with a 0 if the calculated probability is greater than or equal
to ~ and with a 1 otherwise. So, the strategy of P2 can be deterministic.
On the other hand, suppose that the very last query of V on input x is
given to P1. Having unlimited computational power and knowing the protocol
of P2, P1 can calculate the probability of acceptance of V on input x in
the case when it a,nswers with a 0 and the probability of acceptance of V
on input x when it answers with a 1. Call these probabilities, a 0 and a1.
respectively. To maximize the acceptance probability of V on input x, P1 can
deterministically select its answer as follows: answer with a 0 if a 0 ,2::: a 1 and
with a 1 otherwise. Thus, P 1 can answer the very last query deterministically
without decreasing the probability of acceptance of V. By repeating this
argument for the penultimate query, we can argue that P1 can answer that
query deterministically without decreasing the acceptance probability of V.
By repeating this argument over and over again, we can argue that P2 can
answer every query deterministically, without making it less likely that V
will accept.

Since P2 is deterministic and V makes only one query to P2 at each round,
for every i, 1 ~ i ~ m, the function of P2 at round i can be viewed as that
of an oracle. We can assume that at the beginning of each round, P1 decides
its strategy for that round. This selection determines the probability that P1
provides an answer that is different from that which P2 would provide. So,
the overall strategy of P1 can be parameterized using m real numbers in the
interval [0, 1]. For each a= (a1, · · · , am) E [0, 1]m, we say that P1 takes an
a-strategy if for all i, 1 ~ i ~ m, the strategy of P1 in round i is to provide
an answer different from what P2 would provide with probability ai. We will
show below that there exists some n0 > 0 such that, for all n 2::: no, and for
all a E [0, 1]m, the probability that V accepts x in the case when P1 takes
an a-strategy is strictly less than ~-

6.4 MIP = NEXP 137

Let a 1, · · · , am E [0, 1] m. Assume that P1 takes an a-strategy. Since
x ¢ L, for every oracle Q, the probability that N accepts x with Q as the
oracle is less than i· Thus, for every i, 1 :::; i :::; m, the probability that
the simulation of N on input x in round i through interactions with P1 is
accepting is strictly less than

mm 1 -+a· <-+a·. . { 1 } 1
'4 • -4 •

Thus, the expected number of accepting simulations that are generated is
less than !;f + L::1 <i<m ai. Also, the variance of the number of accepting

simulations that ar~ generated is less than L::l<i<m(i + ai)(~- ai) :::; !;f +
L::l<i<m ai. Now we claim that under the assumption(*), the probability that
V a~c~pts xis at most i· To prove the claim, first suppose that L::l<i<m ai :::;
94';;. Then, by Chebyshev's Inequality (Lemma 6.22), the probability that the
number of accepting simulations that are generated is at least ~ is less than

!;f + ~ - 7600 - 760
(~-!;f--94';;)2- m - p.

This is less than ~ for p(n) ;:::: 6081. Thus, the probability that V accepts x
when there is no sampling error is less than ~-

Next suppose that L::l<i<m ai > ~';;. Then, under the assumption (*),
the expected number of simufations in which P1 disagrees with P2 on at least
one query is 94';; while the variance of the number is less than 94';;. Then,
by Chebyshev's Inequality (Lemma 6.22), the probability that there are no
more than ~ = 2p(jxl) simulation rounds in which P1 disagrees with P2 is
less than

~ 3600 360

(9m _ .!!!:)2 =--;;- = p(jxl) ·
40 5

This is less than l6 for p(n) ;:::: 5761. Furthermore, if there are 2p(jxl) sim
ulation rounds in which P1 disagrees with P2, then the probability that the
disagreement is not discovered is at most

(1 __ 1_)2p(lxl)

p(jxl)

This is less than l6 for p(n) ;:::: 5761. Thus, for all n sufficiently large, the
probability that V accepts x when there is no sampling error is less than ~
Since a sampling error makes V accept and occurs with probability less than
~. the probability that V accepts x is less than i· Hence, the protocol is
sound. This proves the theorem. 0 Theorem 6.21

Now we turn to the proof of Theorem 6.19. We first show that every
language in MIP is indeed in NEXP.

Theorem 6.23 MIP ~ NEXP.

138 6. The Polynomial Interpolation Technique

Proof Let L E MIP. By Theorem 6.21, there is a polynomial time-bounded
probabilistic oracle Turing machine M satisfying the completeness and the
soundness conditions in Definition 6.20. Then, for every x E E*, x E L
if and only if there is an oracle relative to which M on input x accepts
with probability strictly greater than ~· Let p be a polynomial bounding
the runtime of M. Then for every x E E* the queries of M on input x
are of length at most p(ixi). Then, for every x E E*, x E L if and only if
there is some B ~ (E*)SP(Ixl) such that M on x relative to B accepts with
probability grater than ~· Without loss of generality, we may assume that
at each computational step, M has at most two possible moves and that all
possible moves that M can make are linearly ordered. Define N to be the
nondeterministic Turing machine that, on input x, executes the following:

• For each y E E* having length at most p(ixi) N guesses a bit b(y). N sets
B to the set of all strings y E E* having length at most p(ixi) such that
b(y) = 1.

• N sets count S to 0. Then, for each w E EP(Ixl), N does the following:
- N deterministically simulates M on input x with oracle B along path w

as follows: For each i, 1 :::;_ i :::;_ p(ixi), if there are two possible moves that
M on input x with oracle B can make at step i in the current simulation,
then N picks the move with the lower order if Wi = 0 and the one with
the higher order if wi = 1, where wi is the ith symbol of w.

-If M on input x with oracle B accepts along path w, then N increments
s by 1.

• N accepts x if S/2P(Ixl) > ~ and rejects otherwise.

It is easy to see that for every x E E*, N on input x accepts if and only if
there is some B ~ (E*)SP(Ixl) such that M on x relative to B accepts with
probability grater than ~· So, N decides L. The runtime of N is 2cp(n) for
some constant c > 0. Thus, L E NEXP. 0

6.4.2 NEXP ~ MIP

The rest of the section proves the other inclusion:

Theorem 6.24 NEXP ~ MIP.

Let L be a language in NEXP and let N L be a one-tape NEXP machine
that decides L. By Theorem 6.21, we have only to show that there is a
probabilistic polynomial time-bounded oracle Turing machine M witnessing
that L has a probabilistic oracle protocol. Our proof is in three phases:

Phase 1 conversion of the membership question in L into a logical expres
sion;

Phase 2 conversion of the logical expression into an arithmetic expression;
and

Phase 3 development of an interactive oracle protocol for verifying the
value of the arithmetic expression.

6.4 MIP = NEXP 139

6.4.2.1 Encoding Membership Questions. In the first phase we convert
the membership questions in L to logical expressions. By the tableau method,
there is a polynorp.ial p such that, for every x E E*, there is a 3CNF formula
'Px of 2P(Ixl) variables such that x E L if and only if 'Px is satisfiable. For a
variable X, we write X = 1 to denote the literal X and x = 0 to denote the
literal X. Then, we can assume that each clause in 'Px is of the form

for some n 1 , n2, n3 E {0, ... , 2P(Ixl)- 1} and some b1 , b2, b3 E {0, 1}. For
each x E E*, let the binary strings of length p(lxi) encode the numbers in
{0, ... ,2p(lxl) -1}. Define the polynomial p' by: p'(n) = 3p(n) + 3. Then,
for every x E E*, the set of all p'(lxi)-bit binary strings y = n 1n2n3b1b2b3
is isomorphic to the set of all clauses that potentially appear in 'Px. There
are exponentially many clauses in Cf'x, so no polynomial-time algorithm can
compute the entire description of 'Px· However, a polynomial-time algorithm
can check, given x E E* and a potential clause y, whether y actually appears
in Cf'x· Define

B = {x#y I x E E* 1\ y E EP'(Ixl) 1\ y appears in cpz}.

Then B E P. Furthermore, for every x E E*, x E L if and only if

($) there is an assignment A such that, for every potential clause y =
n1n2n3b1b2b3, if y is actually a clause in Cf'x, then A satisfies y.

By viewing A as a mapping from {0, 1 }P(Ixl) to {0, 1 }, ($) can be rewritten
as

(:JA : {0, 1 }P(Ixl) --.. {0, 1})
(Vy = n1n2n3b1b2b3 E {0, 1}P'(Ixl))
[x#y E B ===?

(A(n1) = b1) V (A(n2) = b2) V (A(n3) = b3)]].

(6.2)

Noting that B E P, consider a nondeterministic polynomial time-bounded
machine N B that, on input x E E*, guesses a clause y, and then accepts if and
only if x#y E B. Since for all x, x', y, y' E E*, if lxl = lx'l and IYI = IY'I, then
lx#yl = lx'#y'l, by applying the tableau method to NB and by adding some
dummy variables and some dummy clauses, we obtain in polynomial time,
for each x E E*, a generic 3CNF formula (x with the following properties:

• There is a polynomial q depending only on L such that (x has p'(ixi)+q(lxi)
variables.

• There is a polynomial m depending only on L such that (x has m(lxi)
clauses C1, ... ,Cm(lxD·

• For every y E EP'(Ixl), x#y E B if and only if there is a satisfying assign
ment a of (x such that y is the length p'(lxl) prefix of a.

140 6. The Polynomial Interpolation Technique

Then we can rewrite equation 6.2 as

(3A: {0, 1}P(Ixl)- {0, 1})
(Vy = n1n2n2b1b2b3 E {0, 1}P'(IxD) (Vz E {0, 1}q(lxl}) (6.3)
[(x(yz) ==} [(A(nl) = bl)V(A(n2) = b2)V(A(n3) = b3)]].

The condition inside the outer brackets [] of the formula, i.e.,

is equivalent to

and thus, is equivalent to

-.Cl(yz) V .. · V -.Cm(lxl)(yz)V
(A(n 1) = bl) V (A(n2) = b2) V (A(n3) = b3).

(6.4)

Define p"(n) = p'(n) + q(n). Then equation 6.3 is equivalent to

(3A: {0, 1}P(Ixl) - {0, 1})(Vw E {0, 1}P"(IxD)[Z(A; w) = 1], (6.5)

where

Z(A,w) = [-.Cl(w) V .. · V -.Cm(lxl)(w)V

(A(n 1) = bl) V (A(n2) = b2) V (A(n3) = b3)]

and w is of the form n 1n2n3b1b2b3z such that ln1l = ln2l = ln31 = p(lxl),
b1,b2,b3 E {0,1}, and lzl =q(lxl).

6.4.2.2 Converting the Logical Expression to Arithmetic Expres
sions. In the second phase we obtain an arithmetic expression of equa-:
tion 6.5. For simplicity, in the following discussion we fix a string x whose
membership in L we are testing. Let m = m(lxl), p = p(lxl), andp" = p"(lxl).

To construct our arithmetic form, we first replace equation 6.4 by

Here

f31 = (A(6, ... ,€p) -6pH)2,

f32 = (A(€P+l• ··· ,6p) -6p+2)2,

f33 = (A(6p+l, ... , 6p) - 6p+3)2,

and, for each i, 1 SiS m,

Cl!i = (€k;,l- Ci,l)2 + (€k,, 2 - Ci,2) 2 + (€k;, 3 - Ci,3)2,

(6.6)

where Ci(yz) = (€k,, 1 = (1- Ci,l)) V (€k,, 2 = (1- Ci,2)) V (€k,, 3 = (1- Ci,3)).
Then, for every A: {0, 1}P- {0, 1}, the following conditions hold:

• If A is a polynomial of total degree at most d, then fx is a polynomial of
total degree at most 6d + 2m.

6.4 MIP = NEXP 141

• For every at, ... , ap11 E {0, 1}P11
, 0 $ f,(A; a1, ... , ap11) $3m.

• f,(A; at, ... , ap11) = 0 if and only if equation 6.4 holds.

Then, for every A: {0, 1}P---+ {0, 1},

(Vw E {0, 1}p11 (1xi))[Z(A;w) = 1]

if and only if

(V(a1, · · · ap11) E {0, 1}P11
) [fx(A; at, ... , ap11) =OJ. (6.7)

To determine whether x E L we test whether there exists a function A :
{0, 1}P---+ {0, 1} for which equation 6.7 holds.

Let F be a field. Suppose that A is obtained from some B : FP ---+ F by
restricting its domain to {0, 1}P. Then, x E L if and only if there exists some
B : FP ---+ F that satisfies the following two conditions:

• For every (a1, ... ,ap) E {0, 1}P, B(at, ... ,ap) E {0, 1}.
• For every (a1, ... , ap11) E {0, 1}P11

, f,(B; at, ... , ap11) = 0.

What field F and what kind of function B satisfy these conditions in the case
when x E L? The following fact shows that a polynomial of total degree at
most pis sufficient.

Fact 6.25 Let Q be an arbitrary prime number greater tharJ, 3m. Then x E L
if and only if there exists a B : Z~ ---+ Zq such that

1. B is a polynomial of total degree at most p,
2. for every (a 1. . . . , ap) E { 0, 1 }P, B (a 1, . . . , ap) mod Q E { 0, 1}, and
3. for every (at, ... , ap11) E {0, 1}P11

, f,(B; a1, ... , ap11) = 0 (mod Q).

Proof of Fact 6.25 Suppose that there exists an oracle A that satisfies
equation 6.7. Define a multivariate polynomial B by:

where t'o(~) = 1 - ~ and £1(~) = ~· Then B is a multilinear polynomial in
6, ... , ~P' i.e., a polynomial that is linear in each of the variables ~1 , ... , ~p·
This implies that B is a polynomial of total degree at most p. Thus, prop
erty 1 holds. For all c = (c1, ... ,cp) and a= (a1, ... ,ap) E {0,1}P,
TI1::;i:=;p t'c; (ai) is equal to 1 if c = a and is equal to 0 otherwise. Then,
for every (at, ... , ap) E {0, 1}P, A(a1, ... , ap) = B(a1 , ... , ap)· Since the
values of A are restricted to 0 and 1, property 2 holds. This implies that for

(
II

every at, ... ,ap11) E {0,1}P, f,(B;a 1, ... ,ap11) E {0,1} andthatforevery
(

II

at, ... , ap11) E {0, 1}P , f,(B; at, ... , ap11) = 0 {::::=} f,(B; at, ... , ap11) =
0 (mod Q). Thus, property 3 holds.

On the other hand, suppose that there is a polynomial B of total degree
at most p that satisfies properties 1, 2, and 3. Let B' denote the function

142 6. The Polynomial Interpolation Technique

constructed from 13 by restricting its domain to {0, 1}P and by taking modulo
Q of the value. By property 2, we can treat 13' as if its values were restricted
to 0 and 1. Recall that for every oracle A, and every (a 1 , ••• , ap") E {0, 1 }P",

0 ~ fx(A; a1, ... ,ap") ~3m.

Since Q >3m, for every (a1, ... ,ap") E {0,1}P", fx(l3'; a1, ... ,ap") = 0
if and only if fx(l3'; a1, ... ,ap") = 0 (mod Q). Thus, equation 6.7 holds.
This implies that x E L. 0 Fact 6.25

6.4.2.3 Developing the Probabilistic Oracle Protocol. Now we de
velop a probabilistic oracle Turing machine M that tests the membership of
x in L based on Fact 6.25.

We assume that the part of the oracle providing information about the
membership of x in L has a binary encoding of an integer Q E [22m, 24m],
which is supposedly a prime number, and a certificate of its primality that can
be verified in polynomial time. This assumption is valid. See the discussion
in the proof of Lemma 6.11 on page 131.

We also assume that the _part of the oracle corresponding to x has infor
mation about the function 13 : Z~ -+ ZQ, which the oracle claims has the
properties in the statement of Fact 6.25.

We define a family of polynomials 13o, ... , 13P. Define for all 6, ... , eP E

ZQ, 13o: Z~-+ ZQ by

For each i, 1 ~ i ~ p, define

13i(6, ... , ep) =

13i-1(6, ...• ei-1,o,ei+1• ...• ep)
+13i-1(6, ...• ei-1,1,ei+1· ... • ep)ei·

The functions B, 13o, ... , 13p have the following properties.

Fact 6.26

(6.8)

(6.9)

1. If f3 is a polynomial of total degree at most p, then, for every i, 0 ~ i ~ p,
13i is a polynomial of total degree at most 2p + i.

2. For every i, 0 ~ i ~ p,

13i(6, ... ,ep)= L 13o(c1,····Ci,ei+1·····ep) 11 er
Ct, ... ,ciE{0,1} 1ji

3. If for all (6' ... 'ep) E {0, 1 }P it holds that B(6' ... 'ep) = 0 (mod Q) I
then, for all (6, ... ,ep) E Z~, 13P::: 0 (mod Q).

Proof If f3 is a polynomial of total degree p, then 13o is a polynomial of
total degree 2p, For every i, 1 ~ i ~ p, if 13i-1 is a polynomial of total degree

6.4 MIP = NEXP 143

at most 2p + i - 1, then Bi is a polynomial of total degree at most 2p + i. So,
part 1 holds.

We prove part 2 by induction on i. For the base case, the equality trivially
holds. For the induction step, suppose that i = io for some 1 :::; i0 :::; p and
that the claim holds for all values of that are greater than or equal to 0 and
less than or equal to i0 - 1. By the induction hypothesis,

Bi-1(6, ... ,ev) =

L Bo(c1, ... ,ci-1,ei, ... ,ep) II e?,
1~j~i-1

and by definition

Bi(6, ... ,ev) = Bi-1(6, ... ,ei-1,o,ei+1• ... ,ev)
+ Bi-1(6, ... ,ei-1, 1,ei+1, ... ,ev)ei·

By combining the two equalities, we have

Bi(6, ... ,ev)

L Bo(c1, ... ,Ci-1,o,ei+1, ... ,ep) II e?
Ct, ... ,Ci-tE{0,1} 1~j:5i-1

+
Ct. ... ,Ci-tE{0,1} 1~j~i-1

= L Bo(c1, ... ,ci,ei+1, ... ,ep) II e?.
c1, ... ,ciE{0,1} 1~j~i

Thus, part 2 holds.
To prove part 3, note that

Bv =

If for all (6, ... ,ev) E {0, l}P it holds that B0(6, ... ,ev) = 0 (mod Q),
then for all (c1, ... , ep) E {0, 1}P B(c1, ... , ep) = 0 (mod Q). This implies
that Bv = 0 (mod Q). 0

We define a family of polynomials Co, . . . , Cp". Let Co
fx(B; a~, ... , ap"). For each i, 1 :::; i:::; p", define

ci(6, ... ,ev") =
ci-1(x1, ... ,xi-1,o,ei+1, ... ,ev") (6.10)
+Ci-1(x1, ... ,xi_~,1,ei+b ... ,ev")ei·

The functions C0, ... , Cp" have the following properties.

Fact 6.27

1. If B is a polynomial of total degree at most p, then for every i, 0 :::; i :::; p",
ci is a polynomial of total degree at most (6p +2m)+ i.

144 6. The Polynomial Interpolation Technique

2. For every i, 1 ~ i ~ p",

c,, ... ,c;E{O,l} l~j~i

3. If for all (6, ... ,ep") E {0,1}P" it holds that Co(6, ... ,ep") 0

(mod Q), then, for all (6, ... ,ep") E z~', Cp" =: 0 (mod Q).

Proof Suppose that B is a polynomial of total degree at most p. Then Co
is a polynomial of total degree at most 6p +2m. For every i, 1 ~ i ~ p", and
every d ::::: 1, if ci-1 is a polynomial of total degree at most d, then ci is a
polynomial of total degree at most d + 1. Thus, part 1 holds.

Parts 2 and 3 can be proven exactly the same way as we proved the
corresponding parts of Fact 6.26. D

We assume that the oracle has functions Q, go, ... , gp, 1io, ... , 1ip"

which the oracle claims and B, Bo, ... , Bp, Co, ... , Cp", respectively, and that
the oracle tries to convince M that both gp and 1ip" are zero functions mod
ulo Q. To test the claim by the oracle, the machine M executes a sequence of
protocols. The following conditions are tested by the sequence of protocols.

(A) Q is a polynomial of total degree at most p.
(B) For each i, 0 ~ i ~ p, gi is a polynomial of total degree at most 2p + i.
(C) For each i, 0 ~ i ~ p", 1ii is a polynomial of total degree at most

6p+2m+i.
(D) Equation 6.8 holds with go and Q in place of Bo and B, respectively.
(E) For each i, 1 ~ i ~ p, equation 6.9 holds with gi and gi-l in place of Bi

and Bi-1, respectively.
(F) For each i, 1 ~ i ~ p", equation 6.10 holds with 1ii and 1ii-l in place

of Ci and Ci-1• respectively.
(G) 1io = fx(Qo; k,6, ... ,ep"-1) (mod Q).
(H) gP = 0 (mod Q).
(I) 1ip" = 0 (mod Q).

The machine M executes the following to test these conditions.

• To test (A), M executes the Low-Degree Test in Fig. 6.7 with s = p,

d = p, and U = Q.
• To test (B), for each i, 0 ~ i ~ p, M executes the Low-Degree Test in

Fig. 6.7 with s = p, d = 2p + i, and U = gi·
• To test (C), for each i, 0 ~ i ~ p", M executes the Low-Degree Test in

Fig. 6.7 with s = p", d = 6p +2m+ i, and U = 1ii·
• To test (D), M executes the G-Equality Test in Fig. 6.8.
• To test (E), for each i, 1 ~ i ~ p, M executes the Self-Correcting

Polynomial Equality Test in Fig. 6.9 with s = p, d = p+i-1, U =gi-l,

and V = gi·

6.4 MIP = NEXP 145

• To test (F), for each i, 1 ~ i ~ p", M executes the Self-Correcting
Polynomial Equality Test in Fig. 6.9 with s = p", d = 6p +2m+ i - 1,
U = ?-li-1, and V = ?-li·

• To test (G), M executes the 'Ho-lm Equality Test in Fig. 6.10.
• To test (H), M executes the Zero Polynomial Test in Fig. 6.11 with

s = p and U = gp·
• To test (I), M executes the Zero Polynomial Test in Fig. 6.11 with

s = p" and U = ?-lp"·

If all the tests succeed, M accepts x.
We will now prove that M witnesses that L E NEXP by proving that

M can be polynomial time-bounded, that the protocol is complete (i.e., if
x E L, M accepts with probability more than ~), and that the protocol is
sound (i.e., if x fl. L, M rejects with probability more than ~).

6.4.2.4 Running-Time Analysis of the Protocol. Since Q ~ 24m, the
sampling algorithm runs in time polynomial in lxl. Let g(s, d)= 8s(d + 2) 2 .

For a single run of the Low-Degree Test with parameters sand d, 8s(d + 2)2

samples are used. Then, the number of samples used to test (A) is 8p(p+2)2 =
O(p3), the total number of samples used to test (B) is

L (8p(d + 2)2) = O(p4),

2p~d9p

and the total number of samples used to test (C) is

L 8p"(d + 2)2 = O((p + m + p")4).

6p+2m~d~6p+2m+p"

For the G-Equality Test, the number of samples used is p. For a single run of
the Self-Correcting Polynomial Equality Test with parameters s and d, the
number of samples used is s + d + 1. Then, the total number of samples used
to test (E) is

L (p+d+1)=0(p2),

p~d9p

and the total number of samples used to test (F) is

L (p" + d + 1) = O((p + m + p")2).

6p+2m~d~6p+2m+p''

The numbers of samples used to test (G), (H), and (I) are p", p, and p",
respectively. Thus, the grand total of the number of samples used is 0((p+m+
p")4). This is O(nk) for some fixed constant k 2:: 1. All the other arithmetic
operations required in the protocol can be done in polynomial time. Thus,
M can be polynomial time bounded.

146 6. The Polynomial Interpolation Technique

Repeat the following 6(d + 2) 2 times.

Step 1 Select y, z E (Zq)• independently and uniformly at random. To select
an entry use the Sampling Algorithm in Fig. 6.4 with M = Q and t = p.

Step 2 For each i, 0 ~ i ~ d + 1, obtain from the oracle the value of U (y + iz).
Step 3 Test whether Eo<i<d+l Old,iU(y + iz) = 0 (mod Q), where for every

d;::: 0 and every i, 0 ~ i :5_ d + 1, Old,i = (-1)i+l (~).
If the test fails then immediately reject the input x.

Fig. 6. 7 The low-degree test

Step 1 Using the sampling algorithm select Yl, ... ,yp from Zq.
Step 2 Use the oracle to obtain u = Q(y1, ... ,yp) and v = 9o(Yl, ... ,yp)·
Step 3 Test whether u(1 - u) = v (mod Q). If the test fails, then reject x

immediately.

Fig. 6.8 The G-equality test

Step 1 Use the sampling algorithm to select YI, ... ,y.,zo, ... ,zd from Zq.
Step 2 Test whether zo, ... , Zd are pairwise distinct. If the test fails then accept

X.

Step 3 Set w to (y1, ... ,y.) and for each j, 0 ~ j ~ d, set Wj tow with the
ith entry replaced by Zj. Obtain from the oracle ii. = V(w) and for each i,
0 ~ i ~ d, Ui = U(wi).

Step 4 Set A to the (d + 1) x (d + 1) matrix

1 Z1 z1 · · · z1 (1zoz~ .. ·z1)
A=

• 0 • 0 •
1 Zd z~ · · · z;

Use some polynomial-time algorithm (e.g., Gaussian elimination) to compute
A-1.

Step 5 Compute eo, ... , cd by

and set t(0) to the polynomial eo + c1 (} + · · · + cd(}d.

Step 6 Compute Vo as t(O) mod Q and v1 as t(1) mod Q. Test whether vo +
VIYi = ii. (mod Q). If the test fails then reject x immediately.

Fig. 6.9 The self-correcting polynomial equality test

6.4 MIP = NEXP 147

Step 1 Using the sampling algorithm select Yb ... ,yP" from ZQ.
Step 2 Use the oracle to obtain uo = 'Ho(YI, ... ,Yp"), u1 = Q(y1, ... ,yp),

u2 = Q(Yp+I, ... , Y2p), and U3 = Q(y2p+I, ... , Y3p).
Step 3 Evaluate f1 1<i<m a;(YI, ... , Yp") modulo Q, where O!i is the polynomial

appearing in the definition of f,.
Step 4 Test whether uo = (ui-Y3p+I)2(u2-Y3p+2)2(u3-Y3p+3)2u4 (mod Q).

If the test fails then reject x immediately.

Fig. 6.10 The 'Ho-f, equality test

Step 1 Use the sampling algorithm to select y E (ZQ)".
Step 2 Obtain from the oracle u = U(y). If u '/:. 0 (mod Q) reject x immedi

ately.

Fig. 6.11 The zero polynomial test

6.4.2.5 Completeness of the Protocol. Next we show that the proto
col is complete. Suppose that x E L. Then there exists some polynomial
B of total degree at most p that satisfies all the conditions in Fact 6.25.
Take the oracle functions Q, 9o, ... , 9p, 'Ho, ... , 'Hp" that are equal to

B,Bo, ... ,Bp,Co, ... ,CP"• respectively. Then, by Facts 6.26 and 6.27, the
oracle functions satisfy the following conditions:

• Bo(6, ... ,ep) = B;;(el, ... ,ep)(1- B;;(el, ... ,ep)).
• For every i, 1 $ i $ p,

ai(el, ... • ep) =

9i-l(xl, ... ,xi-l,o,ei+l, ... ,ep)

+ ai-l(xl, ... ,xi-1, 1,ei+1, ... ,ep)ei·

• For every i, 0 $ i $ p, Qi is a polynomial of total degree at most 2p + i.
• For all (el, ... ,ep) E z~, 9p(el, ... ,ep) = o (mod Q).
• For every i, 1 $ i $ p",

'Hi (6 , . . . , ep") =

'Hi-l(xl, ... ,xi-l,o,ei+l, ... ,ep")

+'Hi-l(xl, ... ,xi-1,1,ei+1, ... ,ep")ei·

• 'Ho(XI, .. · ,ep") = fx(B; e1, ... ,ep")·
• For every i, 0 $ i $ p", 'Hi is a polynomial of total degree at most 6p +

6m+i.
• For all (6, ... ,e;) E z~', 'Hp"(el, ... ,ep) = o (mod Q).

Since the protocol is designed to accept on encountering a sampling error
and we need to prove here that the probability that M accepts is greater

148 6. The Polynomial Interpolation Technique

than ~' we can assume that there is no sampling error. We claim that with
probability one all the tests e\ther succeed or force M to stop computation
instantly by accepting x. Clearly, the Zero Polynomial Test succeeds with
probability one for both QP and 'Hp". The Low-Degree Test succeeds, too
(again, given that there is no sampling error), which follows from the lemma
below. We will give its proof in Sect. 6.4.3.

Lemma 6.28 (The Low-Degree Polynomial Characterization
Lemma) Let d, s be positive integers. Let F = 7lR for some prime number
R. For every function h : ps ~ F, h is a polynomial of total degree at most
d if and only if for all y, z E F 8 , it holds that

I: "fih(y + iz) = 0 (mod R),
O~i~d+1

where for every i, 0 $ i $ d + 1, 'Yi = (dt1) (-1)i.

Lemma 6.28 assures that the Low-Degree Test succeeds with probability
one for 9o, ... , QP, 'Ho, ... , 'Hp"· Both the G-Equality Test and the 'Ho- fx
Equality Test pass with probability one.

Furthermore, we claim that the Self-Correcting Polynomial Equality Test
succeeds with probability one each time it is called. To prove the claim,
suppose that the test is called for i, 1 $ i $ p, s = p, d = 2p + i - 1,
U = 9i-1, and V = Qi· Let Y1, ... , Yp, zo, ... , Zd E ZQ· If zo, ... , Zd are not
pairwise distinct, then M accepts, so suppose that they are pairwise distinct.
Let

g(O) =
U(y1, ... ,Yi-1,0,Yi+1• ... ,yp)+U(y1, ... ,Yi-1,1,Yi+1• ... ,yp)O

and
t(O) = U(y1, ... , Yi-1, t, Yi+1• ... , Yp)·

Since U is a polynomial of total degree at most d = 2p + i - 1, t is a
polynomial in (} of degree at most d. Then there exist unique c0 , ... , Cd E

7lQ such that t(O) = L,0~j~dcJ(}J. For each j, 0 $ j $ d, let Wj =

(y1, ... , Yi-1, Zj, Yi+1• ... , Yp) and Uj = U(wj)· Let c = (co, ... , cd)T and
u = (uo, ... , ud)T. Let A be the matrix specified in the protocol, namely,

(1ZoZ~···Z~) 1 z1 z 1 · · · z 1
A=

1 Zd ZJ · · · Z~

This type of matrix is called a Vandermonde Matrix. The following proposi
tion, which we state without a proof, shows that the determinant of a Van
dermonde matrix has a simple formula.

6.4 MIP = NEXP 149

Proposition 6.29 Let d 2': 2. Let A be a Vandermonde matrix of dimension
d, i.e., for some a1, ... , ad, A is of the form

(

1 a1 a~ · · · at-1)
1 2 d-1

a2 a2 ... a2

.
1 2 d-1 ad ad ... ad

Then the determinant of A is fi 1~i<J~d(ai- aJ)·

By Proposition 6.29, the determinant of A is fio~i<J~d(zi - ZJ)· Since
z0 , ... , zd are pairwise distinct and ZQ is a field, the determinant of A is
nonzero, so A is nonsingular. Thus, A-1 exists, and so we can set c = A-1u.
For all() E ZQ, U(y1, ... ,Yi-1,0,yi+l, ... ,yp) = t(O). Thus, for all() E ZQ,
g(O) = t(O) + t(1)0. In particular, g(yi) = t(O) + t(1)Yi· By our assumption,
g(yi) = V(y1 , ... , Yp)· The right-hand side is u of the protocol. Since the
protocol accepts if and only if u = t(O) + t(1)Yi (mod Q), the probability
that the test succeeds is 1.

By following a similar argument, we can show that the protocol accepts
when the test is called fori, 1 :S i :S p", s = p, d = 6p+2m+i -1, U = 'H.i- 1 ,

and V = 'H.i·
Hence, the probability that M accepts xis one. This proves the complete

ness of the protocol.

6.4.2.6 Soundness of the Protocol. Next we show that the protocol is
sound. Suppose that x ¢ L. A sampling error occurs in a single run of the
sampling algorithm with probability less than 2-P. Since the total number of
samples generated in the entire protocol is 0((p + m + p")4), the probability
that a sampling error occurs during the execution of the entire protocol is

0 cp+p;p+m)4).

This is less than k for all x sufficiently large. That is, the probability that M
accepts x due to a sampling error is less than k· We will show that for every
oracle the probability that M accepts x, provided that no sampling error
occurs, is less than k· Then for every oracle the probability that M accepts x
is less than k + k = ~ as desired. For simplicity, in the following discussion,

assume that no sampling error occurs. Let Q, Q0 , ... , QP : (ZQ)P --+ ZQ,
'H.o, ... , 'H.p" : (ZQ)P" --+ ZQ be the oracle functions. We analyze the tests
that M conducts.

6.4.2.6.1 The Low-Degree Test. To analyze the Low-Degree Test, we need to
define the concept of closeness.

Definition 6.30 Let s 2': 1 be an integer. Let f, g : (ZQ)8 --+ ZQ be func
tions. Let 0 :S € :S 1. Then f and g are said to be €-close if the proportion of
x E ZQ such that f(x) =f. g(x) is at most €.

150 6. The Polynomial Interpolation Technique

Then we have the following lemma.

Lemma 6.31 (The Low-Degree Polynomial Closeness Lemma) Let
s, d ~ 1 be integers. Let 8 = 2(d!2}2. Let f be a function from (ZQ)8 to ZQ.
Suppose that f is not 28-close to any polynomial of total degree at most d.
Then f survives the Low-Degree Test with probability less than ~.

The proof of Lemma 6.31 is long; we defer its proof to Sect. 6.4.4. For
now, assume that the lemma is correct.

Let d = p and J = 2(p!2)2 . For each i, 0 ~ i ~ p, let di = 2p + i
and 8i = 2(2p;i+2P . Also, for each i, 0 ~ i ~ p", let d~ = 6p + 2m + i and

8~ = 2 (6P+2~+i+2) 2 . Then, by calling the Low-Degree Test, M checks whether
the following conditions are all satisfied:

• 9 is J-close to a polynomial of total degree at most d.
• For all i, 0 ~ i ~ p, Qi is 8i-close to a polynomial of total degree at most

di.
• For all i, 0 ~ i ~ p11 , 1-li is 8~-close to a polynomial of total degree at most

d~.

Then, by Lemma 6.31, if one of these conditions is not satisfied, M on input
x rejects with probability more than ~- So, in the following discussion, let us
assume that these conditions are all satisfied, i.e.,

(*) 9 is J-close to a polynomial g of total degree at most d;
for each i, 0 ~ i ~ p, there is a polynomial gi of total degree at most di
that is 8i-close to Qi; and
for each i, 0 ~ i ~ p11 , there is a polynomial hi of total degree at most d~
that is 8~-close to 1-li.

The polynomials go, ... , gp, ho, ... , hp" are uniquely determined, due to the
following lemma.

Lemma 6.32 Let d, s ~ 1 be integers. Let F be a finite field and let N =
IIFII· Let u : ps --+ F be a nonzero polynomial of total degree at most d. Then
the proportion of y E ps for which u(y) = 0 is at most*·

Proof of Lemma 6.32 Let d, s, F, N, and u be as in the hypothesis. Let
T be the roots of u in ps, i.e., T = {y E ps I u(y) = 0}. To prove the lemma,
it suffices to show that the cardinality of T is at most dN8 - 1• We prove
this by induction on s. For the base case, suppose that s = 1. Then u is a
univariate polynomial of degree at most d. u has at most d distinct roots, so
IITII ~ d = dN8 - 1 as desired. Thus, the claim holds for s = 1.

For the induction step, suppose that s = s0 for some s0 ~ 2 and that the
claim holds for all values of s that are less than s0 and greater than or equal
to 1. For some e, 0 ~ e ~ d, u can be written as

6.4 MIP = NEXP 151

L Vi(6, ... 'es)eL
O~i~e

where for every i, 0 ~ i ~ e, Vi is a polynomial in 6, ... , es of total degree at
most (d-i), and Ve is not the zero polynomial. Then, for ally= (y1, ... , Ys) E
ps, y is a root of u if and only if one of the following conditions (i) and (ii)
holds:

(i) (y2, ... , Ys) is a root of each of vo, ... , Ve.

(ii) For some i, 0 ~ i ~ e, (y2, ... , Yp) is not a root of vi, and y1 is a root of
the nonzero univariate polynomial

L vi(Y2, ... ,ys)et.
09~e

By our induction hypothesis, the number of y for which (i) holds is at most
((d- e)N8 - 2)N = (d- e)N8 - 1 and the number of y for which (ii) holds is
at most (N8 - 1)e. Thus, the total number of roots of u is at most dN8 - 1 as
desired. This proves the lemma. 0 Lemma 6.32

Now, the reason that the polynomials g, go, ... , gp and ho, ... , hp" are
unique can be explained as follows: Let u and v be two distinct polynomials of
total degree d. Suppose that both u and v are p-close to a function f : ps --+

F, where F is a field of size N. Let w = u-v. Since u =f. v, w =f. 0. Since u and
v are p-close to f, u is 2p-close to v. So, the proportion of y E ps such that
w(y) = 0 is at least 1 - 2p. By Lemma 6.32, the proportion of y E ps such
that w(y) = 0 is at most tJ. This implies lft ~ 1- 2p, i.e., tJ + 2p ~ 1. We
claim that this inequality holds for none of g, go, ... , gp, ho, ... , hp". Since
N = Q > 2m, the largest value of d is 6p + 2m + p", and the largest value of

· 1 d th d + 2 · t t 6P+2m+p" + 1 Th" · 1 th p 1s 2(P+2)2 , an us, N p 1s a mos 2m (p+2)2 • 1s 1s ess an
1 for all x sufficiently large. Hence, g, go, ... , gp, ho, ... , hp" are uniquely
defined.

Now that each of Q, 9o, ... , QP, 1io, ... , 1ip" is close to a polynomial,
we think of the other test as checking the properties (D) through (I) with
each of these polynomial replacing its corresponding oracle function, i.e., (D)
through (I) are modified as follows:

(D') Equation 6.8 holds with g0 and g in place of 8 0 and B, respectively.
(E') For each i, 1 ~ i ~ p, equation 6.9 holds for gi and gi-1 in place of Bi

and Bi-1, respectively.
(F') For each i, 1 ~ i ~ p", equation 6.10 holds for hi and hi-1 in place of

Ci and Ci-1> respectively.
(G') ho = fx(go; k, 6, ... ,ep"-1) (mod Q).
(H') gp = 0 (mod Q).
(I') hp" = 0 (mod Q).

Of course, the machine M does not have direct access to any of the polyno
mials go, ... , gp, h0 , .•• , hp", but each of them is close ·to the corresponding

152 6. The Polynomial Interpolation Technique

oracle function, so with high probability a randomly selected point in the
domain hits one at which the oracle function and the polynomial agree.

6.4.2.6.2 The Zero Polynomial Test and Equality Tests. We next analyze the
Zero polynomial Test and the Equality Tests. We analyze the effect of the
Zero Polynomial Test first. Suppose that the test is called with s = p and
U = QP. Suppose that gp is not the zero-polynomial. Since gp is a polynomial
of total degree dp, by Lemma 6.32, the proportion of y = (Y1, ... , Yp) such

that gp(Y) "¥=. 0 (mod Q) is at least 1 - ~· On the other hand, since QP is
8p-close to gp, the proportion of y = (y1, ... , Yp) such that gp(Y) "¥=. Qp(Y)
(mod Q) is at most 8p. Thus, the proportion of y = (y1, ... ,yp) such that

Qp(Y) "¥=. 0 (mod Q) is at least 1- ~ - 8p = 1- ~ - 2 (3p~2)2. This is

greater than ~ for all x sufficiently large. Thus, we have the following fact.

Fact 6.33 Assuming (*), if gp is not zero, then gp survives the Zero Poly
nomial Test with probability less than k.

By following a similar discussion we can prove the following fact.

Fact 6.34 Assuming (*}, if hp" is not zero, then hp" survives the Zero
Polynomial Test with probability less than k.

The G-Equality Test can be analyzed similarly. Suppose that g(y)(1 -
g(y)) "¥=. g0 (y) (mod Q). Since go is a polynomial of total degree at most
do = 2p, the proportion of y = (y1, ... , Yp) E (ZQ)P such that g(y)(1 -
g(y)) "¥=. go(Y) (mod Q) is, by Lemma 6.32, at least 1- ~· Since Q is 8-close

tog, the proportion of y = (y1, ... ,yp) E (ZQ)P such that Q(y)(1- Q(y)) "¥=.

g(y)(1-g(y)) (mod Q) is at most 8. Since go is 8o-close to 9o, the proportion
of y = (y1, ... , Yp) such that 9o(Y) "¥=. go(Y) (mod Q) is at most 8o. So, the

proportion of y = (y1, ... ,yp) such that Q(y)(1- Q(y)) "¥=. 9o(Y) (mod Q)
· 1 t 1 ~ r r - 1 ~ 1 1 Th" · t th 1s at eas - Q - u - uo - - Q - 2(p+2) 2 - 2(2p+2) 2 • 1s 1s grea er an

~ for all x sufficiently large.
Thus, we have the following result.

Fact 6.35 Assuming(*), ifg(y)(1- g(y)) "¥=. go(Y) (mod Q), then the G
Equality Test fails with probability greater than ~.

The analysis of7-lo- fx Equality Test is similar. Let :F = fx(9o; 6, ... , ~p")
and :F' = fx(go;6, ... ,~p") Suppose that :F' "¥=. ho (mod Q). Since ho is
a polynomial of total degree at most db, by Lemma 6.32, the proportion

d'
of y = (Yb ... , Yp") such that :F'(y) "¥=. ho(Y) (mod Q) is at least 1- ~·
Since ho is 8b-close to 7-lo, the proportion of y = (Y1, ... , Yp") such that
7-lo(Y) "¥=. ho(Y) (mod Q) is at most 8b. To evaluate :F' on y = (Yb ... , Yp"),
the first, second, and third blocks of p entries are given to 9o, since go is
directly accessible. Since these three blocks do not intersect with each other,

6.4 MIP = NEXP 153

the proportion of y = (y1, ... , Yp") for which at least one of the queries to
g0 returns a value different from that of Yo is at most 1- (1- ~0)3 ~ 3~0 . So,
the proportion of y = (y1, ... , Yp") such that :F(y) ¢. 1i0 (y) (mod Q) is at

1 t 1 ~ ~1 3~ > 1 6P+2m 1 3 Th' · t eas - Q - 0 - o _ - 2,.. - 2(ap+2m+2)2 - 2(P+2)2. IS Is grea er
than ~ for all x sufficiently large. Thus, we have the following result.

Fact 6.36 Assuming{*}, if ho ¢. fx(Yo;EI, ... ,Ep") (mod Q), then the
'Ho-fx Equality Test fails with probability greater than ~·

6.4.2.6.3 The Effect of the Self-Correcting Polynomial Equality Test. Now
we analyze the Self-Correcting Polynomial Equality Test.

Fact 6.37 Assume (*). Suppose that there is some i, 1 ~ i ~ p, such that
equation 6.9 does not hold with Yi in place of Bi and Yi-1 in place of Bi-I;
i.e.,

Yi(€I, ... ,Ep) ¢. Yi-1(6, .. · ,€i-I,O,€i+I• ... ,Ep)

+ Yi-I(EI, .. · ,Ei-1, 1,€i+I• ... ,Ep)Ei (mod Q).

Then the probability that M rejects x during the execution of the Self
Correcting Polynomial Equality Test with s = p, d = di-I, U = gi_1, and
V = gi is greater than ~.

Proof of Fact 6.37 Assume (*). Suppose that there is some i, 1 ~ i ~ p,
such that

Yi(EI, ... ,Ep) ¢. Yi-1(6, · · · ,Ei-I,O,Ei+I• · · · ,Ep)

+ Yi-I(€I, ... ,Ei-I, 1,€i+I• ... ,€p)€i (mod Q).

Let i be such an i. Consider the execution of the Self-Correcting Polynomial
Equality Test with s = p, d = di, U = gi-l, and V = gi· Suppose that
YI, ... ,Yi-I,Yi+I• ... ,yp E ZQ have been fixed and Yi,zo, ... ,zd are yet to
be picked. Let Y denote the (p- 1)-tuple (y1, ... ,Yi-I,Yi+I, ... ,yp) and
for each() E ZQ, let Y[O] denote (y1, ... ,Yi- 1 ,0,yi+ 1, ••• ,yp)· The protocol
rejects x if and only if the following two conditions hold:

• zo, ... , Zd are pairwise distinct, and
• t(O) +t(1)yi ¢. V(y1 , ... ,yp) (mod Q),

where t is the polynomial whose coefficients are given by
A-1(U(Y[z0]), •.. ,U([Y[zd]))T and A is the (d + 1) x (d + 1) Vander
monde matrix such that for all integers j and k, 0 ~ j, k ~ d, the
(j + 1, k + 1)th entry of A is zj. Since Yi-I is a polynomial of total degree
at most d, if Zo, · · · , Zd are pairwise distinct and, for all j, 0 ~ j ~ d,
U(Y[zj]) :::: Yi-l([Y[zj]) (mod Q), then for all () E ZQ t(O) :::: Yi-l(Y[O])
(mod Q). So, M rejects x if

(i) ZQ, ••• , Zd are pairwise distinct and for every j, 0 ~ j ~ d, U(Y[zj]) =
Yi-l([Y[zj]) (mod Q),

154 6. The Polynomial Interpolation Technique

(ii) Yi-i(Y[O]) + Yi-1(Y[1])yi ¢. Yi(YI, ... ,yp) (mod Q), and
(iii) V(Y[yi]) = Yi(Y[yi]) (mod Q).

We estimate the probability that all these conditions hold. Let 8 1 [Y] be the
set of all (} E ZQ such that 9i-l (Y[O]) = Yi-1 (Y[O]) (mod Q) and 8UY] =
ZQ - 8i[Y]. To estimate the probability that (i) holds, first suppose that
8 1 [Y] has at least d + 1 elements. Then the probability that (i) holds is

ll8dYlll(ll8dYJII-1) ... (l18l[Y]II- d)

This is at least

('181[~11-d) d+l

= (Q -II8~Ylll- d) d+l

~ 1_ (d + 1)(11~ [YJII +d).

Qd+l

Next suppose that 8i[Y] has at most d elements. Then the probability that
(i) holds is 0. Since II8UYJII + ll8dYJII = Q, 1- (d+I)(II~[YJII+d) < 0. So,
regardless of the cardinality of 81 [Y], the probability that (i) holds is at least
1 _ (d+I)(IIS] [YJII+d)

Q .
On the other hand, to estimate the probability that both (ii) and (iii)

hold let 82 [Y] be the set of all (} E ZQ such that Yi-1 (Y[O]) + Yi-l (Y[1])yi ¢.
Yi(YI, ... 1 Yp) (mod Q) and let 8~[Y] = ZQ- 82[Y]. Also, let 8a[Y] be
the set of all (} E ZQ such that V(Y[yi]) = gi(Y[yi]) (mod Q) and let
8~[Y] = ZQ- 83 [Y]. Then the probability that both (ii) and (iii) hold is
IIS2[Y] 0 Ss[Y]II

Q

Now the probability that (i), (ii), and (iii) all hold is

This is at least

II82[Y] n 8a[YJII - (d 1) II8UYJII - (d + 1)d
Q + Q Q .

Since 82[Y] n 8a[Y] = ZQ - (8~[Y] U 8~[Y]), II82[Y] n 8a[YJII ~ Q -
II8~[YJII-II8~[YJII· So, the probability that (i), (ii), and (iii) hold is at least

1 _ll8~~lll_ll8~~lll-(d+ 1)II8~~YJII_ (d~1)d,

and the probability that M rejects x is the average of this amount where Y
is chosen uniformly at random.

6.4 MIP = NEXP 155

By hypothesis, gi-1(6, ...• ei-1,o,eH1• ... ,ep) + gi-1(6, ...• ei-1.1,
ei+l• ... ,ep)ei ¢ gi(6, ... ,ep) (mod Q). Since gi is a polynomial of to-

tal degree di = 2p+i, by Lemma 6.32, the average of IIS2~Y]II is at most 2Z?Ji.

S. v · }; 1 t th f ~ · 1 s· mce 1s ui-c ose o gi, e average o Q 1s at most 2(P+i+2) 2 . mce

U is 8i_1-close to gi_ 1 , the average of IIS]~YJII is at most 2(P+!+1)2 • So, the
probability that M rejects is at least

1- 2p + i- 1
Q 2(2p + i + 2)2

1
2(2p+i+1)

(d + 1)d

Q

and this is greater than ~ for all x sufficiently large. This proves the propo-
sition. 0 Fact 6.37

By a similar analysis we can show that the following fact holds.

Fact 6.38 Suppose that there is some i, 1 ~ i ~ p, such that equation 6.10
does not hold with hi in place of Ci and hi-1 in place of Ci-1; i.e.,

hi(6, ... • ep") t hi-1(6, ...• ei-1,o,ei+1· ...• ep")

+hi-1(6, ...• ei-1.1,ei+1• ... • ep")ei (modQ).

Then the probability that M rejects x during the execution of the Self
Correcting Polynomial Equality Test with s = p", d = d~_ 1 , U = 7ii_ 1 ,

and V = 'Hi is greater than ~ .

6.4.2.6.4 Putting the Pieces Together. Now we put all the pieces together.
Assume that there is no sampling error and that (*) holds, i.e., each of the
oracle functions is close to a polynomial of desired degree with a desired
distance. Also, assume that the conditions (D') through (I') are all satis
fied. Then, fJ is a polynomial of total degree at most p such that, for all
(6, ... ,ep) E {0, 1}P, fJ(e1, ...• ep) mod Q E {0, 1}, and such that, for all
(e1, ...• ep") E {0,1}P, fx(fJ;6, ... ,ep") = o (mod Q). This implies that
x E L, a contradiction. So, either (*) does not hold or at least one of (D')
through (I') fails to hold, and hence, M rejects x with probability at least l
This proves the soundness of the protocol.

Now the only remaining task is to prove the Low-Degree Polynomial Char
acterization Lemma (Lemma 6.28) and the Low-Degree Polynomial Closeness
Lemma (Lemma 6.31).

6.4.3 Proof of the Low-Degree Polynomial Characterization
Lemma (Lemma 6.28)

This lemma states the following: Let d and s be positive integers and R be a
prime number. Let h be a mapping from (ZR) 8 to ZR. Then his a polynomial
of total degree at most d if and only if

156 6. The Polynomial Interpolation Technique

('Vy, z E F 8)[L: "/ih(y + iz) = 0 (mod R)],
O~i~d+l

where for every i, 0 ~ i ~ d + 1, "/i = (d"t1)(-1)i. The lemma can be proven
by simply combining two propositions.

Proposition 6.39 Let d and s be positive integers. Let R be a prime num
ber. Let h be a mapping from (ZR)s to ZR. Then h is a multivariate poly
nomial over ZR of degree at most d if and only if for all y, z E (ZR) 8 the
function h~,z (i) = h(y + iz) is a polynomial in i of degree at most d over ZR.

Proof of Proposition 6.39 Let d, s, R, and h be as in the hypothesis
of the proposition. We first show that h is a polynomial of degree at most d.
We first show that h is a polynomial. For each y = (y1, ... , Ys) E (ZR) 8 , let
Qy(6, ... ,es) be the polynomial

II II (ei- z)(Yi- z)- 1.

1~i~s zEZR\{y;}

Then Qy is an s-variate polynomial and for every a= (a1, ... ,a8) E (ZR) 8 ,

Qy(a) = 1 (mod R) if a = y and Qy(a) = 0 (mod R) otherwise. Define

h(6, ... ,es) = L: Qy(6, ...• es)h(6, ...• es)·
yE(ZR)•

Then his an s-variate polynomial and h = h (mod R). Thus, his a poly
nomial.

Now what we need to show is that the degree of his at most d if and only
if for all y and z, y, z E (ZR)8 , h~z(i) is a polynomial in i of degree at most
d. Suppose that h has total degree at most d. Then h can be expressed as
the sum of monomials, each of the form ce:ll 0 0 0 e:::: such that c E ZR \ {0},
1 ~ i 1 < · · · < im ~ s, e 1, ... , em ;::: 1, and e 1 + · · · + em ~ d. Let t be such
a monomial. Let y and z be arbitrary elements of (ZR) 8 • Then, t(y + iz) is a
polynomial in i of degree e1 + · · · +em ~d. Thus, the degree of h~.z<i) is at
most d. This proves the direction from left to right.

To prove the other direction, suppose that for ally, z E (ZR) 8 , the function
h~,z (i) = h(y + iz) is a polynomial in i of degree at most d. Assume that the
total degree of h is some k > d. Divide h into u1 and u2, where u 1 consists
of all the monomials of h having degree exactly k and u2 consists of all the
monomials of h having degree less thank. Take y to be (0, ... , 0). Then for
all z E (ZR) 8 , u 1(iz) = u 1(z)ik and u2(iz) is a polynomial in i having degree
at most k- 1. By our assumption, for all z E (ZR) 8 , u(iz) is a polynomial
in i of degree at most d. Since k > d, this implies that, for all z E (ZR) 8 ,

u 1(z) = 0 (mod R). Thus, h = u2 (mod R), and thus, the degree of his
less than k, a contradiction. Hence, his a polynomial having degree at most
d. This completes the proof of the proposition. 0 Proposition 6.39

6.4 MIP = NEXP 157

Proposition 6.40 Let d be a positive integer, let R ;::: d + 1 be a prime
number, and h be a mapping from ZR to 7lR. Then h is a polynomial of
degree at most d if and only if for every y, z E ZR,

L 'Yih(y + iz) = 0 (mod R),
O~i~d+l

where for every i, 0:::; i :::; d + 1, 'Yi = (d~ 1) (-1)i.

Proof of Proposition 6.40 Let d, R, and h be as in the hypothesis of
the proposition. Suppose that h is a polynomial of degree at most d. Since
two polynomials of degree :::; d can agree on at most d points, specifying the
value of h at d + 1 distinct points will give a unique specification of h. Let
a 1 , ... , ad+l be distinct elements of R. Then, h can be interpolated from the
values of hat a 1 , ... ,ad+l• i.e.,

h(e) =

L h(ai) (II (e- aj))
l~i~d+l jE{l, ... ,d+l}\{i}

(II (ai-aj))-l

jE{l, ... ,d+l}\{i}

holds. Let y, z be arbitrary elements of 7lR. If z = 0, then Lo<i<d+l 'Yih(y +
iz) = h(y) Lo<i<d+l 'Yi· Note that, for all u, Lo<i<d+l "fiUi = (1--u)d+l. So,
Lo<i<d+l 'Yi ~ {i- 1)d+l = 0. Thus, if z = 0, the; Lo<i<d+l 'Yih(y + iz) =
0 =- 0 (mod R) as desired. So, suppose that z =/:- 0.-Let e = y and for
each i, 0 :::; i :::; d + 1, let ai = y + iz. Then, since z =f. 0 and d + 1 :::; R,
a1, ... , ad+l are pairwise distinct. So, we apply the above formula. For every
i, 1 :::; i :::; d + 1,

and

So,

II (e-aj)=(-1)dzd(d:1)!
jE{l, ... ,d+l}\{i}

II (ai- aj) = (-1)d+l+i(i -1)!(d + 1- i)!zd.
jE{l, ... ,d+l}\{i}

h(y)= L (d~ 1)(-1)i+ 1 h(y+iz).
l~i~d+l

Since for every i, 0:::; i:::; d+ 1, 'Yi = (d~ 1)(-1)i, we have

L 'Yih(y + iz) = 0 (mod R)
O~i~d+l

158 6. The Polynomial Interpolation Technique

as desired.
On the other hand, suppose that for all y, z E ZR, it holds that

Eo<i<d+l "fih(y + iz) = 0 (mod R). For each n ~ 0, let an = h(n mod R).
It suffices to show that there is a degree-d polynomial q(n) such that

(Vn ~ O)[an = q(n) (mod R)].

For each k, 1 ~ k::::.; d, and each n ~ 0, let

Sk,n = L O!k,jan+j·
O~j~k

Then we have the following fact.

Fact 6.41 For each k, 0 ~ k ~ d, there exists a polynomial qk of degree
d- k such that, for all n ~ 0, Sk,n = qk(n) (mod R).

Proof of Fact 6.41 The proof is by induction on k, going down from k = d
to k = 0. For each k ~ 0 and each j, 0 ::::.; j ::::.; k, let ak,j = (-1)i (~). For the
base case, let k = d. We are assuming that for ally, z E ZR, Eo~j~d+l "fih(y+
iz) = 0 (mod R). For all j, 0 ~ j ~ d + 1, O!d+l,j = 'YJ· So, it holds that
Eo~j~d+l O!d+l,jay+jz = 0 (mod R). Replace y by n and take z to be 1.
Then, for all n ~ 0,

L O!d+l,jan+j = 0 (mod R). (6.11)
O~j~d+l

Note that for all m ~ 1, (;;:) = (';;) = 1 and for all i, 0 ~ i < m - 1,
(7) + U:\) = (7.:/). So, equation 6.11 can be rewritten as

By definition, the first term is sd,n and the second term is sd,n+l· So, we
have sd,n- Sd,n+l = 0 (mod R). Let qd(n) be the constant polynomial sd,o,
which is equal to Eo~j~d 0:d,jaj. Then, for all n ~ 0, sd,n = qd(n) (mod R).
Thus, the claim holds for k = d.

For the induction step, let k = k0 , 0 ~ k0 < d and suppose that the
claim holds for all values of k greater than k0 and less than or equal to d. In
particular, since the claim holds for k = ko + 1, for all n ~ 0,

L O:ko+l,jan+i = qko+l(n) (mod R),
O~j~ko+l

where qko+l is a polynomial of degree d-ko-1. As in the previous paragraph,
the sum can be rewritten as

6.4 MIP = NEXP 159

So, for all n 2:: 0, Sk0 ,n- Sko,n+l = Qk0 +1(n) (mod R). Let f3ko = Sk0 ,o

Lo~j~ko ak0 ,jaj. Then, for all n 2:: 1,

Sk0 ,n = f3ko - L Qk0 +1(j) (mod R).
1~j~n

Since Qko+ 1 is a polynomial of degree d- ko -1, the summation on the right
hand side is a polynomial of degree d-ko. To see why, let f 2:: 0 be an integer.
Let us suppose that the sum L: 1~j~n l is a degree-(£+ 1) polynomial of the

form eo+ c1n + · · · + Ct+1nH1. Since L: 1~j~n jt = 0, CQ. The condition that
these coefficients have to satisfy is

(c1n + · · · + Ct+lnH1) =
(c1(n -1) + · · · + cH1(n -1)£+1) + nt (mod R).

By rearranging terms, this condition is equivalent to

c1(n- (n -1)) + · · · + Ct+l(nH1 - (n -1)t+l) + nt = 0 (mod R).

Note that for every m 2:: 1, nm-(n-1)m = Lo~j~m- 1 am,jni. So, the above
condition can be written as

-at+1,t 0 0 0 C£+1 1
-at+1,t-1 -at,t-1 0 0 Ct 0
-at+1,t-2 -at,t-2 -at-1,t-2 · · · 0 Ct-1 0

-at+1,0 -at,o -at-1,0 · · · -a1,o c1 0

where the arithmetic is over ZR. The (£ + 1) x (f + 1)-matrix is lower tri
angular and none of its diagonal entries are zero, so its inverse exists. Thus,
c1, ... , Ct+l can be uniquely determined in ZR. Thus, the sum of the right
hand side is a polynomial of degree d- k. Thus the claim holds for this k,
too. Hence, the fact holds. 0 Fact 6.41

Now note that so,n = an. Since so,n is a polynomial of degree d, his a
polynomial of degree d. This proves the proposition. 0 Proposition 6.40

This proves Lemma 6.28. 0

6.4.4 Proof of the Low-Degree Polynomial Closeness Lemma
(Lemma 6.31)

This lemma states the following: Let s and d be positive integers and let 8
be a real number such that 8 :S 2(d!2)2. Let f be a mapping from (ZQ) 8 to

160 6. The Polynomial Interpolation Technique

ZQ that is not 28-close to any polynomial of total degree at most d. Then f
survives the Low-Degree Test with probability less than !·

The lemma follows from Theorem 6.42 below.

Theorem 6.42 Let d and s be positive integers. Let R ~ d + 2 be a prime
number. Let C be a mapping from (ZR) 8 to ZR. Let Eo = 2(d!2)2. Let f be the
probability that

L "'fiC(y + iz) ~ 0 (mod R),
O~i~d+l

where y and z are chosen independently and uniformly at random from (ZR) 8 •

Suppose that f ~Eo. Then Cis 2e-close to a polynomial of total degree at most
dover ZR·

Proof of Lemma 6.31 Let R = Q, d = p, s = p, C = B mod ZR, and
e0 = 8. Suppose that B mod R is 28-close to no polynomial of total degree
at most p. By taking the contrapositive of the statement of the theorem, we
have that f > Eo = 2cv!2)2 . Since the equivalence is tested 6(p + 2)2 times,
the probability that the Low-Degree Test succeeds is at most

(
1) 6(p+2)2 1

1 - 2(p + 2)2 < T3 = B.

This proves the lemma. 0 Lemma 6.31
Now let us turn to proving Theorem 6.42. Let d, s, R, C, e, and fo by

as in the statement of the lemma and suppose that f ~ e0 . For each y E

(ZR) 8 , define h(y) to be the most frequently occurring value in the multiset
{(E 1~i~d+l "'fiC(y+iz)) mod R lz E (ZR) 8 }, where ties are broken arbitrarily.

Fact 6.43 lf y is chosen uniformly at random from (ZR) 8 , then h(y) =
C(y) mod R with probability at least 1- 2e.

Proof Let W = {y E (ZR) 8 I h(y) = C(y) mod R}. Let p = IIWII/R8 • Since
ties can be broken arbitrarily to determine the value of h, for every y E W,
for at least half of z E (ZR) 8 it holds that C(y) ~ El<i<d+l "'fiC(y + iz)
(mod R). Then f, the proportion of (y, z) E (ZR) 8 X (ZR) 8 such that C(y) ~
El<i<d+l "'fiC(y + iz) (mod R), is at least p/2. Thus, p ~ 2e. This proves
the fact. 0 Fact 6.43

Fact 6.44 For all y E (ZR) 8 , if z is chosen uniformly at random from
(ZR) 8 , then the probability that h(y) = El<i<d+I "'fiC(y+iz) (mod R) is at
least 1 - 2(d + 1)e. - -

Proof Let y E (ZR)s be fixed. Let i be any integer between 1 and d + 1.
Suppose that we select z E (ZR) 8 uniformly at random and output u =
y + iz mod R. Since R ~ d + 2, a multiplicative inverse of i in ZR exists, so,
u is uniformly distributed over (ZR) 8 • So, the probability that

6.4 MIP = NEXP 161

C(y + iz) = L "'(jC(y + iz + jw) (mod R)
l~j~d+l

(6.12)

when y and z are chosen independently and uniformly at random from (Zn) 8

is equal to the probability that

C(u) = L 'YjC(u + jv) (mod R) (6.13)
l~j~d+l

when u and v are chosen independently and uniformly at random from (Zn) 8 •

This probability is equal to 1-f by our assumption. By exchanging the role of
i and j as well as the role of z and w, we have that, for every j, 1 ~ j ~ d + 1,
the probability that

C(y + jw) = L 'YiC(y + iz + jw) (mod R)
l~i~d+l

when z and ware chosen independently and uniformly at random from (Zn) 8

is 1- f. Let Et[z, w] be the event

E2[z, w] be the event

and
Eo[z, w] = Et[z, w] A E2[z, w].

Note that for all y, z E (Zn) 8 the following conditions hold:

• If for all i, 1 ~ i ~ d + 1, equation 6.12 holds, then Et[z, w] holds.
• If for all j, 1 ~ j ~ d + 1, equation 6.13 holds, then E 2[z, w] holds.

Since both i and j range from 1 to d + 1, if z and w are chosen independently
and uniformly at random from (Zn) 8 , then E0 [z, w] holds with probability
at least 1- 2(d + 1)€.

Let Vt, ... , vn be an enumeration of all the members of Zn. For each
k, 1 ~ k ~ R, let Pk be the probability that Vk = Et<i<d+l 'YiC(y + iz)
(mod Q) when z E (Zn) 8 is chosen uniformly at random-:- Assume, without
loss of generality, that Pl = max{pt, ... ,pk}· Then E0 [z,w] occurs with
probability at most p~ + .. · + p~ ~ Pt(Pl + .. · + PT) = Pl· Since the
event Eo[z,w] occurs with probability at least 1-2(d+ 1)€, we have p1 ;:::

1- 2(d + 1)€. Thus, the probability that Et<i<d+l 'YiC(y + iz) mod R takes
the most frequently occurring value, which is li"(y), is at least 1 - 2(d + 1)€.
This proves the fact. 0 Fact 6.44

162 6. The Polynomial Interpolation Technique

Fact 6.45 Iff :::; Eo, then for all y, z E (ZR) 8 ,

L: 'Yih(y + iz) = 0 (mod R).
0:5i:5d+l

Proof Let u, v E (ZR) 8 be fixed. For every i, 0 :::; i :::; d + 1, and every
w E (ZR) 8 , the equation u + iv .=. w (mod R) has precisely R8 solutions. So,
for every i, 0 :::; i :::; d + 1, u + iv mod R is subject to the uniform distribution
over (ZR) 8 when u and v are chosen independently and uniformly at random
from (ZR) 8 • So, by Fact 6.44, for every i, 0 :5 i :::; d + 1, the probability that

h(y + iz) .=. L: 'YjC((y + iz) + j(u + iv)) (mod R)
1:5j:5d+l

when u and v are chosen independently and uniformly at random from (ZR) 8

is at least 1- 2(d + 1)f. So, the event

L: 'Yih(y + iz) =

L: 'Yj L: 'YiC((y + iz) + j(u + iv)) (mod R)
1:5j:5d+l 0:5i:5d+l

has probability at least 1-2(d+ 1)(d+2)f when u and v are chosen uniformly
at random from (ZR) 8 • By rearranging terms (y + iz) + j(u + iv) is equal
to (y + ju) + i(z + jv). If u is chosen uniformly at random from (ZR) 8 ,

then y + ju mod R is uniformly distributed over (ZR) 8 • Also, if v is chosen
uniformly at random from (ZR) 8 , then z + jv mod R is uniformly distributed
over (ZR) 8 • So, the probability that

L: -y,C((y + iz) + j(u + iv)) = 0 (mod R)
0:5i:5d+l

is 1- f if u and v are chosen independently and uniformly at random from
(ZR) 8 • By combining the two observations, the probability that

L: -y,h(y + iz) =
09:5d+l

L: 'Yj L: -y,C((y + iz) + j(u + iv)) .=. 0 (mod R)
1:5j:5d+l 09:5d+l

is positive. Since the event L:o<i<d+l 'Yih(y + iz) = 0 (mod R) is indepen
dent of y and z, L:o<i<d+l -y,h(i/+iz) = 0 (mod R) holds. 0 Fact 6.45

Combining Fact -6:45 and Lemma 6.28, we have the following.

Fact 6.46 Iff:::; Eo, then h is a polynomial of total degree at most d.

Now the theorem follows by combining Facts 6.43 and 6.46. This concludes
the proof of Theorem 6.24. 0

6.6 Bibliographic Notes 163

6.5 OPEN ISSUE: The Power of the Provers

What computational power must the provers possess to convince the verifier
of membership? Following a discussion similar to that of Sect. 6.2, one can
show that p#P -machines can serve as provers for p#P. Also, the proof of
IP = PSPACE gives that PSPACE-provers are sufficient and necessary for
PSPACE. Then how about NEXP? Since the oracle has only to fix a satis
fying assignment and the largest satisfying assignment in the lexicographic
order of a formula with exponentially many variables can be computed in ex
ponential time with an NP language as the oracle, the provers need only the
computational power of EXPNP. Note that for EXP, an EXP prover suffices
(because an EXP machine can be viewed as a special NEXP machine which
uses no nondeterminism). Can we lower the upper bound of EXPNP?

Open Question 6.4 7 Can we show a stronger upper bound on the power
of the provers for NEXP?

6.6 Bibliographic Notes

Part 1 of Proposition 6.3 is due to Zanko [Zan91]. Theorem 6.4 is due to Lund
et al. [LFKN92]. Definition 6.6, the notion of an enumerator (also known
as an enumerative approximator) is due to Cai and Hemachandra [CH89].
Theorem 6.7 is due to Cai and Hemachandra ([CH91], see also [CH89]) and,
independently, Amir, Beigel, and Gasarch [ABGOO]. Lemma 6.10 is from
Goldwasser and Sipser [GS89]. Theorems 6.21 and 6.23 are due to Fort
now, Rompel, and Sipser [FRS94]. Lemma 6.11 is due to Shamir [Sha92].
Our presentation of the proof of Lemma 6.11 is based on the idea of Hart
manis [Har91]. Savitch's Theorem, which forms the basis of the proof of
Lemma 6.11, is due to Savitch [Sav70]. The tableau method is due to
Cook [Coo71]. Theorem 6.8 follows as a corollary to Chebyshev's Theorem,
which states that the number of primes not greater than x is x / ln x (see
[HW79, Theorem 7]). Theorem 6.16 is due to Pratt [Pra75]. Theorem 6.19
is due to Babai, Fortnow, and Lund [BFL91]. The low-degree test we
used here was established by Rubinfeld and Sudan [RS96]. Lemmas 6.28
and 6.31 are due to them. The Self-Correcting Polynomial Equality Test is
due to Sudan [Sud92]. Lemma 6.32 is due to DeMilio and Lipton [DL78],
Schwartz [Sch80], and Zippel [Zip79]. Proposition 6.29 can be found in many
linear algebra textbooks (See Lang [Lan87], for example). The interpolation
formula used in the proof of Proposition 6.40 is called the Lagrange Interpo
lation Formula and can be found in such algebra textbooks, such as Vander
Waerden's [vdW70]. Chebyshev's Inequality (Lemma 6.22) can be found in
probability textbooks (see [Fel68] for example).

The idea of arithmetization first appeared in a paper by Beaver and
Feigenbaum [BF90]. In some sense arithmetization is a very sophisticated

164 6. The Polynomial Interpolation Technique

version of program checking by Blum and Kannan [BK95]. The interactive
proof for p#P combines the self-testing procedure of Lipton [Lip91 J and the
downward self-reducibility by Blum, Luby, and Rubinfeld [BLR93J.

To construct an oracle protocol for NEXP, Babai, Fortnow, and
Lund [BFL91] stipulated that the polynomial held in the oracle is multi
linear and developed a probabilistic oracle protocol for testing multilinearity.
It is natural to ask whether the requirement that the polynomial should be
multilinear be weakened so that only having a small degree is required. This
question is studied in [BFLS91,FGL +96]. The goal of the Low-Degree Test
in the proof of MIP = NEXP is to ensure that a given function is close to a
low-degree polynomial. Once this has been done for all the functions involved,
the other two tests can be carried out by simply assuming that the functions
are all polynomials. The concept of hypothesizing that a given function is
a low-degree polynomial, called self-testing, was introduced by Gemmell et
al. [GLR+91] and was further explored by Rubinfeld and Sudan [RS96,RS96].
The problem of computing a value of function knowing that there is an oracle
that is close to the function is called self-correction. Self-correction borrows an
idea from random self-reducibility of Abadi, Feigenbaum and Kilian [AFK89J
and was first formally studied by Blum and Kannan [BK95].

We note that the progress from Theorem 6.4 toward Theorem 6.23 was
made in only five weeks. Email announcements of PH ~ IP by Fortnow,
IP = PSPACE by Shamir, and MIP = NEXP by Fortnow again came out
respectively on December 13, 1989, December 26, 1989, January 17, 1990.
(For a detailed history, see an amusing survey by Babai [Bab90].)

The polynomial interpolation technique was received with great excite
ment and invigorated research on interactive proof systems. Babai and Fort
now [BF91] show a new characterization of #P by straight-line programs,
Cai, Condon, and Lipton [CCL94] show that every language in PSPACE
has a bounded-round multiprover interactive proof systems, Lapidot and
Shamir [LS97] show that a fully parallelized version of the protocol by Ben-Or
and others [BOGKW88J yields a one-round "perfect zero-knowledge" proto
col for each language in NEXP, and Feige and Lovasz [FL92] show that two
prover one-round interactive proof systems exist for all languages in NEXP.
We noted in Sect. 6.5 that to construct a multiprover protocol for a EXP
language a prover in EXP is sufficient. In other words, the oracle of a prob
abilistic oracle protocol for EXP languages can be in EXP. Based on this
observation, Babai et al. [BFNW93J show that if EXP ~ P /poly then EXP
is included in MA, a class introduced by Babai [Bab85]. Note that one can
prove EXP ~ P /poly==> EXP = S~ by applying the proof of Theorem 1.16
to EXP in light of Sengupta's observation (see the Bibliographic Notes of
Chap. 1). However, the collapse shown by Babai et al. seems stronger since
MA is known to be included in S~ [RS98J.

The MIP = NEXP Theorem naturally raises the issue of translating the
theorem to characterizations of NP. Feige et al. [FGL +96] and Babai et

6.6 Bibliographic Notes 165

al. [BFLS91] independently obtained two similar but incomparable results.
Roughly speaking these two papers show that every language in NP has a
probabilistic polynomial-time protocol for the verifier that uses polylogarith
mic random coin tosses and communicates with its prover polylogarithmic bits
of information. In addition to the "scaled-down" theorem, the former paper
shows the following: If there exists a deterministic polynomial-time algorithm
that approximates the size of the largest clique in a graph within a constant
factor, then NP ~ DTIME[21ognloglogn]. This was a remarkable achievement,
because for decades researchers had been looking for results to shed light to
the question of whether polynomial time approximation of the largest clique
size within any factor between 2 and lo;a n is possible. For the first time,
strong evidence is given that approximation of the clique size within a con
stant factor is not possible under some reasonable assumption about NP.
Feige et al. also show that if there exist constants f, 0 < f < 1, and d > 0,
such that one can approximate the clique size within a factor of 210g1

-• n using
an algorithm that runs in time 2logct n, then 'NP ~ Uk>o DTIME[nlogk n].

To describe the two results about NP, let PCP(r(n), q(n)) (see [AS98])
denote the class of all languages for which there exists a probabilistic polyno
mial time oracle protocol with the following three properties: (i) the verifier
flips r(n) coins and examines q(n) bits of the oracle on an input of length n,
(ii) if the input belongs to the language, then there exists an oracle relative
to which the verifier accepts with probability 1, and (iii) if the input does not
belong to the language, then there is no oracle relative to which the verifier
accepts with probability at least !· With this notation the MIP = NEXP
Theorem can be restated as NEXP = Uc>O PCP(nc, nc), the above result
about NP by Feige et al. as NP ~ Uc>O PCP(clog nlog logn, clog nloglog n)
and the one by Babai et al. as NP ~ Uc>O PCP (loge n, loge n).

The two results about NP raised the question whether the polylogarith
mic number of random bits and the communication bits are truly necessary.
Arora and Safra [AS98] made significant progress towards that question and
showed that NP ~ PCP(O(logn),O(y1ogn)). To prove this result, Arora
and Safra proposed a technique of composing verifiers-verifying computa
tion of a verifier by another verifier. Improving this technique further, Arora
et al. [ALM+98] reduced the second amount to a constant, and obtained
the so-called PCP Theorem: NP = PCP(O(log n), 0(1)). The PCP Theorem
states that every language in NP has a probabilistic oracle protocol such
that (i) the prover provides a proof of polynomial length, (ii) the verifier
tosses O(logn) coins and examines only a constant number of bits of the
proof, (iii) if the input belongs to the language, then there is a proof with
which the verifier accepts with probability 1, and (iv) if the input does not
belong to the language, then there is no proof with which the verifier ac
cepts with probability at least !· This theorem is optimal in the sense that
NP = PCP(o(logn),o(logn)) implies P = NP [FGL+96]. In this model the
verifier's error is one-sided, in the sense that it accepts each member of the

166 6. The Polynomial Interpolation Technique

language with probability one given a correct proof. An alternative model is
the one in which the verifier is allowed to make an error for both members
and nonmembers, but the error probability is bounded by a constant that
is strictly less than ~. When the amount of randomness is fixed to O(log n)
an important question is how many bits of information have to be examined
to achieve the desired error probabilities. For the one-sided-error PCPmodel,
the current best known result is due to Guruswami et al. [GLST98]: For every
constant e, every language in NP has a one-sided-error PCP protocol that
uses O(log n) random bits, examines only three bits, and, for each nonmem
ber, makes an error with probability at most ~ + €. For the two-sided-error
PCP model, Samorodnitsky and Trevisan [STOO] show the following strong
result: For all constants e > 0 and for all positive integers q, every language in
NP has a two-sided PCP protocol that uses O(logn) random bits, examines
q bits, accepts each member with probability at least 1 - e given a correct
proof, and rejects each nonmember with probability at least 1 - 2-q+f:>(vq).

This is essentially the current best bound. Hastad and Wigderson [HW01]
present a simpler analysis of the proof of Samorodnitsky and Trevisan, and
show that the error probability in the soundness condition can be slightly
improved.

The PCP Theorem also improves upon the nonapproximability result
in [FGL +96] as follows: For every constant € > 0, it is NP-hard to approx
imate the size of the largest clique in a graph in polynomial time within a
factor of n l-£. The proof of the PCP Theorem is very complex and long, and
thus, is beyond the coverage of the book. The reader may tackle the paper
by Arora et al. [ALM+98] for a complete presentation. The PCP Theorem
is a culmination of the research on interactive proof systems, and it opened
up a new research subarea: NP-hardness of approximation based upon PCP
characterizations of NP. There is a vast literature in this subarea. We refer
the reader to two surveys, one by Arora and Lund [AL97], which discusses
the basic results in the subarea, and the other by Bellare [Bel96], which dis
cusses further development. Crescenzi and Kann ([CK], see also [ACG+99])
maintain a web site containing a compendium of NP optimization problems.

7. The Nonsolvable Group Technique

Bounded-width branching programs offer interesting connections between
complexity classes and algebraic structures. Let k 2:: 2 and n 2:: 1 be integers.
A width-k branching program over n-bit inputs prescribes manipulation of a
pebble placed on a track of k squares. First the pebble is placed on square
1. Then a sequence of instructions is executed. Each instruction is simple:
it tells you to examine an input bit and then move the pebble to another
(possibly the same) square, where to which square the pebble will be moved
depends on the examined bit, the current location of the pebble, and the step
of the computation. The program accepts the input if and only if the pebble
is not on square 1 at the end.

How big is the class of things that are accepted by a family of bounded
width branching programs of polynomially many instructions? In the case
where k = 2, since there are only two squares, the class does not seem large
enough to contain many interesting languages other than the parity function
(constructing such a program is easy). Then how about k = 3? Again, 3 does
not seem big enough for us to handle complicated membership criteria. Then
how about 4, 5, or 6? Note that for every k 2:: 2 a width-k branching program
can be simulated by a bounded-fan-in circuit whose depth is proportional
to the logarithm of the program size, i.e., the number of instructions. So we
ask whether bounded-width branching programs can simulate every circuit
in nonuniform-Ne1 .

Pause to Ponder 7.1 Can polynomial-size, bounded-width branching pro
grams simulate nonuniform-Ne1 ?

Indeed, polynomial-size, bounded-width branching programs can simulate
nonuniform-Ne1? Interestingly, to simulate nonuniform-Ne 1 the width of
polynomial-size branching programs can be as small as 5. However, it is
believed that the width cannot be smaller than that. A significant difference
seems to exist between the computational power of width-4 programs and
that of width-5 programs. Much to our surprise, the crucial difference lies in
the fact that the permutation group over { 1, . . . , k} is nonsolvable for k ;:::: 5
while it is solvable for k = 1, 2, 3, 4. Recall that a group is solvable if its
derived series, Go, Gt, .. . , converges to the trivial group, where Go = G and
for every i 2:: 1, Gi is the commutator subgroup of Gi_ 1 , i.e., Gi is the group

168 7. The Nonsolvable Group Technique

generated by the elements {h21 o h11 o h2 o h1 I h1, h2 E Gi-d· Here we call
h21 o h1 1 o h2 o h1 the commutator of h1 and h2. Using nonsolvability of the
permutation group over {1, ... , 5}, one can design a family of polynomial
size, width-5 branching programs for each language in nonuniform-NC1.

In this chapter we study the power of polynomial-size, bounded-width
branching programs and how such results translate into uniform complexity
classes. For a formal definition of the classes that are discussed in this chapter
see Sect. A.18.

7.1 GEM: Width-5 Branching Programs Capture
Nonuniform-NC1

7.1.1 Equivalence Between Width-5 Branching Programs and
NC1

As we have just mentioned, polynomial-size, width-5 branching programs
capture nonuniform-NC1 . In fact, the two computational models are equal.

Theorem 7.2 5-PBP = nonuniform-NC1 .

We need to define some notions and notation. Recall that a monoid is a
finite set S of objects with an associated binary operation o and an identity
element. Let k?. 2 be an integer. By Mk we denote the monoid consisting of
all mappings of { 1, ... , k} to itself and by Ik we denote the identity mapping
in Mk. The binary operation o is defined as follows: For all a, (3 E Mk, ao(3
is the mapping 'Y E M5 such that for all i, 1 $. i $. k, 'Y(i) = a((3(i)). The
operation o is associative, i.e., for all a, (3, 'Y E Mk,

a o ((3 o 'Y) = (a o (3) o 'Y.

By Sk we denote the permutation group over {1, ... , k }, i.e., the set of all
bijections from {1, ... , k} to itself.

Let n?. 1 and let P = {(ij, J.L~, J.L})}J!= 1 be a width-k branching program
for En. Then, by IPI, we denote its length, m. For each x E En, P[x] denotes
the product

Xim Xi 2 Xi 1 J.Lm o . . . o J.1.2 o I-Ll .

Now we prove Theorem 7.2.

Proof of Theorem 7.2 We first prove 5-PBP ~ nonuniform-NC1. The
inclusion follows from a more general statement:

Lemma 7.3 For all k?. 2, k-PBP ~ nonuniform-NC1.

Proof of Lemma 7.3 Let k ~ 2. Let L be a language in k-PBP and
P = {Pn}n;::::l be a family of width-k, polynomial-size branching programs
that decides L. For all n?. 1, and for all x E En,

7.1 GEM: Width-S Branching Programs Capture Nonuniform-NC1 169

x E L -<=* Pn[x](1) f:. 1.

Let p be a polynomial bounding the size of P, i.e., for all n ~ 1, IPnl :::; p(n).
We'll replace P by a family of width-k, polynomial-size branching programs,
P' = {P~}n~l, such that P' decides Land, for all n ~ 1, jP~I is a power of
2 and is at most 2p(n). Let n ~ 1 and let m = !Pnl· If m is a power of 2,
then P~ = Pn. If m is not a power of 2, we construct P~ as follows: Lett be
the smallest integer such that 2t > m. Then 2t < 2m :::; 2p(n). Let P~ be the
program of size 2t such that, for all j, 1 :::; j :::; m, the jth instruction of P~
is equal to that of Pn and, for all j, m + 1 :::; j :::; 2t, the jth instruction of
P~ is (1, /k, Ik)· Then, for all x E En, P~[x] = Pn[x]. So, P~ has the desired
properties.

Let n ~ 1 be fixed. Let P~ = {(ij,J.L~,J.L])}j!, 1 . Lett be such that 2t = m.
For all x E En and for all integers r and s such that 1 :::; r :::; s :::; m, define
1r(r, s)[x] define inductively as follows:

• If r = s, then 1r(r, s)[x] = J.L:i;.
• If r > s, then 1r(r, s)[x] = J.L:i; o 1r(r, s -1)[x].

Clearly, for all x E En, P~[x] = 7r(1,m)[x].
Since the monoid operation o is associative, for every x E En, the expres

sion 1r(1, m)[x] can be evaluate by a simple divide-and-conquer method:

* Let r and s be integers such that 1 :::; r < s :::; m. To evaluate 1r(r, s)[x],
evaluate a= 1r(r, l(r + s)/2J)[x] and f3 = 1r(l(r + s)/2J + 1, s)[x] individ
ually, and then set 1r(r, s)[x] to f3 o a.

Since m is a power of 2, the divide-and-conquer evaluation method can be
viewed as a full binary tree having height t, where for all d, 0 :::; d :::; t, and
j, 1 :::; j :::; 2d, the task at the jth node from right at depth d is to evaluate
1r((j- 1)2t-d + 1,j2t-d)[x]. Call this tree Tn[x].

We construct a bounded-fan-in circuit Cn for L =n by transforming the
tree Tn [x] into a circuit. To accomplish this, we need to fix a binary encoding
of the mappings in Mk· Let i = pog(kk)l· Since IIMkll = kk, 22 ~ IIMkll·
We encode each element of Mk as a 2£-bit string as follows: Let 91, ... , 9kk
be an enumeration of the members of M. Then for each i, 1 :::; i :::; kk, the
encoding of Yi• denoted by e(gi), is the 2£-bit stringy such that the first half
of y has rank i in Ei and the second half of y is the bitwise complement of the
first half of y. Let W = {y E E2i I (3g E Mk) [y = e(g)]}. Let Q : W X W ~ W
be the function defined for ally, z E W by

Q(y,z) = e(e-1(z) o e-1(y)).

In other words, the function Q takes two strings in W and computes the
encoding of the product of the mappings encoded by the two strings. Also,
let R : W ~ E be the function defined for all y E W by

R() = { 1 if e-1(y)(1) f:. 1,
y 0 otherwise.

170 7. The Nonsolvable Group Technique

In other words, R takes a string in W and tests whether the mapping encoded
by W maps 1 to something other than 1. We will show in Fact 7.4 that Q and
R can be computed by depth-O(k log k) bounded-fan-in circuits. For now, let
us assume the correctness of the fact and present how the circuits for Q and
Rare built.

Note that at the leaf level of Tn[x], each component of the product P~[x]
is evaluated depending on a single bit of x. For each j, 1:::; j:::; m, there is a
depth-0 circuit that computes e(7r(j,j)[x]). Let j, 1 :::; j :::; m, be fixed. Let
a 1 · · · a2t = e(J.L~) and b1 · · · bu = e(J.L}). For each r, 1:::; r :::; l, the rth output
bit of e(7r(i,j)[x]) is

{

0 if ar = br = 0,
1 if ar = br = 1,
Xi; ~far = 0 and br = 1,
Xi; 1f ar = 1 and br = 0,

and the (l + r)th output bit of e(7r(i,j)[x]) is

{

1 if ar = br = 0,
0 if ar = br = 1,
Xi . if ar = 0 and br = 1,
Xi: if ar = 1 and br = 0.

Since this circuit computes by simply assigning input bits, the depth of the
circuit is 0.

Note that at each nonleaflevel ofTn[x], divide-and-conquer is applied. So,
for each d, 0:::; d:::; t -1, and r, 1 :::; r _::::; 2d, we put the circuit for computing
Q at the rth node from right at level d, where the first (respectively, the
second) 2£ input bits of the circuit are the 2£ output bits of the circuit at
the (2r -1)th position (respectively, at the 2rth position) from right at level
d+1.

The resulting circuit computes e(P~[x]). We feed the outputs of the circuit
to the circuit for computing R. This is Cn. Then, for all x E En, Cn(x) = 1 if
and only if R(e(P~[x])) = 1, and thus, Cn(x) = 1 if and only if P~[x](1) =f. 1.
Clearly, the depth of the circuit Cn is 0((k log k)t), and this is O(log n) since
k is fixed.

Now it remains to show that depth-O(k log k) circuits exists for Q and R.

Fact 7.4 There is a depth-O(klogk), bounded-fan-in boolean circuit H that
computes Q in the following sense: For ally, z E E2l, if y, z E W, then
H(yz) = Q(y, z).

Also, there is a depth-O(k log k), bounded-fan-in boolean circuit H' that
computes R in the following sense: For ally E E2l, if y E W, then H(y) =
R(y).

Proof of Fact 7.4 Let s be an integer such that 1 :::; s :::; kk. Note that
e(gs) had exactly l1s. Let r 1 , •.. , rt be an enumeration of the l positions at

7.1 GEM: Width-5 Branching Programs Capture Nonuniform-NC1 171

which the bit of e(g8) is a 1. Let F8 be a bounded-fan-in boolean circuit that
takes y = y1 ... Y2t E E2'-, and computes

Yr1 1\ · · · 1\ Yrt ·

Since each stringy E W has exactly l1's, for ally E W,

F () _ { 1 if y = e(g8),

8 y - 0 otherwise.

Let s 1 and s2 be integers such that 1 ::; s 1, s2 ::; kk. Let G 81 ,82 be a bounded
fan-in boolean circuit that takes a pair of 2£ bits strings y = Y1 ... Y2i and z =
z1 ... Z2t and outputs w = w1 ... W2t, defined as follows: Let 'Y = 'Y1 · · · 'Y2i

be e(e- 1(g82 og81)). Then, for each r, 1::; r::; 2£, Wr is given as

Then, for ally, z E W,

G (z)={'Y ify=e(g81)and z=e(g82),
81 '82 y 02'- otherwise.

Now, for each r, 1 ::; r ::; 2£, let the rth output bit of H(yz) be defined by

v a~:~82 (yz)'
1~81,82~kk

where at~82 (y, z) denotes the rth output bit of G81 ,82 (y, z). Then, for all
y,zE W,

H(yz) = e(e- 1(z) o e- 1(y)).

The depth of H can be flogll + 2 + flogk2kl This is O(klogk). Thus, the
first claim of the fact holds.

To prove the second claim, let J = { s 11 ::; s ::; kk 1\ g8 (1) =/:. 1}. Then,
for ally E W, R(y) = 1 <===? (::ls E J)[y = g8]. Define

H'(y) = V F8(y).
8EJ

Then, for ally E W, H'(y) = R(y). The depth of H' can be fll + flog(k-
1)k-1l This is O(klogk). Thus, the second claim of the fact holds.

0 Fact7.4
This proves the first part.
Next we prove the other part, i.e., nonuniform-NC1 ~ 5-PBP. Let L be a

language in nonuniform-NC1. Let C = {Cn}n>l be a family of bounded-fan
in, depth-O(logn), polynomial-size boolean ci;cuits that decides L. Let c > 0
be a constant such that for every n ~ 1 it holds that depth(Cn)::; clogn.

172 7. The Nonsolvable Group Technique

For each 5-tuple of integers a, b, c, d, e such that {a, b, c, d, e}
{1, 2, 3, 4, 5}, (a b c d e) denotes the permutation that maps a to b, b to
c, c to d, d to e, and e to a. Define the following permutations in Ss:

a= (1 2 3 4 5), f3 = (1 3 54 2), and 'Y = (1 3 2 54).

Then 'Y is the commutator of a and /3, i.e., 'Y = /3- 1 oa- 1 of3oa. Furthermore,
define

00 = (1 2 5 3 4), 01 = (1 4 2 5 3), 02 = (1 4 3 2 5), and 83 = (1 5 3 2 4).

By inspection one can easily verify that the following fact holds.

Fact 7.5 001 o 'Y o 00 = a, 0} 1 o 'Y o 01 = /3, 02 1 o 'Y o 02 = a- 1, and
031 0 'Y 0 03 = /3-1.

Let n 2: 1 be fixed. Let u be the output gate of Cn. For each gate f in
Cn and each input x E {0, 1}n, let f(x) be the output off on input x. Then,
for all X E En, Cn(x) = u(x).

Let Q be a branching program on {0, 1 }n, let f be a gate in Cn, and let 0
and e be members of Ss. We say that Q is a (O,e) program for f if for every
x E {0, l}n, Q[x], the mapping induced by Q on input x, satisfies

Q[x] = { 0, if f(x) = 0, e, if f(x) = 1.

We will construct for each gate f in Cn its (Is, 'Y) program pi. Then, for
all X E En' P 11 [x] = Is if u(x) = 0 and P 11 [x] = 'Y if u(x) = 1. Note that
Is (1) = 1 and "1(1) = 3. So, P 11 fixes 1 and 'Y moves 1 to 3. So, P 11 is a width-5
branching program for £=n. The construction is inductive, proceeding from
the input level toward the output level.

First, let f be any input gate. Define pi as follows:

• Iff is labeled by Xi for some i, then pi= {(i,Is,"()}.
• Iff is labeled by Xi for some i, then pi= {(i,"(,Is)}.
• Iff is labeled by 1, then pi= {(1,"(,"()}.
• Iff is labeled by 0, then pi = {(1, Is, Is)}.

Then clearly pi is an (/s, 'Y) program for f.
Next, let f be a gate at a non-input level. Let g and h be the gates

providing inputs to f. Suppose that we have already obtained a size-k, (/s, 'Y)
program pg for g and a size-l, (Is, 'Y) program ph for h. We consider two cases:
f is an AND gate and f is an OR gate.

We first consider the case in which f is an AND gate. We construct a
program To from pg such that ITo I = IPg I and, for every x E {0, 1 }n,

To[x] = 001 o Pg[x] o Oo.

This is done as follows: Let (i, s, t) be the first instruction of pg. We replace
this instruction by by (i, so Oo, to Oo). Let R be the resulting program. Let

7.1 GEM: Width-5 Branching Programs Capture Nonuniform-NC1 173

(j, u, v) be the last instruction of R. We replace this instruction by (j, 001 o
u, 00 1 o v). This is T0 . Then T0 has the desired properties. By Fact 7.5,
001 o 'Yo 00 = o: and 001 o Is o 00 = Is. Since, PY is an (/s, 'Y) program for g,
T0 is an (/s, o:) program for g.

Similarly, construct T1 from ph using 01 in place of 00, T2 from PY simi
larly with 02 in place of Oo, and T3 from ph similarly with 03 in place of Oo.
Then, T1 is a size-l, (/s.f3) program for h, T2 is a size-k, (/s, o:- 1) program
for g, and T3 is a size-l, (/s, /3- 1) program for h.

Define p! to be the program that executes To, then T1 , then T2, and then
T3 . Then, for every x E {0, 1}n, the following conditions hold:

• If both g(x) = h(x) = 1, then Pf[x] = {3- 1 o o:- 1 o f3 o o: = 'Y·
• If g(x) = 1 and h(x) = 0, then Pf[x] =Is o o:- 1 o Is o o: =Is.
• If g(x) = 0 and h(x) = 1, then Pf[x] = {3- 1 o Is o f3 o Is= Is.
• if g(x) = h(x) = 0, then Pf[x] =Is o Is o Is o Is= Is.

So, p! is an (/s,"f) program for f and has size 2(k + l)::; 4max{k, l}.
Next we consider the case in which f is an OR gate. As in Case 1, we

construct p! from four programs T0 , ..• , T3. T0 is constructed from PY by
inserting 'Y- 1 o03 0"(before the first instruction and 03 1 after the last instruc
tion without increasing the program size. By Fact 7.5, 03 1 o 'Y- 1 o 03 = {3.
Since, PY is an (/s, 'Y) program for g, T0 is a (/3 o "(,"f) program for g. Thus,
To is a size-k, ({3 o "(, 'Y) program for g.

T1 is constructed from ph by inserting "(- 1 o02 before the first instruction
and 02 1 after the last instruction. By Fact 7.5, 02 1 o "(- 1 o 02 = o:. Since ph
is a size-l, (/s, 'Y) program for h, T1 is a size-l, (o:, Is) program for h.

For T2 we use PY and insert 'Y- 1 o 01 before the first instruction and 0~ 1

after the last. By Fact 7.5, o-; 1 o 'Y- 1 o 01 = /3- 1 ,Since PY is a size-k, (/s, 'Y)
program for g, T2 is a size-k, (/3- 1 , Is) program for g.

For T3 we use ph and insert "(- 1 o 00 before the first instruction and
appending 001 after the last. By Fact 7.5, 001 o 'Y- 1 o 00 = o:- 1 . Since ph is
a size-l, (/s, 'Y) program for h, T3 is a size-l, (o:- 1 , Is) program for h.

Now define pf to be the program that executes T0 , then T1 , then T2, and
then T3 . Then for every x E {0, 1}n, the following conditions hold:

• If g(x) = h(x) = 0, then Pf[x] = o:- 1 o {3- 1 o o: o ({3 o 'Y) =Is.
• If g(x) = 0 and h(x) = 1, then Pf[x] =Is o {3- 1 o Is o ({3 o 'Y) = 'Y·
• If g(x) = 1 and h(x) = 0, then Pf[x] = o:- 1 o Is o o: o 'Y = 'Y·
• If g(x) = h(x) = 1, then Pf[x] =Is o Is o Is o 'Y = 'Y·

Sop! is an (Is, "f) program for f and has size 2(k + l)::; 4max{k, l}.
Define Pn = P". Since depth(Cn) ::; clogn, IPnl ::; 4depth(Cn) ::; n2c.

Hence, L is recognized by a family of polynomial-size, width-5 branching
programs 0 Theorem 7.2

174 7. The Nonsolvable Group Technique

7.1.2 Programs over a Nonsolvable Group Capture NC1

We generalize the notion of branching programs. Let M be a finite monoid.
A program over M for r:n is a sequence of instructions P = {(ij, s~, sJ)}j=1

such that for all j, 1 ~ j ~ m, 1 ~ ij ~nand s~,sJ EM. For each string
x E r:n, P[x] is defined as

We say that P accepts x if P[x] =f. e, where e is the identity mapping of M.
For W s;;; r:n, we say that P decides W if for every x E r:n it holds that
x E W {::::::::} P accepts x. Let P = {Pn}n;::: 1 be a family of programs over M
such that, for every n ~ 1, Pn is a program for r:n. We say that P decides
a language L if for all n ~ 1 P n decides L =n. For a boolean function f over
{0, 1}n, and s0 , s 1 E M, we say that a program Pis an (so, s 1) program for
f if for every x E {0, 1}n the product generated by the instructions on input
x is so if f(x) = 0 and s 1 otherwise.

To prove that nonuniform-NC 1 s;;; 5-PBP, we showed that for all w E

{a, ,8, a-1 , ,a-1 , "Y }, for all integers n ~ 1 and d ~ 0, and for all depth-d,
bounded-fan-in circuits C with n inputs, there exists a length 4d, (15 ,w)
program for C. By generalizing this we can show that, for every nonsolvable
group G, there is an integer B > 0 such that, for all integers n ~ 1 and
d ~ 0, for all depth-d, bounded-fan-in circuits C with n inputs, and for all
s E G, both C and its negation have a size-Bd, (e, s) program, where e is the
identity of G.

Theorem 7.6 Let G be an arbitrary nonsolvable group. Let L be an ar
bitrary language in nonuniform-NC1 • Then L is decided by a family of
polynomial-size programs over G.

Proof The proof is almost the same as that of Theorem 7.2. Let G be
an arbitrary nonsolvable group. Since G is nonsolvable there exists some
nontrivial subgroup H of G such that G's derived series Go, G 1 , ... converges
to H. Let C be a circuit and let g be a gate in C. We define the height of
g in C to be the length of the longest downward path from g to any input
gate. Note that all input gates of C have height 0 and the output gate of C
has height depth(C).

Lemma 7. 7 Let n ~ 1. Let C be a bounded-fan-in circuit with n inputs.
Let H be an arbitrary nonsolvable group such that its commutator subgroup
(the group generated by the commutators of H) is identical to H. Let e be
the identity element of H and let s be an arbitrary element in H. For every
h, 0 ~ h ~ depth(C), and for every gate g inC having height h, g has an
(e, s) program over H and an (s, e) program over H, both having size at most
(4IIHII)h.

7.1 GEM: Width-S Branching Programs Capture Nonuniform-NC1 175

Proof of Lemma 7. 7 Let n, C, H, and e be as defined in the hypothesis.
Let B = 4\IHII- Let s be an arbitrary element in H. If s = e, then the
statement of the lemma trivially holds since for every gate gin C, {(1, e, e)}
is an (e, e) program for g. So, assume that s =f. e.

Note that in the boolean circuit model we use, the negation appears only
at the input level. We show that for every gate g in C there is an (e, s)
program, PY, for g having length at most (4\IHII)\ where h is the height of
g.

The proof is by induction on h. For the base case, let h = 0. Let g be a
gate having height h. We define the program for g as follows:

• If g is labeled by Xi for some i, then pg = {(i, e, s)}.
• If g is labeled by Xi for some i, then PY = {(i,s,e)}.
• If g is labeled by 1, then pg = {(1, s, s)}.
• If g is labeled by 0, then P9 = {(1, e, e)}.

Then PY is a desired (e, s) program for g.
For the induction step, let h = ho ;:::: 1 and suppose that the claim holds

for all values of h that are less than ho and greater than or equal to 0. Let g
be a gate having height h. Let g1 and g2 be inputs of g. Since the commutator
subgroup of His H itself, every element in H can be expressed as the product
of commutators of H. The minimum number of commutators of H necessary
to express s is at most IIHII· To see why, suppose that there exists some
s E H such that the smallest number of commutators of H that are needed
to express sis k > IIHII· Let t 1 · · · tk be commutators of H such that

For all i, 1 ~ i ~ k, the partial product ti · · · t 1 is a member of H. Since
k > IIH\1, there exist a pair of indices (i,j) such that 1 ~ i < j ~ k and
ti · · · t1 = t3 · · · t1. Then

This implies that a shorter expression for s exists, a contradiction. Thus, the
length of expression for each element of H has length at most IIHII· Lets be
expressed as

(7.1)

where 1 ~ k ~ IIHII and o:1, · · · ,o:k,{31, · · · ,f3k are commutators of H. The
gates g1 and g2 are at height ~ ho - 1. Then by our induction hypothesis,
for every i, 1 ~ i ~ k, there exist the following programs Pi, Qi, Ri, and Si:

• Pi is an (e,o:i) program for g1 and has length less than or equal to Bho- 1 •

• Qi is an (e, f3i) program for g2 and has length less than or equal to Bho- 1.
• ~is an (e, o:;--1) program for g1 and has length less than or equal to Bho- 1•

• Si is an (e, f3i 1) program for g2 and has length less than or equal to Bho-1.

176 7. The Nonsolvable Group Technique

LetT be the program that executes Pt,Q1,R1,St, ... Pk,Qk,Rk,Sk in that
order. For all x E En, if g1 (x) = g2(x) = 1, then T[x] = s. Also, if either
g1(x) = 0 or g2(x) = 0, then T[x] =e. Thus, Tis an (e, s) program for g.
Since k ~ IIHII and Pt,Q1,R1,St, ... Pk,Qk,Rk,Sk all have length at most
(4IIHI i)ho-1, the length of the program T is at most (4IIHI i)ho as desired.

To construct an (s,e) program for g having length at most (4IIHII)ho,
we follow the above construction with s- 1 in place of s to define an (e, s-1)

program for g. Let (i, ~. 0) be its first instruction. Then we replace this first
instruction by (i, ~ o s, 0 o s). The replacement turns the program into, while
preserving the program size, an (s, e) program for g.

The construction in the case when g is an V gate uses the same idea. Let
g' = •g, g~ = •g1, and g~ = •g2. Then g = •g' and g' = g~ 1\ g~. For all
gates g and all~. 0 E H, a(~, 0) program for g is a (0,~) program for •g. So,
we obtain an (e, s-1) program for g' and then replace its first instruction, say
(i, ~, 0), by (i, ~ o s, 0 o s). That turns the program into, while preserving the
program size, an (s, e) program for g', which is an (e, s) program for g.

0 Lemma 7.7
To complete the proof, note that NC1 circuits have depth O(logn) and

that B 0 (logn) = O(nclogB). Thus, the resulting program has polynomial
~. 0

7.2 Width-5 Bottleneck Machines Capture PSPACE

Let k ~ 2. Recall that SFk is the class of languages L for which there exists
some polynomial p and some polynomial time computable function f : E* x
E* --+ Mk such that for every x E E* it holds that

x E L {::::::::} (!(x, 1P(Ixll) o f(x, 1P(Ixll-1o) o ...

of(x, OP(Ixl)-11) o f(x,OP(Ixll)) (1) = 1.

By translating Theorem 7.2 to polynomial space-bounded computation, we
show that the power of SFs is exactly that of PSPACE.

Theorem 7.8 SFs = PSPACE.

In Theorem 7.2 branching programs are shown to be able to simulate NC1

circuits. In Theorem 7.8 rather than use a bottleneck machine to simulate a
PSPACE machine, we construct a polynomial-depth circuit from an instance
of QBF, a canonical complete language for PSPACE. We then show that a
width-5 bottleneck machine can evaluate all such circuits and determine for
each given instance, whether the instance is a member of QBF.

Proof of Theorem 7.8 SF5 ~ PSPACE holds because a polynomial
space-bounded Turing machine can, by cycling through all counter values,
compute the product of all the exponentially many mappings associated with

7.2 Width-5 Bottleneck Machines Capture PSPACE 177

a given input x. For the other direction, we will show QBF E SF5. Then,
since SF5 is closed under polynomial-time many-one reductions, it follows
that PSPACE ~ SF5.

Define a, {3, "f, and Oo, ... , (}3 as in the proof of Theorem 7.2. We will
define a polynomial-time computable function f : E* X E* --+ s5 such that for
every n ~ 1, and for every fully quantified boolean formula (of n variables,

f((, 12n) o ... of((, 02n) ="'if (E QBF and !5 otherwise.

This will establish that QBF E SF5. Since QBF is ~~-reducible to QBF, we
will then have QBF E SF5. In order to construct such a function we will be
scaling up the proof of Theorem 7.2, from logarithmic depth to polynomial
depth. Let (be a fully quantified boolean formula of the form

Q1x1 · · · QnXntp(xl, ... ,xn).

(can be naturally viewed as a bounded-fan-in boolean circuit in the shape
of a full binary tree having height n with 2n inputs, where the inputs of the
circuit are tp(O, ... , 0), ... , tp(1, ... , 1) and, for each i, 1 ~ i ~ n, the gates
at level i (distance i from the input level) are AND gates if Qn+l-i = V and
are OR gates if Qn+l-i = 3. Call this circuit Cr,. Since it is a tree, each
gate of Cr, can be specified uniquely by the downward path from the root
(the output gate). For each y E (E*)~n, the gate specified by y evaluates the
following formula:

• If y is the empty string, the formula is (.
• If 1 ~ IYI ~ n- 1, then the formula is

QIYI+lXIYI+l · · · QnXntp(bl' · · · 'biYI' XIYI+l' · · · 'Xn)'

where for every i, 1 ~ i ~ IYI, bi is the ith bit of y.
• If IYI = n, then the formula is <p(b1, ... , blyl), where for every i, 1 ~ i ~ n,

bi is the ith bit of y.

We apply the construction of a branching program described in Theorem 7.2
to Cr, to build a directed graph, Tr,, in the shape of a full quaternary tree
having height n. In Tr, each nonroot v is bidirectionally connected to its
parent. For each nonleaf of Tr,, we assign numbers 0, ... , 3 to its four children
from right to left. Since the nodes of Tr, are laid out in a full quaternary tree,
each node of Tr, can be specified by a unique downward path from the root.
Written in binary, for every m, 0 ~ m ~ n, the length of the path for each
node at depth m is 2m. The empty string specifies the root and for each m,
1 ~ m ~ n, and for each u = b1 · · · b2m E {0, 1 }2m, the string u specifies
the node that is reached from the root by the downward path along which
for each d, 1 ~ d ~ m, the edge towards the (b2d-lb2d)th child is selected at
depth d- 1, where 00, 01, 10, and 11 stand for 0, 1, 2, and 3, respectively.

We let each node of Tr, correspond to a fully quantified boolean formula.
Let u be a binary string such that lui is even and 0 ~ lui ~ 2n. The formula

178 7. The Nonsolvable Group Technique

corresponding to the node specified by u, denoted by F(u), is determined as
follows:

• If u is the empty string, F(u) = (.
• If2 :5 lui :5 2(n-1), then

where for every i, 1 :5 i :5 2m, bi is the ith bit of y.
• If lui = 2n, then

where for every i, 1 :5 i :5 2n, bi is the ith bit of y.

Next we label each edge and each leaf of Tc by an element of Ms. For
each edge e = (u, v), write AE (u, v) to denote the label assigned to e and, for
each leaf u, write Av(u) to denote the label assigned to u. Let u be any node
of Tc. Let P(u) denote the product of the labels, defined as follows:

• If u is a leaf, then P(u) = Av(u).
• If u is not a leaf, let vo, v1, v2, va be the four children of u, enumerated from

right to left. For each i, 0:5 i :53, let ai = AE(u,vi) and f3i = AE(Vi,u).
Then

P(u) =

f3a o P(va) o aa o fJ2 o P(v2) o a2 o

(31 o P(vl) o a1 o f3o o P(vo) o ao.

In other words, P(u) is the product of the all labels that are encountered
during the in-order traversal of the subtree rooted at u, where at every nonleaf
node, the children are visited from right to left.

We assign these labels are assigned so that, for all u, it holds that P(u) =
'Y if F(u) = 'Ifue and P(u) = Is otherwise. To accomplish this, we use
the construction in the proof of Theorem 7.2. Recall that, to construct a
program for an /\-gate or an V-gate, we concatenated four programs that were
constructed recursively, and that we inserted into each of the four programs
two constant mappings, one at the beginning and the other at the end. The
four children of a nonleaf node correspond to the four components, so for
each i, 0 :5 i :5 3, the downward edge to the ith child of u is labeled by the
constant mapping that is inserted at the very beginning of the ith component
and the upward edge from that child is labeled by the one inserted at the
very end.

More specifically we determine the labels as follows:

1. For every leaf u, it is labeled by 'Y if the formula corresponding to it
evaluates to 1 and Is otherwise.

7.2 Width-5 Bottleneck Machines Capture PSPACE 179

2. For every d, 0 ~ d ~ n- 1, such that Qd = V, for every nonleaf u at
depth d, and for every r, 0 ~ r ~ 3, the label of the edge going to the
rth child from right is Or and the label of the edge coming back from the
child is o:; 1 .

3. For every d, 0 ~ d ~ n - 1, such that Qd = 3, for every nonleaf u at
depth d, and for every r, 0 ~ r ~ 3, the label of the edge going to the
rth child from right is
• ')'- 1 o 03 o 'Y if r = 0 and
• ')'- 1 o 03-r if r = 1, 2, 3,
and the label of the edge coming back from the rth child is 03,!r.

Now we show that these labels give us the property we need.

Fact 7.9 For every node u ofTc;, P(u) =')'if F(u) = 'frue and 15 otherwise.

Proor'of Fact 7.9 We prove the fact by induction on the height h of the
subtree of Tc; rooted at u . For the base case, suppose that h = 0. Then u is a
leaf. Then P(u) = Av(u). According to rule 1, Av(u) equals')' if F(u) = 'frue
and equals 15 otherwise. Thus the claim holds for h = 0.

For the induction step, suppose that h = ho for some ho > 0 and that
the claim holds for all values of h less than ho and greater than or equal
to 0. Let u be a node such that the subtree rooted at u has height h. Let
Q = Qn+l-h· First suppose that Q = V. Let vo, ... , V3 be the children of u
enumerated from right to left. Note that the downward path from the root
to vo is identical to that to v2 except that the second-to-last bit is a 0 for vo
and is a 1 for v2. Since the second-to-last bit is not used to determine F(v0)

or F(v2), we have F(vo) = F(v2). For much the same reason, F(v1) = F(v3).
Since Q = V, F(u) = F(v0) 1\ F(v1). By rule 2, P(u) is

(031 o P(v1) o 03) o (021 o P(vo) o 02)

o (01 1 o P(v1) o 01) o (001 o P(vo) o Oo).

By our induction hypothesis, P(vo) = ')' if F(vo) = 'frue and P(v0) = 15

otherwise, and the same holds for P(v1). According to the analysis for the
case in which f is an AND gate on page 172, we have the following:

• 031 oP(v1)o03 is equal to /3- 1 if F(v1) = 'frue and is equal to 15 otherwise.
• 021oP(vo)o02 is equal to a-1 if F(vo) = 'frue and is equal to 15 otherwise.
• 011 o P(v1) o 01 is equal to f3 if F(v1) = 'frue and is equal to 15 otherwise.
• 001 o P(vo) o Oo is equal to a if F(vo) = 'frue and is equal to 15 otherwise.

Thus, P(u) =')'if P(v1) = P(vo) = 'frue and P(u) = 15 otherwise. Hence,
the claims holds for the case when Q = V.

Next suppose that Q = 3. By following an analysis similar to the above,
P(u) is equal to

(Oo o P(v1) o ')'-1 o 001) o (01 o P(v0) o 'Y-1 o 011)

o (02 o P(v1) o ')'- 1 o 021) o (03 o P(v0) o ')'- 1 o 0317).

180 7. The Nonsolvable Group Technique

By our induction hypothesis, P(vo) = "Y if F(vo) = True and P(vo) = Is
otherwise, and the same holds for P(vl). Then, by inverting (001 o"Yo00)- 1 =
a, we have the following:

• 00 o P(v1) o "Y- 1 o 001 is equal to Is if F(v1) = True and is equal to a- 1

otherwise.

Similarly, we have the following:

• 01 o P(vo) o "Y- 1 o 01 1 is equal to Is if F(vo) = True and is equal to {3- 1

otherwise.
• 02 o P(v1) o "Y- 1 o 02 1 is equal to Is if F(vl) = True and is equal to a

otherwise.
• 03 o P(v0) o "Y- 1 o 03 1 is equal to "Y if F(v0) =True and is equal to {3 o "Y

otherwise.

Since a-1 o {3-1 o a o {3 = "'f- 1 , P(u) = "Y if F(u) =True and P(u) = Is
otherwise. Hence, the claim holds for the case where Q = 3. Thus, the claim
holds for all d, 0 $ d $ n. 0 Fact 7.9

Let u be the root ofT,. Now it suffices to show that there is a polynomial
time computable function f such that

P(u) = J((, 12n) o .. · of((, o2n).

Recall that the definition of P(u) corresponds to the in-order traversal of
the tree. For each w = b1 · · · b2n E E2n \ {o2n, 12n }, we define f((, w) to
be the product of all the labels that are encountered while moving from the
leaf w' to the leaf w during the in-order traversal of the tree, where w' is
the predecessor of w in E2n. We define f ((, o2n) to be the product of all
the labels that are encountered while moving from the root to the leaf o2n
during the traversal and J((, 12n) to the product of all the labels that are
encountered while moving from the leaf 12n-lo to the root. More precisely,
f ((, w) is defined as follows:

1. If w = o2n, then

!((, o2n) = Av(o2n) 0 AE(o2n-2, o2n)o

.•. 0 AE(OO, 0000) 0 AE(t, 00).

2. If w = 12n, then

f((, 12n) = AE(ll, t) o AE(llll, 11) o · · · OAE(12n, 12n-2)o
Av(12n) o AE(12n-2' 12n) o AE(12n10, 12n-2).

3. If w = w1 · · · W2n E E2n \ {02n, 12n}, let w' = wi · · · w~n denote the
predecessor of w in { 0, 1} 2n. Let m be the largest integer i such that the
prefix of w having length 2i is equal to the prefix of w' having length 2i.
In other words, w1 · · · w2m is the least common ancestor of w and w'.
We define

7.3 Width-2 Bottleneck Computation 181

f((,w) = Av(w)o

AE(wl · · · W2n-2,w) o · · · o AE(wl · · · W2m 1 WI · · · W2m+2) o

\(I I I I) \(II I) /\E WI ... W2m+2• WI •.. W2m o ... o AE W 'WI ... W2n-2 .

It is easy to see that the product

is equal to R,. The labels AE and Av can be easily computed. The number
of terms in each value off is bounded by 2n + 1 (the maximum is achieved
when w = b1c102n- 2 for some b1c1 E {01,10,11}). So f is polynomial-time
computable. Thus, QBF E SFs. Hence, PSPACE <;;;; SFs. 0 Theorem 7.8

7.3 Width-2 Bottleneck Computation

In the previous section, we showed that width-5 bottleneck Turing machines
capture PSPACE. Here we study the complexity of width-2 bottleneck com
putation from three angles. First, we ask what power polynomial-size width-2
bottleneck Turing machines possess. Second we ask, in regards to width-2
computation, how important the order of the instructions is. Then finally we
ask how much computational power is added if the machines are allowed to
behave probabilistically. In the following discussion let v=1 (respectively, v=2)

denote the constant function in M2 that maps both 1 and 2 to 1 (respectively,
2).

7.3.1 Width-2 Bottleneck Turing Machines

$0ptP is the class of all languages L for which there exists a language A E $P
and a function g E OptP such that for every x E E*

x E L <==> (x, g(x)) EA.

The goal of this section is to prove the following theorem, which states that
the class of languages accepted by polynomial-time width-2 bottleneck com
putation is identical to $0ptP.

Theorem 7.10 SF2 = $0ptP.

Proof Throughout this proof we use the following notation. For each string
y, rank(y) denotes the rank of y in EIYI. Also, for each integer n ~ 1 and i,
1 $ i $ 2n, strn(i) denotes the stringy E En such that rank(y) = i.

We first prove that SF2 <;;;; $0ptP. Suppose that L E SF2 . There exists a
polynomial p and a polynomial-time computable function f : E* x E* - M 2

such that, for every x E E*,

182 7. The Nonsolvable Group Technique

For each x E E*, define

Q[x] = f(x, 1P(Ixll) 0 ... 0 f(x, OP(Ixll).

Then, for all x E E*,

x E L {::::=:} Q[x] E {h v=l}·

Define N to be the nondeterministic 'lUring machine that, on input x E E*,
guesses a stringy E EP(Ixl) and then outputs rank(y) if f(x,y) E {v=1,v=2}
and outputs 0 otherwise. N can be polynomial time-bounded. For all x E E*,
N on input x outputs a nonnegative integer along each computation path.
Let g be the OptP function defined by N, i.e., for all x E E*,

g(x) = ma.x{i EN I some path of N(x) has i as its output}.

For each x E E* and each i ~ 0, define

M(x, i) = II{ z I z E EP(Ixl) 1\ rank(z) ~ i + 1 1\ f(x, z) = (1 2)}11·

Define

A = { (x, i) I x E E* 1\ i ~ 0 1\

((i = 0 1\ M(x, 0) is an even number) V

(1 ~i~p(lxl) 1\f(x,strP(Ixl)(i)) =V=l/\

M(x, i) is an even number) V

(1 ~ i ~ p(lxl) 1\ f(x, strP(Ixl)(i)) = v=2 1\

M(x, i) is an odd number))}.

Then A E ®P. To see why, let

A'= {(x,i) I x E E* 1\0 ~ i ~ 2P(Ixl) 1\ M(x,i) is an odd number}.

Then A' E ®P and A ~l-tt A'. By part 2 of Proposition 4.8, ®P is closed
under ~~-reductions. So, A E ®P. We now prove that the membership in L
can be decided by the membership A with g as advice.

Fact 7.11 For every x E E*, x E L {:::::;:} (x,g(x)) EA.

Proof of Fact 7.11 Let x E E* be fixed. We consider the following three
possibilities:

• g(x) = 0,
• 1 ~ g(x) ~ 2P(Ixl) and f(x,strp(lxl)(g(x))) = v=b and
• 1 ~ g(x) ~ 2P(Ixl) and f(x,strP(Ixl)(g(x))) = V=2·

7.3 Width-2 Bottleneck Computation 183

First consider the case when g(x) = 0. Since g(x) = 0, for all y E EP(JxJ),
f(x,y) E {/2, (1 2)}. So, x E L {::::::::} Q(x] = /2. It holds that

(x, 0) E A {::::::::} M(x, 0) is an even number

and
Q[x] = /2 {::::::::} M(x, 0) is an even number.

Thus, x E L {::::::::} (x,g(x)) EA.
Next consider the case when 1 ~ g(x) ~ 2P(JxJ) and /(x,strp(JxJ)(g(x))) =

v=l· It holds that Q(x] E {v=b v=2}· So, x E L {::::::::} Q(x] = v=l· It holds
that

(x,g(x)) E A {::::::::} M(x,g(x)) is an even number

and
Q(x] = v= 1 {::::::::} M(x,g(x)) is an even number.

Thus, x E L {::::::::} (x,g(x)) EA.
Finally, consider the case when 1 ~ g(x) ~ 2P(JxJ) and

f(x,strp(JxJ)(g(x))) = v=2· It holds that Q(x] E {v=l,v=2}· So, x E L {::::::::}
Q(x] = v=l· It holds that

(x,g(x)) E A {::::::::} M(x,g(x)) is an odd number

and
Q[x] = v= 1 {::::::::} M(x,g(x)) is an odd number.

Thus, x E L {::::::::} (x,g(x)) EA. 0 Fact 7.11
By Fact 7.11, we have L E EBOptP.
Next we prove that $0ptP ~ SF2. Let L be a language in EBOptP. Let

A be a language in EBP and let g be a polynomial, such that A and g jointly
witness that L E $0ptP, i.e., for all x E E*,

x E L {::::::::} (x,g(x)) EA.

Since g E OptP, there is a polynomial-time nondeterministic Turing machine
such that, for every x E E*, g(x) is the maximum of the output values of the
machine on input x. By definition, for every x E E*, N on input x outputs
a nonnegative integer along each computation path. Let p be a polynomial
that bounds the runtime of N. Then, for all x E E*, each output string of
N on input x has at most p(Jxl) bits. This implies that, for all x E E*, each
output of N on input x is in the interval (0, 2P(JxJ) - 1]. On the other hand,
for each x E E*, the rank of a string having length p(JxJ) is in the interval
(1, 2P(JxD]. So, for each x E E*, we correspond EP(JxJ) to {0, ... , 2P(JxJ) - 1}
by letting each y E EP(JxJ) represent the integer rank(y)- 1.

We may assume that at each computation step, N has two possible (not
necessarily distinct) moves. Then, for all x E E*, each computation path of
Non x can be uniquely encoded as a string of length p(Jxl). Since A E EBP,
there exist a polynomial r and B E P, such that, for all x E E*,

184 7. The Nonsolvable Group Technique

x E A <===> II{Y I y E Er(lxl) 1\ (x,y) E B}ll is an odd number.

We can choose the polynomial r so that it is strictly increasing, i.e., for all
n ~ 0, r(n + 1) > r(n). Take k to be the smallest integer such that, for all
n ~ 0, knk + k ~ r(n). We'll replace r(n) by r'(n) = knk + k and replace B
by

B' = { (x, yw) I y E Er(lxl) 1\ w = or'(lxl)-r(lxl) 1\ (x, y) E B}.

Then r' is strictly increasing and, for all x E E*,

II{Y I Y E Er(lxl) 1\ (x,y) E B}ll = II{Y I Y E Er'(lxl) 1\ (x,y) E B'}ll·

Let l be a polynomial such that, for all x E E* and i, 0 ~ i ~ 2P(Ixl) - 1,
i(x,i)l ~ l(ixi). Define s(n) = 2p(n) +r'(l(n)).

Define f : E* X E* --+ M2 as follows: Let x, w E E*.

• If lwl -:f. s(ixi), f(x, w) = h.
• If lwl = s(ixi), let yzuv be the decomposition of w such that IYI = izl =

p(ixi) and lui = r'(l(i (x, rank(y)- 1) 1)). Then the value of f(x, w) is de
fined as follows:
-If N on input x along path z outputs rank(y) - 1, u E 0*,

((x,rank(y) -1),u) E B', and v E 0*, then f(x,w) = 11=l·

- If N on input x along path z outputs rank(y) - 1, u E 0*,
((x,rank(y) -1),u) fJ B', and v E 0*, then f(x,w) = 11=2·

- If N on input x along path z outputs rank(y) - 1, u fJ 0*,
((x,rank(y) -1),u) E B', and v E 0*, then f(x,w) = (1 2).

- Ify, z, u, and v satisfy none of the three conditions above, then f(x,w) =
12.

Let x E E* be fixed and let n = lxl. Let y = strp(n)(g(x) + 1) and let
z = max{z E EP(n) IN(x) outputs g(x) along the computation path z}. Then,
rank{Y) = g(x), and for ally, z E EP(n) and w E Es(n)-2p(n), if yz <lex yz,
then f(x, yzw) = 12. Also, f(x, yzOs(n)-2p(n)) E {11=1!11=2}. So,

f(x, 1 s(n)) 0 ••• 0 f(x, os(n))

= f(x, yz1 s(n)-2p(n)) 0 ••• 0 f(x, yzos(n)-2p(nl).

Let a= r'(l(l(x,g(x)rank(y) -1)1)) and let f3 = s(n)- 2p(n)- a. Then, for
all u E E"' and v E E.8 \ {0.8},

f(x, yzuv) = 12.

So,

f(x, yZl s(n)-2p(n)) o ... o f(x, yz0s(n)-2p(n))

= f(x,yzu2"o.B) o f(x,yzu2"-lo.B) o · · · o J(x,yzu20.8) o f(x,yzulo.B),

where for every i, 1 ~ i ~ 2"', Ui = str0 (i), i.e., the ith smallest string in
E"'. For each i, 1 ~ i ~ 2"', let <f'i = (1 2) if ((x,g(x)),ui) E B' and <f'i = h
otherwise. Note that

7.3 Width-2 Bottleneck Computation 185

and that

f(x Az o.B) = { V=i if ((x,r~nk(y) -1),yi) E B',
' y Yi v=2 otherwise.

So,

f(x, yzu2"'0.a) o f(x, yzu2"'-io.B) o · · · o f(x, yzu20.a) o f(x, yzuio.a)

= CfJ2"' o · · · o CfJi o V=2·

Note that ll{i 11 ~ i ~ 2<> 1\ CfJi = (12)}11 = ll{i 11 ~ i ~ 2<> 1\ ((x,g(x)),ui) E
B'}ll· Also, ll{i 11 ~ i ~ 2<> 1\ ((x,g(x)),ui) E B'}ll is an odd number if and
only if (x, g(x)) E A. So, we have

Thus,

"' 0 •.• 0 0 V- = { v=i if (x,g\x)) E A,
cp2 CfJi - 2 v=2 otherwise.

f(x, 1s(n)) 0 ••• 0 f(x, os(n)) = { V=i if X E L,
v=2 otherwise.

Hence, L E SF2.

7 .3.2 Symmetric Width-2 Bottleneck Turing Machines

0

We now consider symmetric bottleneck Turing machines. They are defined
by allowing bottleneck Turing machines to execute their tasks in arbitrary
order, and by demanding that, no matter what the order is, the product of
the tasks (as mappings) fixes 1 if and only if the input is to be accepted.

We will show that width-2 symmetric bottleneck Turing machines are
much weaker than width-2 bottleneck Turing machines, as every language in
SSF 2 is the disjoint union of a language in NP and another in EBP.

Theorem 7.12 For every L E coSSF2, there exist disjoint sets Li and L2,
LiE NP and L2 E EBP, such that L = Li U £2.

Proof Let L E coSSF2 be witnessed by a polynomial-time computable func
tion f and a polynomial p such that for every x E E* and every permutation
1r of EP(Ixl), it holds that

x E L {:::::::? (!Cx,7r(F(Ixl))) o ... o f(x,7r(OP(ixD))) (1) = 1,

or equivalently,

x E L {:::::::? (f(x,7r(1P(Ixl))) o · · · o f(x,7r(OP(ixi)))) (1) = 2.

186 7. The Nonsolvable Group Technique

For each x E E*, define S(x) to be the set of all p. E M2 such that for some y E
EP(Ixl) it holds that f((x, y}) = p.. Since f(x, 7r(1p(lxl))) o · · · o f(x, 7r(OP(Ixll))
maps 1 to the same index regardless of the choice of 7r, at most one element
from {v=1 , v=2, (1 2)} can be in S(x). Then, for every x E E*, x E L if and
only if either S(x) contains v=2 or (S(x) contains (1 2) and there is an odd
number of y E EPCixl), such that f((x, y}) = (1 2)). The former condition can
be tested by an NP set

Ll ={xI (:lyE EP(Ixll)[f((x,y}) = v=2]}

and the latter can be tested by a EBP set

L2 = {x III{Y I Y E Ep(lxl) 1\ f((x,y}) = (1 2)}11 is an odd number}.

Thus, L = L1 U L2. For all x E E*, if x E L2, then (1 2) E S(x), so
v=2 ¢ S(x), and thus, X¢ Ll. Thus, Ll n L2 = 0. 0

7.3.3 Probabilistic Symmetric Bottleneck Turing Machines

The power of width-2 symmetric bottleneck Turing machines is, as we showed
in the previous theorem, very restricted. They do not seem powerful enough
to include the polynomial hierarchy. However, if they are endowed with access
to randomness, they gain the polynomial hierarchy.

Theorem 7.13 ProbabilisticSSF2 = NPPP.

Proof First we show that ProbabilisticSSF2 2 NPPP. Let L be any lan
guage in NPPP. We claim that there exists a polynomial p and a language
A E C=P such that, for every x E E*, x E L if and only if there exists some
y E EP(Ixl) such that (x, y} E A. To see why this claim holds, let N be a
polynomial time nondeterministic Turing machine and let B be a language
in PP such that L(N8) = L. Let B E PP and let this be witnessed by
a polynomial-time nondeterministic Turing machine M such that, for every
x E E*, x E B ¢=:::} #gapM(x) 2: 0. Let q be a polynomial bounding the
runtime of N. There is a polynomial r such that, for every x E E* and ev
ery potential query y of Non x, both #accM(Y) and #rejM(Y) are strictly
less than 2r(lxl). Define T to be a nondeterministic polynomial-time oracle
machine that, on input x E E*, behaves as follows:

Step 1 T nondeterministically simulates N on x. Each time N makes a
query, instead of making that query, N guesses a single bit b E {0, 1}
and then returns to the simulation assuming that the oracle answer is
affirmative if b = 1 and the oracle answer is negative if b = 0.

Step 2 T rejects x immediately if N on input x rejects along the compu
tation path simulated in Step 1.

7.3 Width-2 Bottleneck Computation 187

Step 3 Let Yl, . . . , Ym be an enumeration of all the queries made by N
along the computation path that has been simulated in Step 1. For each
i, 1 :5 i :5 m, T guesses Yi, Zi E Er(lxl) and sets O:i to the rank of Yi in
Er(lxl} and f3i to the rank of Zi in Er(lzl).

Step 4 T tests whether there is some i, 1 :5 i :5 m, such that either
• O:i ~ f3i and the bit b guessed for query Yi during the simulation in

Step 1 is a 0, or
• o:i < f3i and the bit b guessed for query ·yi during the simulation in

Step 1 is a 1.
If there is such an i, T immediately rejects x.

Step 5 T asks its oracle whether {'v'i, 1 :5 i :5 m) [o:i = #accM(Yi) 1\ f3i =
#rejM(Yi)]. T accepts x if ~he answer from the oracle is affirmative and
rejects x otherwise.

Clearly, the machine T runs in polynomial time. Define

Wacc = {(y,m) I Y E E* 1\ m ~ 01\ m = #accM{Y)}

and
Wrej = {(y, m) I y E E* 1\ m ~ 01\ m = #rejM(y)}.

Then both Wacc and Wrej belong to C=P. The queries in Step 5 can be done
by a single, conjunctive query to the marked union of Wacc and Wrej. Since
C=P is closed under :5~tt-reductions (see Theorem 9.9), there is a language
D E C=P such that D can answer the conjunctive query that is made in
Step 5. Let p be a polynomial bounding the runtime ofT. Since T is poly
nomial time-bounded, there is a polynomial p such that, for all x E E*, each
computation path ofT on input x can be encoded as a string having length
at most p(lxl). Define A = { (x, u) I x E E* 1\ u E EP(!xl) 1\ u is an accepting
computation path of T on input x 1\ the query that T on input x makes in
Step 5 along path u belongs to D}. Then "A:5~D, and thus, A E C=P. Since
for every x E E*,

x E L ¢:::=:> (3u E EP(!xD) [(x,u) E A],

the claim holds.
Since A E C=P, there exist a language B E P and a polynomial q, such

that for all x E E*,

X E A ¢:::=:> II{Y E Eq(!xl) I (x, y) E B}ll = ll{y E Eq(!xl) I (x, y) ¢ B}ll.

Define f : E* X E* -+ { (1 2), h} to be the probabilistic function defined by the
following machine M1: On input (x, y), x E E* andy E EP(!xl), Mf selects z
from Eq(!(x,y)l) uniformly at random and then outputs {12) if ((x,y),z) E B
and outputs h otherwise. For each x E E* and y E EP(!xl), define

d((x, y)) = Pr[f((x, y)) = /2] - Pr[f((x, y)) = {1 2)].

188 7. The Nonsolvable Group Technique

Then, for all x E E* and y E EP(Ixl),

(x,y)EA <==:::} d((x,y))=O.

By routine calculation, for every x E E* and every permutation 1r of EP(Ixl),

Pr [(f(x,7r(1P(Ixl)))o ··· of(x,7r(OP(Ixl)))) (1) = 1]

-Pr [(!(x, 7r(1P(Ixl>)) o · · · o f(x, 7r(OP(Ixl>))) (1) = 2]

II d((x, y)).
yEEP(Izl)

Since the sum of the two terms on the left-hand side of the formula is 1, we
have

Pr [(f(x,7r(1P(Ixl)))o ··· of(x,7r(OP(Ixl)))) (l) = 1]

1 1
=2+2 II d((x,y)).

yEEP(Izll

So, for every x E E*, the following conditions hold:

• If x E L, then for some y E EP(Ixl) it holds that d(x, y) = 0, so, for every
permutation 1r of EP(Ixl),

Pr [(f(x, 7r(1P(Ixl>)) o · · · o f(x, 7r(OP(Ixl)))) (1) = 1 J = ~-

• If x (/_ L, then for every y E EP(Ixl) d(x, y) =f. 0, so, for every permutation
7r of EP(Ixl)'

Hence, L E ProbabilisticSSF2.
Conversely, suppose that L E ProbabilisticSSF 2. There exist a polyno

mial time probabilistic 'lUring machine T that defines, on each input x, a
distribution over M2 and a polynomial t, such that, for every x E E*, and
every permutation 1r over Et(lxl),

1 x E L <==:::} Pr[f(x, 7r(1t(lxl>)) o · · · o f(x, 7r(Ot(lxl)))(1) = 1] = 2 .

Let p be a polynomial that bounds the runtime ofT. Let x E E* be fixed. Let
M = 2t(lxl). For each i, 1 ~ i ~ M, let ai = Pr[f(x, Yi) = /2]- Pr[f(x, Yi) =
(1 2)] and f3i = Pr[f(x,yi) = v= 1]-Pr[f(x,yi) = v=2], where Yi is the string
in Et(lxl) having rank i.

For each permutation 1r of {1, ... , M}, let Q[1r] denote

{31r(M) + a1r(M)(f31r(M-l) + a1r(M-l)(· · ·

f31f(2) + a1f(2)(f31f(l) + a1f(l)))).
(7.2)

7.3 Width-2 Bottleneck Computation 189

By routine calculation, for all permutations 1r of {1, ... , M}, it holds that

Q[1r] = Pr [(f(x, 1r(M)) o .. · o f(x, 7r(1))) (1) = 1]

-Pr [(f(x, 1r(M)) o .. · o f(x, 7r(1)))(1) = 2].

Then, for every permutation 7r of Et(ixl),

X E L ¢:=} Q[7r] = 0.

Let r be a polynomial such that, for all u E E* and v E EP(iui), q(l (u, v) I) ~
r(lvl). We claim that x E L if and only if one of the following two conditions
holds:

(*) For some i, 1 ~ i ~ M, ai = f3i = 0.
(**) There exist some m, 1 ~ m ~ r(lxl) and j 1 , ••• ,jm E {1, ... , M} such

that
• for every i E {1, ... ,M} \ {jl, ... ,jm}, f3i = 0, and
• {3;"' + a;"' (... {3h + ah (f3it + a it)) = 0.

First we show that x E L if either (*) or (**) holds. Suppose that (*) holds.
Let i E {1, ... , M} be such that ai = f3i = 0. Let 1r be a permutation of
{1, ... , M} that maps M to i. Then, by (7.2), for some real number Z, it
holds that Q[1r] = ai + f3iZ. Since ai = f3i = 0, this implies that Q[1r] = 0.
Thus, x E L. Next suppose that (*) does not hold and (**) holds. Let m E

{1, ... ,r(lxl)} and j 1 , ..• ,jm E {1, ... , M} for which the two conditions of
(**)hold. Let 1r be a permutation such that for every i, 1 ~ i ~ m, 1r(i) = }i.
Then

Q[7r] =

(IT ai) ({3;"' + a;M (.. · {332 + ah (f3it + a;t))) ·
iE{l, ... ,M}\{it. ... dm.}

By the second condition of(**), the second term on the right-hand side is 0.
Thus, Q[1r] = 0, and thus, x E L.

Next we show that if x E L then either (*) or (**) holds. Suppose that
x E L. Let K = {iIi E I 1\ f3i =f 0} and M' = IIKII· Let S = {a I a is a
permutation of {1, ... , M} 1\ a({1, ... , M'}) = K}. For each a E S, let Let
Q'[a] be the formula Q[a] with everything beyond index a(M') eliminated,
i.e.,

f3u(M') + au(M') (f3u(M'-1) + au(M'-1) (· · ·

· · · f3u(2) + au(2)(f3u(l) + au(l)))).

Then, as we have seen in the previous part of the proof, for all a E S,

Q[a] = Q'[a] IT
iE{l, ... ,M}\K

(7.3)

190 7. The Nonsolvable Group Technique

Since x E L by our assumption, this implies that for all a E S, either Q'[a] = 0
or niE{l, ... ,M}\K ai = 0. We will show that if(*) does not hold, then (**)
holds. Suppose that (*) does not hold, i.e., for every i E {1, ... , M} \ K,
a =f. 0. Then, niE{l, ... ,M}\K ai =f. 0. So, for all a E s, Q'[a] = 0. We will
show below that M' ~ r(lxi). Then(**) holds for an arbitrary enumeration
j 1 , ..• ,JM' of the members of K.

Note that, for every i E {1, ... , M}, I ail+ I,Bil ~ 1. For every i E K,
,Bi =f. 0. This implies that for all i E K ai =f. 1 ai =f. -1. We also claim that, for
every i E K, ai =f. 0. To see why, assume that there is some i E K such that
ai = 0. Take a E S to be the one that maps M' to this i. Then Q'[a] = ,Bi.
This implies ,Bi = 0, a contradiction because i E K. Furthermore, note that
(**) trivially holds if M' = 1. Suppose M' = 1. Let i be the only element
of K. Then, for all a E S, Q'[a] = ,Bi + ai and this is 0. So, (**) holds with
m = 1 and Jm = i. In the following discussion, we thus assume that M' ~ 2
and that for all i E K ai f/. {-1,0, 1}.

Let k and l be two distinct elements of K. Let 71' E S be such that
11'(M') = k and 11'(M'- 1) = l. Let a be the permutation in S such that
a(M') = l, a(M'- 1) = k, and for all i E {1, ... , M} \ {k, l}, a(i) = 11'(i).
Let

() = ,81r(M' -2) + a1r(M' -2) (,81r(M' -3) + a1r(M' -3) (· · · ,81r(l) + a1r(l))) ·

Then

and
Q'[a] = ,Bz + az(,Bk + akO).

By our supposition, Q'[11'] = Q'[a] = 0, so Q'[11'] = Q'[a]. By canceling aka10,
we obtain

,Bk(1- az) = ,Bz(1- ak)·

Since l E K, az =f. 1. So, we have

,B 1- ak,B
k=--- l·

1-az

This relation holds for all pairs of distinct indices (k, l) inK.
Let j~, ... ,JM' be an arbitrary enumeration of all elements inK. Then

for every k, 2 ~ k ~ M',
1-a·

,Bik = 1 Jk ,Bit.
-ail

Let 71' E S such that for all k, 1 ~ k ~ M', 11'(k) = Jk· In the expression of
Q'[11'], for each k, 2 ~ k ~ M', replace ,Bik by ~=:i& ,Bj1 • Then we have

31

7.3 Width-2 Bottleneck Computation 191

where (= nl~k~M' O'.jk. Since Q'[7r] = 0 by our supposition,

/3]1 + (1- 0'.]1- /3]1)(= 0. (7.4)

By definition of r, for all y E Et(lxl) and J.t E M2, the preciSion of the
probability that T on input (x, y) outputs J.t is at most r(lxl). For alll E K,
0'.! ¢ { -1, 0, 1 }. Thus, for every l, 1 ~ l ~ M', there exist some odd (not
necessarily positive) integer hk and some positive integer dk such that O'.j1 =
f.f,;-. This implies that (= ~for some odd (not necessarily positive) integer
ho and some positive integer Do 2: M'. Note that 1 - 0'.31 - /331 =/= 0. This is
because if 1 - a 11 - /331 = 0 then by equation 7.4 we have Q'[1r] = {311 = 0,
contradiction our assumption that j1 E K. So, the term (1- a 11 - {311)(
appearing in equation 7.4 can be written as -!{:; for some odd (not necessarily
positive) integer H and some positive integer D 2: M'. Furthermore, {311 =

~ for some odd (not necessarily positive) integer H' and a positive integer
lJ' ~ r(lxl). Now we have

I H' H H'2D-D' + H
Q [7r] = 2D' + 2D = 2D = 0.

Since both H' and H are odd integers, the numerator H'2D-D' + H is not 0
unless D = D'. So, D = D'. Note that D 2: M' since (is the product of M'
terms, none of which belong to { -1, 0, 1 }. So, if M' > r(lxl), clearly, D =I= D'.
Thus, M' ~ r(lxl). Thus, (**) holds.

Now we consider the complexity of testing(*) and (**). Define

Ta = { (x, i, H} 11 ~ i ~ 2t(lxl) 1\ - 2r(lxl) ~ H ~ 2r(lxl) (\

and the value of O'.i for the input x is 2r~xl) }

and

T13 = { (x, i, H} 11 ~ i ~ 2t(lxl) 1\ - 2r(lxl) ~ H ~ 2r(lxl) (\

and the value of f3i for the input x is 2r!l)}.

Then Ta and T13 are in C=P. We will leave the task of verifying this claim to
the reader.

Let g E GapP be a function for checking the value of f3i in C=P, i.e., for
every x E E*, every i, 1 ~ i ~ 2t(lxl), and every integer H in the interval
[-2r(lxl), 2r(lxl)],

H
Pr[f(x, Yi) = v=l] - Pr[f(x, Yi) = v=2] = 2r(lxl) {::::::::} g(x, i, H) = 0,

where Yi denotes the string in Et(lxl) having rank i. For each x E E* and each
nonempty J ~ {1, ... , 2t(lxl)} having cardinality at most r(lxl), define

192 7. The Nonsolvable Group Technique

g'(x, J) =
iE{l, ... ,2t(lzll}\J

Then, by parts 3 and 5 of Proposition 9.3, g' E GapP. Then, for a given J,
part 1 of (**) can be tested by asking whether g'(x, J) = 0. This is a query
to a C=P language.

Now consider a nondeterministic Turing machine that, on input x E E*,
nondeterministically selects and executes one of the following two tasks:

Task 1 Nondeterministically select i, 1 ~ i ~ 2t(lxl). Ask the oracle
whether ai = f3i = 0. Accept x if the answer of the oracle is positive
and reject x otherwise.

Task 2 Perform the following three operations:
• Nondeterministically select m, 1 ~ m ~ r(lxl), J1, ... ,Jm, 1 ~ J1 <

· · · < Jm ~ 2t(lxll, integers a1, ... ,am, b1, ... ,bm between -2r(lxl)
and 2r(lxl) 0

• Test whether the second condition of(**) holds with, for all i, 1 ~ i ~
m, ai/2p(lxl) in place of O!j; and with f3j; in place of bi/2P(Ixl) for /3j;.

If the test fails, then immediately reject x.
• Ask the oracle whether the first condition of (**) holds. Accept x if

the answer is positive and reject x otherwise.

By the discussion in the above, a C=P oracle can answer each of the questions
that are made. Obviously, the machine is polynomial-time bounded. Thus,
L E NPC=P. D

7.4 OPEN ISSUE: How Complex Is Majority-Based
Probabilistic Symmetric Bottleneck Computation?

Theorem 7.13 states that probabilistic symmetric bottleneck computation
captures precisely NPC=P. We define ProbabilisticSSF2 using "the exact half"
as the membership criterion. Namely, for every x and every permutation of
the mappings, xis a member if and only if the probability that 1 is mapped
to 1 is exactly a half. What kind of class does it become if we change the
definition such that the probability must be more than a half? No one knows.
In fact, we don't even know whether the majority-based class includes the
"exactly-half" -based class.

7.5 Bibliographic Notes

Theorems 7.2 and 7.6 are due to Barrington [Bar89]. Theorem 7.8 is due
to Cai and Furst [CF91]. EBOptP was introduced by Hemachandra and

7.5 Bibliographic Notes 193

Hoene [HH91 b] for the purpose of studying sets with efficient implicit mem
bership sets. Theorem 7.10 is due to Ogihara [Ogi94a]. Theorems 7.12
and 7.13 are due to Hemaspaandra and Ogihara [H097].

Branching programs were introduced in a paper by Lee [Lee59], who called
them "binary-decision programs." Later the concept was studied in the Mas
ter's thesis of Masek [Mas76] under the name of "decision graphs." Borodin et
al. [BDFP86] and Chandra, Fortune, and Lipton [CFL85] questioned whether
simple functions such as the parity function can be computed by polynomial
size, bounded-width branching programs. Barrington [Bar89] positively re
solved the question, and this is Theorem 7.2. Barrington's earlier work [Bar85]
characterizes the power of width-3, permutation only polynomial-size branch
ing programs. In [Bar89] Barrington shows that the languages recognized by
polynomial-size, permutation-only, branching programs of width less than
five are AC0-reducible to a mod function.

A further extension of Theorem 7.6 is proven by Barrington [Bar89]. Here
the membership is determined by examining whether the product belongs
to a set of predetermined elements of a monoid. More precisely, a program
over a monoid consists of its instructions and a list of permissible product
values, which is a list of elements in the monoid. The program accepts an
input x if and only if the product of the monoid elements generated by the
input x according to the program belongs to the list provided. This is the
concept called nonuniform deterministic finite automata (NUDFA) [Bar89]
over a finite monoid. Recognition by NUDFA extends the concept of language
recognition as word problems over a monoid (translate each input symbol
to an element in a monoid and compute the product of the elements). An
immediate observation that follows from Theorem 7.6 is that the class NC 1 is
equal to the class of languages that are recognized by a family of polynomial
size NUDFA programs on some monoid.

One wonders whether a fine classification of languages in NC 1 can be
obtained by restricting the monoid in polynomial-size programs for NUDFA.
A monoid is aperiodic if every element m in it satisfies an equation of the form
mt = mt+l for some t ~ 0. A monoid is solvable if every group contained in
it is solvable. For a group G, its lower central series is a sequence of groups
Go, G1, ... defined as follows: Go = G and for every i ~ 1, Gi is the group
generated by {h2 1 o h1 1 o h2 o h1 I h1 E Gi-l 1\ h2 E G}. A group is nilpotent
if its lower central series converges to the trivial group. Building upon earlier
work of Therien [The81], Barrington and Therien [BT88] show that AC0 is the
class of languages that are recognized by a family of polynomial-size NUDFA
programs on some aperiodic monoid and that ACC is the class of languages
that are recognized by a family of polynomial-size NUDFA programs on some
solvable monoid. Barrington, Straubing, and Therien [BST90] show that a
language is recognized by a family of polynomial-size programs for NUDFA
on a nilpotent group if and only if it is represented by a family of polynomials
of constant degree over a direct product of cyclic rings.

194 7. The Nonsolvable Group Technique

The concept of bottleneck Turing machines was introduced in the pa
per by Cai and Furst (CF91]. In addition to the complete characterization
of SF5 (Theorem 7.8), Cai and Furst observe that SF2 includes ~~ and
asked whether any of SF2, SF3, and SF4 contains the polynomial hierarchy.
In (Ogi94a] Ogihara obtained upper and lower bounds for these classes, in
cluding Theorem 7.10. Ogihara's upper and lower bounds are in the class
family MOD6PH, where MODaPH is the smallest family :F of complex
ity classes satisfying the following conditions: (i) P E :F and (ii) for every
C E :F, NPc E :F, coNPc E :F, Mod2Pc E :F, and Mod3Pc E :F. Ogi
hara shows that SF 4 ;;:;? (E~)ffiP, which implies, by Toda's Theorem 4.12,
that PH ~ SF 4, answering the question raised by Cai and Furst. Beigel and
Straubing (BS95] also showed some insights into how the upper and lower
bounds shown in (Ogi94a] can be tightened. The exact characterizations of
SF 3 and SF 4 and special cases of SF classes are given by Hertrampf ([Her97],
see also [HerOO]). Hertrampf et al. [HLS+93] show that the characterizations
of AC0 and of ACC proven by Barrington and Therien (BT88] can be trans
lated into polynomial-time uniform classes to characterize PH and MODaPH.

There is another application of Theorem 7.2. Let k ~ 1 be an integer. A
language L is called k-locally self-reducible if there exists a polynomial time
oracle Turing machine M that decides L with oracle L such that, for every
input x and every query y of M on input x, the lexicographic order of y is
between that of x minus one and that of x minus k; i.e., the membership of
only k predecessors of x in the lexicographic order can be asked. Beigel and
Straubing (BS95] show that for every k, all k-locally self-reducible sets are in
PSPACE, and that, while all 2-locally self-reducible sets belong to MOD6PH,
some 3-locally self-reducible sets are PSPACE-complete. They also show that
there is a PSPACE-complete 6-locally self-reducible set whose self-reduction
is many-one.

The concept of symmetric bottleneck Turing machines was introduced
by Hemaspaandra and Ogihara (H097]. They observe that for every k ~ 2
and every language Lin SSFk, Lis ::;~-reducible to a language in coModkP
by a function that is polynomial-time computable with an oracle in PH.
Hertrampf ([Her99], see also (HerOO]) obtained an exact characterization of
SSF classes.

Based on Barrington's S 5 trick, Ben-Or and Cleve [BOC92] showed that
algebraic formulas over any ring can be evaluated by straight-line programs
using just three registers. Caussinus et al. [CMTV98] use this result to obtain
a characterization of the class GapNC1 in terms of bounded-width branching
programs.

Theorem 7.2 can be applied to quantum computation. (For a textbook
on quantum computation, see [Gru99].) Ambainis, Schulman, and Vazi
rani (ASVOO] show that width-5 permutation branching programs can be
simulated by a quantum computer with three qubits one of which is in a
pure initial state and two others are in a completely mixed (random) start-

7.5 Bibliographic Notes 195

ing state. Thus, NC1 can be computed by quantum computers with all but
one qubit in a completely random starting state.

8. The Random Restriction Technique

Oracle construction is a major tool for studying questions about complexity
classes. Suppose we find an oracle relative to which a complexity-theoretic
property Q holds and another oracle relative to which Q does not hold.
Then we can conclude that settling the question of whether Q holds without
assumption is very tough, in the sense that proof techniques that can be
relativized, such as those based on Turing-machine computation, cannot on
their own successfully resolve whether Q holds.

It is often the case that one of the two kinds of oracles-oracles making Q
hold and oracles making Q fail to hold-is easy to construct, while the other
kind is more difficult to construct. An example of this type is the question of
whether P equals NP. If we relativize this question by any PSPACE-complete
oracle, then the two classes both become PSPACE, and thus equality holds.
On the other hand, the existence of an oracle for which the equality does not
hold is typically demonstrated by a diagonalization argument that is more
complicated than the few-line proof of the equality.

The focus of this chapter is an oracle construction based on impossibil
ity results about boolean circuits. These impossibility results are proven by
randomly fixing the input bits (and so are called the random restriction tech
nique). The chapter is organized as follows. Section 8.1 introduces the random
restriction technique and presents the first circuit lower bound proven by the
technique: Constant depth, polynomial-size circuits cannot compute parity.
Section 8.2 presents an exponential-size lower bound for parity and, based on
that bound, constructs a world in which PH =/= PSPACE. Section 8.3 is an
interlude. We prove that a probabilistic experiment yields a world separating
PH from PSPACE with probability one. Section 8.4 is an application of the
technique to the question of whether the polynomial hierarchy is infinite.

8.1 GEM: The Random Restriction Technique and a
Polynomial-Size Lower Bound for Parity

8.1.1 The Idea

First let us briefly sketch the idea behind the technique. Let f be a function
and let C be a depth-k circuit. We wish to prove that C does not compute

198 8. The Random Restriction Technique

f. We assume that every downward path in C from its output gate to an
input gate has length k. Then we divide the gates into k + 1 levels, 0, ... , k,
where the input gates are at level 0, and, for each k ;::: 1, the level k nodes
are those that take inputs from level k -1. Suppose that we assign the values
0 and 1 to some of the variables and restrict the inputs of both C and f to
those consistent with the assignment. Some restrictions may force all depth-2
subcircuits of C to depend on a small number of variables. If there is such
a restriction, then all the depth-2 subcircuits can be simplified so that their
top gates are the same as the gates in C at the third level. This simplification
will produce either two consecutive levels of /\'s or two consecutive levels of
V's, which can be collapsed to yield an equivalent depth-(k- 1) circuit.

We require that for any restriction, f depend on all the remaining vari
ables. We search for a restriction sequence that collapses the depth of C to
two and simultaneously forces all the depth-1 subcircuits of C to have fan-in
less than the number of remaining variables. If there is such a sequence, then
we can use one more restriction to reduce C to a constant while keeping f
nontrivial. Now combine all the restrictions that we have identified into one
big restriction. Under this combined restriction, C and fare different, which
shows that C and f were different from the very beginning.

Now the question is how to find restrictions with desired properties. It
may be very difficult to describe precisely what restrictions will do the job.
So we attempt a nonconstructive approach. We introduce probability distri
butions on restrictions and prove that good restrictions appear with nonzero
probability, which guarantees that at least one exists.

8.1.2 Preliminaries

We need some preparation.

8.1.2.1 Unbounded Fan-in Boolean Circuits. An unbounded fan-in
circuit over a set of variables B is a labeled, directed acyclic graph C with
the following properties:

1. There is a unique node with no outgoing edges, called the output gate.
2. Each node with no incoming edges is labeled either by x or by x for some

x E B. Such a node is called an input gate as well as a leaf.
3. Each nonleaf node is labeled either by 1\ or by V.
4. Every two adjacent nodes are labeled differently.
5. All paths from leaves to the output node have the same length.

Note that the above properties imply that our circuit consists of alternating
levels of 1\ gates and V gates. We assign numbers to the levels of such stratified
circuits in a natural way: The input level is level 0, and, for each k ;::: 1, the
level k nodes are those that take inputs from level k- 1.

For a circuit C, the size of C, denoted by size(C), is its number of nonleaf
nodes. The depth of C, denoted by depth(C), is the length of the paths from

8.1 A Polynomial-Size Lower Bound for Parity 199

level3

level2

levell

level 0

Fig. 8.1 A depth-3 circuit

its leaves to its output node. For a nonleaf v, the fan-in of v, denoted by
fan-in(v), is the number of edges coming into v. For simplicity, for a depth-1
circuit C, we write fan-in(C) to denote the fan-in of the output node of C.

Let xll ... , Xn be a fixed enumeration of the variables in 3. Let a =
(a 1 , ... , an) E {0, 1 }n. The output of C on input a is inductively evaluated
as follows:

1. If a leaf v is labeled by Xi (respectively, Xi) for some i, 1 ~ i ~ n, then
the output of vis 1 if and only if ai = 1 (respectively, ai = 0).

2. For each nonleaf v labeled by A, v outputs 1 if and only if all its input
signals are 1.

3. For each nonleaf v labeled by V, v outputs 1 if and only if at least one of
its input signals is 1.

4. The circuit C outputs 1 if and only if the output node of C outputs 1.

We assume that no depth-1 circuit takes as input two conflicting literals, i.e.,
x and x for some variable x.

8.1.2.2 Restrictions. Let 3 be a finite set of boolean variables. A restric
tion on 3 is a partial assignment of 3 to boolean values. Formally, a restriction
on 3 is a mapping p of 3 to {0, 1, *},where p(x) = 0 (respectively, p(x) = 1)
indicates that x E 3 is assigned the value 0 (respectively, 1) and p(x) = *
indicates that x is not assigned a value, i.e., is preserved as a variable.

For a restriction u, u-1(*) (respectively, u-1(0) and u-1(1)) denotes the
set of all x E 3 to which u assigns* (respectively, 0 and 1), and u-1({0, 1})
denotes u-1(0) U u-1(1).

Let F be a function over the variables of 3, and let p be a restriction on
3. We assume that there is a natural order among the elements of 3 (that
is, it has first, second, etc. elements). Let Y = p-1(*) and let m = IIYII·
Let Yb ... , Ym be the enumeration of all the elements of Y according to the

200 8. The Random Restriction Technique

natural order among the elements of 3. Then F under restriction p, denoted
by F f p, is the function G over Y such that, for every b = bi · · · bm E { 0, l}m,
G maps b to the value of F when the variables in 3 - Y are given values
according top and when for each i, 1 ~ i ~ m, Yi receives the value bi.

Given two restrictions PI and P2, their product PIP2 is the restriction p'
defined as follows: For all x E 3,

! *if PI(x) = P2(x) = *•
1 if PI(x) = 1V

p'(x) = (PI (x) = * 1\ P2(x) = 1),
0 if PI(x) = OV

(PI(x) = * 1\ P2(x) = 0).

Let a, T be restrictions on 3. We say that a and T are disjoint if
a-I({O, 1}) n T-I({O, 1}) = 0. We say that a restriction a subsumes are
striction T if a-I(1) 2 r-I(1) and a-I(o) 2 r-I(o). We write a 2 T to
denote that a subsumes T.

For a boolean circuit C and a restriction p, cr pis obtained by simplifying
the circuit according to p, working from the input level towards the output
level as follows:

• At the input level for each variable x such that p(x) E {0, 1}, we replace x
by p(x) and x by 1- p(x).

• At an V-level, for each gate g at that level, we check whether it has an
input fixed to 1. If so, the gate g is replaced by the constant 1. Otherwise,
we eliminate all the 0 inputs to g. If there is no input left to g, then we
replace g by the constant 0.

• At an /\-level, for each gate g at that level, we check whether it has an
input fixed to 0. If so, the gate g is replaced by the constant 0. Otherwise,
we eliminate all the 1 inputs to g. If there is no input left to g, then we
replace g by the constant 1.

For a function F we write F = 1 (respectively, F = 0) to denote that F
acts as the constant 1 function (respectively, the constant 0 function).

Let 3 be a set of variables and let p, 0 < p < 1, be a real number. Then
R; is the distribution on the restrictions on 3 defined as follows: For each
variable x E 3,

{
* with probability p,

p(x) = 0 with probability ~,
1 with probability ~.

(8.1)

8.1.2.3 Minterms and the Parity Function. We say that a restriction a
is a minterm of a function F ifF fa = 1 and for any restrictiona' ~ a, F fa' ¢.
1. Thus the minterm of the constant 1 function is the empty restriction and
the minterm of the constant 0 function is undefined. For a restriction a,
the size of a, denoted by lal, is the number of x E 3, satisfying a(x) =/= *·

8.1 A Polynomial-Size Lower Bound for Parity 201

The size of the smallest minterm ofF is denoted by MIN(F). IfF is the
constant 1 function clearly MIN(F) = 0. IfF is the constant 0 function, we
define MIN(F) = 0. Each minterm a can be viewed as the smallest /\-gate
that outputs 1 if and only if all the value assignments in a are given. So for
any function f, if C is the smallest V-1\ circuit (i.e., an V of 1\ gates) that
computes f then each /\-gate of C is a minterm.

The n-ary parity function, 11"n, is the function that maps each n-bit input
to the modulo 2 count of the number of 1s in the input bit. Note that for
every n there are precisely 2n-I minterms of 11"n, each of size n.

We say that a family of circuits { Cn}n> 1 computes the parity function if,
for every n ~ 1, Cn computes 1l"n·

8.1.3 The Main Theorem

Theorem 8.1 For no k ~ 1 can the parity function be computed by a family
of depth-k, polynomial-size circuits.

The rest of the section proves the above theorem.

Proof of Theorem 8.1 We prove the theorem by induction on k. The
base case is when k = 2. Let n ~ 1 and let C be the smallest depth-2 circuit
of n inputs that computes 11"n. Suppose C is an V-1\ circuit. Then we claim
that each /\-gate of C has fan-in n and for each i, 1 ~ i ~ n, takes exactly
one of Xi and Xi as input. To see why, suppose that there is an /\-gate, say g,
such that, for some i, 1 ~ i ~ n, g takes both Xi and Xi as input. Then, for
every input x 1 , .•• ,xn, g outputs 0 because Xii\Xi = 0 regardless of whether
Xi = 0 or Xi = 1. Then, since the output gate of C is an V-gate, g can be
removed from C. Now assume that there is an /\-gate, say g, having fan-in
less than n. Then there is some i, 1 ~ i ~ n, such that neither Xi nor Xi is an
input to g. As we have already eliminated gates in C with input from both
a variable and its negation, there is some a = (al! ... , an) such that g on
input a outputs 1. Let a' be a with the ith bit flipped. Then g outputs 1 on
a', too. Since the output of C is an V-gate, C outputs 1 both on a and on a'.
Since the parity of a is different from the parity of a', C does not compute
11"n. This is a contradiction.

The above observation implies that for each /\-gate of C, there is only one
input for which the gate outputs 1. Since there are 2n-I inputs for which C
needs to output 1, C needs to have at least 2n-I many /\-gates, which implies
that the size of C is at least 2n-l + 1.

If C is an 1\-V circuit, construct C' from C by interchanging the labels
1\ and V and interchanging, for each variable x, the labels x and x. Then C'
has the same depth and size as C does and computes the complement of 11"n·

The complement has 2n-l minterms so size(C') ~ 2n-l + 1.
For the induction step, let k ~ 3 and suppose that the claim holds for

all k', 2 ~ k' ~ k - 1. Assume, by way of contradiction, that for some
integer l ~ 1, there is a depth-k, size-n1 circuit family {Cn}n~l that computes

202 8. The Random Restriction Technique

• •
• •

(a) the circuit

01"01"1"11"1"1"11"0

(b) a random assignment to the inputs

01"01"1"11"1" "11"0

(c) simplifying the bottom level gates

Fig. 8.2 The random restriction technique

(d) the resulting depth-2 subcircuits

(e) rewriting of the depth-2 subcircuits

•
•
• •

(t) in the resulting circuit, the 2nd and
the 3rd levels can be collapsed into one

the parity function. Then we show that there is a family of depth-(k- 1),
polynomial-size circuits for the parity function, a contradiction. We derive the
contradiction in three phases. In Phase 1, we use a restriction to significantly
reduce the bottom fan-in; in Phase 2, we use a restriction on depth-2 circuits
at the bottom to reduce the number of inputs that each of these circuits
depends on; in Phase 3, we merge level 2 and 3 gates. Figure 8.2 illustrates
how the reduction proceeds.

Phase 1 Let a = 4l + 1. For each n ~ 1, pick a random restriction p under
distribution R~n with p = n- 1/ 2 , where 3n is the set of variables of Cn.

8.1 A Polynomial-Size Lower Bound for Parity 203

Let n 2: 1 be fixed and let St. ... , Sm be an enumeration of all depth-1
subcircuits of Cn. We say that p succeeds if

• IIP-1 (*)11 2: ~ and
• for every i, 1 ~ i ~ m, if Sir p t= 0 and Sir p t= 1, then fan-in(Si r p) ~ o:.

Otherwise, we say that p fails. Define Q to be the probability that llp-1(*)II <
~ and for each i, 1 ~ i ~ m, define pi to be the probability that sir p t= 0,
Sir p t= 1, and fan-in(Si r p) > o:. Then the probability that p fails is at most

Q+P1 + ··· +Pm.

We will obtain an upper bound on each of these terms.
In order to evaluate Q, let E and V respectively be the expected value

and the variance of llp-1(*)11. Then E = np = .,fii and V = np(1- p) ~ .Jii.
Chebyshev's Inequality (Lemma 6.22) states that if a random variable z has
expectation E and variance V, then for every d > 0, the probability that z
is less than E-d is at most ~· By plugging in d = fo/2, E = .Jii, and
V ~ .,fii, we have

Q ~ ~ ~ Jn = O(n-1/2).

In order to evaluate Pt. ... , Pm, fix i, 1 ~ i ~ m. Lett= fan-in(Si) and
let u1, ... 'Ut be an enumeration of all the input literals of si. Let b = 0 if
Si is an 1\ circuit and let b = 1 otherwise. If for some j, 1 ~ j ~ t, p(Uj) = b
then Sir p = b. We divide the analysis into two cases depending on t.

First suppose that t 2: o: ln n. If jan-in(Si r p) > o: then for every j, 1 ~
j ~ t, p(Uj) # b. For each j, 1 ~ j ~ t, the probability that p(Uj) f. b is
(1 + p)/2 = ~ + 2}n. So, Pi is at most

(1 1)t (1 1)"'Inn - + -- ~ - + -- = o(n-(1-E)<>)
2 2fo 2 2fo

for every constant f > 0. So,

Next suppose that t < 0: ln n. If fan-in(Si r p) > 0: then p(Uj) = * for more
than o: integers j, 1 ~ j ~ t; and p(Uj) = 1 - b for all the other j's. Thus Pi
is at most

for every constant f > 0. So, Pi = o(n-21).

Now, since m ~ size(Cn) ~ n 1, the probability that p fails is at most

204 8. The Random Restriction Technique

Hence, there exists some n 1 > 0 such that for every n ;::: n 1 a successful
restriction p exists. For each n ;::: n 1 pick a successful restriction Pn and
define Dn = cnrPn, Yn = p;;: 1(*), and f..Ln = IIYnll· We obtain a new family
of circuits {Dn}n~n1 satisfying the following conditions for all n;::: n 1:

1. Dn computes either the parity function or the complement of the parity
(depending on the parity of llp;;: 1(1)11) on the set Yn of f..Ln variables,
where f..Ln = n(yln).

2. size(Dn) ~ n1 = O((f..Ln) 21).
3. Each depth-1 subcircuit of Dn is of fan-in at most a.

Phase 2 For each n;::: n 1, we pick a random restriction a under Rrn with

q = (f..Ln)- 112 . We say that a succeeds if

• lla-1(*)112: if and
• every depth-2 subcircuit of Dn r a is dependent on at most f3o. variables,

where the sequence /31 , f32, . . . will be defined below.

Otherwise, we say that a fails. Let n ;::: n 1 be fixed. Let Q be the prob
ability that lla- 1(*)11 < if. As in Phase 1, by Chebyshev's Inequality
(Lemma 6.22)

To bound the probability that there exists a depth-2 subcircuit of Dn r a that
depends on more than f3o. variables, we need the following lemma.

Define 'Y = 6l + 1 (recall that the size of the circuit Cn is bounded by n1),

/31 = "(, and for each d 2: 2, /3d = 'Y + 2'"~ /3d-1·

Lemma 8.2 For every d;::: 1, there exists a constant n2 ;::: n 1 such that, for
all n ;::: n2, and for all depth-2 subcircuits S of Dn, the following is true: If
every depth-1 subcircuit of S has fan-in at most d, then with probability at
least 1 - 0 (f..L;;: 31)' s r a depends on at most f3d variables.

Proof of Lemma 8.2 Suppose that depth-2 subcircuits of Dn are V-/\
circuits. The proof is by induction on d. For the base case, let d = 1. Let
n;::: n 1 be fixed and letS be a depth-2 subcircuit of Dn. Suppose that all the
depth-1 subcircuits of Dn have fan-in 1. We can eliminate every level-1 gate
g by directly connecting the input literal of g to each gate that receives signal
from g. This reduces S to a depth-1 circuit. Lett= fan-in(S). By applying
the analysis from the previous phase with f..Ln in place of n and /31 in place of
a, we have:

• If t > /31lnf..Ln, then fan-in(sra) > {31 with probability at most

(1 1) t (1 1) f3t In 1-'n _ + __ < _ + __ = o(f..L-(1-•)f3t)
2 2.jji;;. - 2 2.jji;;. n

for every constant E > 0. So, the probability in question is o(f..L;;:- 31).

8.1 A Polynomial-Size Lower Bound for Parity 205

• If t ~ f3IlnJ.Ln, then the probability that fan-in(Sru) > {31 is at most

(t) (-1-)r/311 ~ (-t-) 131 < ({31lnJ.Ln).B1 = o(J.L~(i-e)/31)
f31 ffn ffn ffn

for every constant € > 0. So, the probability in question is o(J.L~ 31).

Thus, the probability that S r u is dependent on more than {31 variables is
o(J.L~3'). Thus the claim holds for d = 1.

For the induction step, let d ~ 2. Let b = 3l(3d). Let S be any depth-
2 subcircuit of Dn. Call depth-1 subcircuits F1, ... , Ft of S disjoint if no
distinct two of them depend on a common variable. Let r be the largest t
such that there are t disjoint depth-1 subcircuits of S. Let F 1, ... , Fr be such
r disjoint depth-1 subcircuits of S and G 1, ... , G 8 be an enumeration of all
the remaining depth-1 subcircuits of S. Then

Here we may assume that r < blnJ.Ln· To see why, suppose r ~ blnJ.Ln·
Since f3d ~ 1, if sru depends on more than {3d variables then sru ¢ 1, and
if sru ¢ 1, none of F 1, ... ,Fr is reduced to the constant 1. For every j,
1 :::; j ~ r, fan-in(Fi) S d, so the probability that Fir u = 1 is at least
(~- 2_fi..;)d, and this is w(3-d). Thus the probability that Firu ¢ 1 for all

j, 1 :::; j ~ r, is at most

(1 - 3-d)blnJLn = (1 _ 3-d)31(3d)lnJLn = o(T3llnJLn) = o(J.L~31).

So the probability that sru depends on more than f3d variables is o(J.L~ 31).
Thus we can assume that r < blnJ.Ln· Let H be the set of all variables x

on which some Fi is dependent. Since F's are disjoint, the distribution Rrn
is identical to that of the products 0"10"2, where 0"1 is subject to RIJ and 0"2

is subject to R~Yn-H)_ The probability that llu;:-1(*)11 > "f is at most

for every constant f > 0. So, the probability that llu;:-1(*)11 >"'is o(J.L~ 31).
Fix u1 under Rlf such that llu;:-1(*)11 S "'·LetS'= srub H' = u;:-1(*),

and h = IIH'II· Let a1, ... ,a2h be an enumeration of all possible assignments
to the variables in H'. For each i, 1 S i ~ 2\ let Ai be the depth-1 V circuit
that checks whether the input assignment to H' is different from ai and let

si = Ai v (s'rai)·

Let v = (vt, ... , vh) denote the variables of H'. For every i, 1 ~ i :::; 2\
Si = S' r ai if v = ai and Si = 1 otherwise. Thus, S' = /\.~: 1 Si. For every

206 8. The Random Restriction Technique

i, 1 ~ i ~ 2h, Ai can be viewed as an V-1\ circuit of bottom fan-in 1.
For every j, 1 ~ j ~ s, Gi has fan-in at most d and, since F., ... , Fr is
maximally disjoint, Gj is dependent on at least one variable in H. For every
i, 1 ~ i ~ 2h, ai1({0, 1}) = {v1, ... ,vh}, so Si is an V-1\ circuit all of whose
depth-1 subcircuits have fan-in at most d- 1. Then for each i, 1 ~ i ~ 2h,
the probability that sir 0"2 depends on more than /3d-1 variables is 0 (JL~31) 0

If for every i, 1 ~ i ~ 2h, sir 0"2 depends on at most f3d-1 variables, then
S' r a 2 depends on at most h + 2h f3d- 1 variables, and this quantity is at most
/3d because h ~ 'Y. So the probability that S' r a2 is dependent on more than
/3d variables is at most

o(2h JL~3l) = o(JL~3l)
because h ~ 'Y and 'Y depends only on d and l. Thus, the probability that
a = a 1 a 2 reduces S to a circuit that is dependent on more than /3d variables
is o(2JL~31) = o(JL~31).

In the case where Sis an 1\-V circuit we exchange the role of 0 and that of
1 and carry out the same analysis, except that the circuit Ai checks whether
the input assignments on H' are identical to ai, and that Si = Ai 1\ (S'rai).

2h
Then S' = Vi=1 Si. 0 Lemma 8.2

By the above lemma, the probability that not all of the depth-2 subcircuits
of Dn are forced to depend on at most {301 variables is o(JL~31)JL~1 = o(JL~ 1).
Thus the pr_obability that a fails is

o(n-1/4) + o(JL;;z) = o(n-1/4).

Hence, there exists some n2 > n 1 > 0 such that for every n 2: n2 there exists
a successful restriction a. So for each n 2: n2, we pick a successful O"n and
apply it to Dn to obtain En = Dn ran. Define ~ = {301 • Then the following
conditions hold for all n 2: n2:

1. For some Vn = n(n114), En computes the parity function of a set of Vn
variables.

2. size(En) ~ n 1 = O((vn) 41).
3. Each depth-2 subcircuit of En is dependent on at most ~ variables.

Phase 3 Note that if a function is dependent on ~ variables then it can be
expressed as an 1\-V circuit of top fan-in at most 2/3 and of bottom fan-in~.
and alternatively as an V-1\ circuit of top fan-in at most 2/3 and of bottom
fan-in ~- For each n 2: n2, we apply one of the two conversions to each
of the depth-2 subcircuits of En so that the level-2 and level-3 gates have
an identical type. Then we collapse the levels into one thereby reducing the
depth of the circuit to k - 1. The resulting circuit has size at most

2/3 size(En) ~ 2{3441 (vn) 41 .

Thus, we obtain a family of depth-(k - 1) circuits {Fn}n;:::n2 satisfying the
following conditions for all n 2: n2:

1. Fn has Vn 2: n~4 variables.

8.2 An Exponential-Size Lower Bound for Parity 207

2. Fn computes the parity function of lin variables.
3. size(Fn)::; 2t3441 (vn)41.

For each n ~ 1, let s(n) be the smallest n' such that lin• ::; n. Then, for all
but finitely many n, s(n)::; (4n)4 .1f Fs(n) depends on more than n variables,
then we assign 0 to some variables to make it dependent on exactly n inputs.
Let Gn be the resulting circuit. Since Fs(n) computes the parity function, Gn
computes the parity function of n inputs. Then

This implies that the parity function can be computed by a family of depth
(k-1), polynomial-size circuits. This contradicts to our inductive hypothesis.
This proves the theorem. 0 Theorem 8.1

8.2 An Exponential-Size Lower Bound for Parity

8.2.1 Proving the Size Bound

In the previous section we proved that polynomial-size, constant-depth
circuits cannot compute the parity function. In this section, we improve upon
the proof technique to show an exponential-size lower bound for computing
the parity function by constant-depth circuits. Based on this bound, we con
struct an oracle separating PSPACE from PH. Below is the first of our goals
in this section, the exponential lower bound for parity.

Theorem 8.3 Let k ~ 2. Suppose that a family {Cn}n>l of depth-k circuits
computes the parity function. Then, for all but finitely ;,any n,

. (C) (l/lO)k/(k-llnl/(k-lJ stze n > 2 .

The key ingredient of the proof of Theorem 8.3 is the following lemma,
called the switching lemma, which generalizes the method we developed in
the previous section.

Lemma 8.4 {Switching Lemma)
fan-in at most t. Let p, 0 < p < 1,
unique positive root of the equation

1 4p ()
t

+ (1+p)a

Let G be an 1\-V circuit with bottom
be such that 5pt < 1 and let a be the

Suppose that a restriction p is chosen under the distribution R";. Then, for
every s ~ 0, with probability at least 1 - as, G f p is equivalent to an v-I\
circuit of bottom fan-in strictly less than s.

208 8. The Random Restriction Technique

The lemma follows from the slightly stronger lemma below.

Lemma 8.5 Let G be an 1\-V circuit with bottom fan-in at most t. Let p,
0 < p < 1, be such that 5pt < 1 and let a denote the unique positive root of
the equation

(4)t (2)t 1+ p = 1+ p +1.
(1+p)a (1+p)a

Let F be any boolean function and let s ;::: 0 be arbitrary. Suppose that a
restriction p is chosen under the distribution n;. Then

Pr(MIN(Gfp);::: s I Ffp = 1] ~as.

Proof of Lemma 8.5 Let G, t, p, a, F, and s be as in the hypothesis.
Note that the statement of the lemma trivially holds for s = 0. So, suppose
s > 0. Let G 1, ... , Gm be an enumeration of all the depth-1 subcircuits of
G. Then G = /\.":::1 Gi. We prove the statement by induction on m. The base
case is when m = 0. If m is 0, G is a constant function. Which of the two
constant functions G actually is may depend on the context. For every p,
G = Gfp, and thus, MIN(Gfp) = MIN(G) = 0. Thus, the probability that
MIN(Gf p) ;::: s is 0 regardless of the choice of F. Hence the claim holds for
m=O.

For the induction step, let m ;::: 1 and suppose that the claim holds for
every m', 0 ~ m' < m. We consider the following two cases:

Case 1 G1 fp = 1, and
Case 2 G 1 f p ¢ 1.

Then we have only to show that, for each i E {1, 2},

Pr(MIN(Gfp);::: s I Case i holds and Ffp = 1] ~as. (8.2)

As to Case 1, let G' = /\."';'=2 Gif p and F' = F /\G1. Note that if G 1 f p = 1
then G f p = G'. Since the conditions G 1 f p = 1 and F f p = 1 can be combined
into F' f p = 1, the probability in equation 8.2 can be rewritten as

Pr(MIN(G'fp);::: s I F'fp = 1].

Then by our inductive hypothesis, this probability is at most as. Thus, equa
tion 8.2 holds for Case 1.

As to Case 2, define Po= Pr[MIN(Gf p);::: s IFf p = 1 1\ G1 r p ¢ 1]. Then
we have to show that Po ~ as for all s > 0.

Let H = /\.":::2 Gi. LetT be the set of all variables on which G 1 depends.
Since G is an /\-V circuit, every minterm of G has to have a literal from T.
Also, since we are considering only p such that G 1 f p ¢ 1, each minterm of
Gf p, if one exists, has to have a literal from T. So, split p into the part P1
that assigns values to variables in T and the part P2 that assigns values to
variables in 3-T. Let a be a restriction. As we did for p, split a into a1 and
a2. If a is a minterm of Gfp, then the following three conditions must hold:

(i) a11({o, 1}) =10.

8.2 An Exponential-Size Lower Bound for Parity 209

(ii) P11({0, 1}) n a11({0, 1}) = 0.
(iii) a2 is a minterm of H[pa1 •

So, if G[p has a minterm of size at least s, F[p = 1, and G[p "¢ 1, then there
is some restriction a1 overT that is disjoint with p1 such that H[pa1 has a
minterm of size at least s - la1l· For each nonempty restriction a1 over T,
define

Q[al] = Pr[a11{{0,1}) n P11({0, 1}) = 0/\

MIN(H[pat) ~ s -Ialii F[p = 1/\ G1[P "¢ 1].
Then Po is bounded from above by the sum of Q[at] where a 1 ranges over
all nonempty restrictions over T.

Consider

Qt[at] = Pr [a11{{0, 1}) n P11{{0, 1}) = 01 F[p = 1/\ G1 [p "¢ 1]

and

Q2[at] = Pr [MIN(H[pat) ~ s -lad IF[p = 1/\ G1 [p "¢ 1] .

Then Q[at] ~ Qt[a1]Q2[at].

Fact 8.6 For every a1, Pr[a11{{0,1}) n P11{{0,1}) = 01 G1tP1 "¢ 1] <
(..1E....)I""ll

l+p .

Proof of Fact 8.6 In order for G1 [p1 "¢ 1 to be true, p1 has to assign
either 0 or * to each literal of G1. In order for al1({0, 1}) n P1 1({0, 1}) = 0
to hold, p1 has to assign * to all variables in a1 ({0, 1}). So, the probability
in question is at most pl""1 1 /(~ + p)l""1 1 = (m)1""1 1. D Fact 8.6

Fact 8. 7 For any events A, B, and C, Pr[A I B 1\ C] ~ Pr[A I C] if and only
ifPr[B I A 1\ C] ~ Pr[B I C].

Proof of Fact 8. 7 The proof is by routine calculation. D Fact 8.7

Fact 8.8 Qt[a1] ~ (frp)l""d.

Proof of Fact 8.8 Let A, B, and C be the events
a11{{0,1}) n P11{{0,1}), F[p := 1, and G1[P1 "¢ 0,1, respectively.
Then Qt[at] = Pr[A I B 1\ C], and Fact 8.6 shows that Pr[A I C] ~ (frp)1""1 1.
Note that

Pr[F[p = 11 a11{{0, 1}) n P11({0, 1}) = 0/\ G1 tP1 "¢ 1]

~ Pr[F[p = 11 G1 [Pl "¢ 1],

because adding the condition a 1 1 ({ 0, 1}) n p11 ({ 0, 1}) = 0 does not increase
the probability that F[p = 1. Thus, Pr[B I A 1\ C] ~ Pr[B l C]. Now, by
Fact 8.7, Qt[a1] ~ Pr[A I C], and this implies that Qt[a1] ~ (r.fp)1""1 1.

D Fact 8.8

210 8. The Random Restriction Technique

Proof of Fact 8.9 Let Z denote the set of all restrictions over variables
T. Note that

Q2[a1] ~ max{Pr[MIN((Hra1pl)rp2) ~ s -la1ll (Frp1a1HP2 = 1

1\ G1rP1 ¢. 0 1\ G1rP1 ¢.1]1 P1 E Z}

where p2 is subject to the distribution R~-T. This inequality holds because
restricting F r p to a 1 does not decrease the probability. We can eliminate the
condition G 1 r p1 ¢. 0 1\ G 1 r p1 ¢. 0 from this because we are maximizing over
all possible Pl· So,

Q2[al]

~ max{Pr (MIN((HralPlHP2) ~ s -Ialii (FralPlHP2 = 1] I Pl E Z},

where P2 is subject to the distribution R~-T. Then, since H r a 1p1 is an 1\

of m - 1 V circuits, each of which has fan-in at most t, by our inductive
hypothesis (recall that we are in the proof of Lemma 8.5), Q2[a!] ~ o:s-lu1l.

0 Fact 8.9
By Facts 8.8 and 8.9, we have

This implies

R < ~ ~ (~ yull o:s-lu1l.
0

- l::s;i::s;IITIIIud=i 1 + p

For each i, 1 ~ i ~ IITII, and for each nonempty subset ofT of size i, there
are 2i - 1 possibilities for a 1 since a 1 has to assign 1 to at least one literal of
G1. Then

p0 ~ ~ (11~11)(2i _1) (12p)i o:s-i.
1::;i::;IITII + p

By hypothesis, IITII ~ t. So

p0 ~ o:8 ~ (~)(2i -1) (/P)i o:-i.
o::;i::;t + P

Note that

8.2 An Exponential-Size Lower Bound for Parity 211

This last formula is 1 by the assumption of the lemma. So, Po :5 a 8 • Thus,
the claim holds. This proves the lemma. a Lemma 8.5

Lemma 8.4 immediately follows from Lemma 8.5 by taking F = 1.
Next we derive another lemma from Lemma 8.4. For each k > 2 and

n > 1 define l(n k) = ...!..n6 -
- ' ' 10 .

Lemma 8.10 Let k ~ 2. Let {Cn}n~1 be a family of depth-k circuits. Sup
pose that for every n ~ 1 the following conditions hold:

1. Every depth-1 subcircuit of Cn is of fan-in at most l(n, k).
2. There are at most 2l(n,k) depth-2 subcircuits of Cn.

Then for only finitely many n does Cn compute 1rn·

Proof The proof is by induction on k. For the base case, let k = 2. Then for
all n ~ 1l(n, k) < n. Let n ~ 1 and let Cn be a depth-2 circuit satisfying the
two conditions in the statement of the lemma. By property 1, each depth-1
subcircuit of Cn is of fan-in less than n. So, in the case where Cn is an V-/\
circuit, there is a restriction p of size less than n that reduces one of the
subcircuits to 1, thereby reducing Cn to 1, and in the case where Cn is an
/\-V circuit, there is a restriction of size less than n that reduces one of the
subcircuits to 0, thereby reducing Cn to 0. Such a restriction does not reduce
1rn to a constant function, so Cn does not compute 1rn.

For the induction step, let k ~ 3 and suppose that the claim holds for
all k', 2 :5 k' < k. By symmetry between 1\ and V, we may assume that the
depth-2 subcircuits of Cn are /\-V circuits. Let n > 10k- 1 and suppose Cn

1
satisfies properties 1 and 2. Let p = 1 ol(~,k) = n-li"=T and let s = t = l(n, k).

Because 0 < 5pt = ! < 1 and for every n > 1ok-1 , 0 < p < 1, we can
apply Lemma 8.4 to each depth-2 subcircuit of Cn. Then, for each depth-2
subcircuit H of Cn, the probability that H cannot be rewritten as an V-/\
circuit of bottom fan-in at most s is at most al(n,k), where a is the unique
positive root of the equation

1+ p = 1+ p +1. (4)t (2)t
(1+p)a (1+p)a

By plugging p = lOl(~,k) and t = l(n, k) into this equation, we obtain

(
4)l(n,k) (2)l(n,k)

1 + (1 + lOl(n, k))a = 1 + (1 + lOl(n, k))a + 1.

Since l is an increasing function of n, the left-hand side approaches

4l(n,kt
e l+10l(n,)a

as n increases, which has the limit value of es:. By a similar analysis, the
right-hand side approaches 1 + e~. By replacing e5~ by a variable Z, we get

212 8. The Random Restriction Technique

equation Z 2 - z - 1 = 0, which has a unique positive solution z = ¥
So, the unique solution of the original equation approaches

1
()

= 0.4156
5 ln .!b::E:

2

Thus, for sufficiently large n, a < 0.45 = io. Since there are at most 2L(n,k)

depth-2 subcircuits of Cn, the probability that every depth-2 subcircuit can
be rewritten as an V-1\ circuit of bottom fan-in at most 8 is at least

(
g)l(n,k) 2

1 _ 2t(n,k)Qi(n,k) = 1 _ (2a)L(n,k) > 1 _ _ > _
10 3

for sufficiently large n. If we replace each depth-2 circuit of Cn f p by an
equivalent V-1\ circuit, then we can collapse the second and the third levels
of Cn into one because they have the same gate type, thereby obtaining an
equivalent depth-(k -1) circuit. Thus, with probability greater than j, Cn f p
can be rewritten as a circuit of depth k- 1 and of size at most 8ize(Cn)·

On the other hand, the expected number of variables in Cn f p is pn =
n i=t. So, for sufficiently large n, the probability that the number of variables
in Cn f p is at least pn is larger than l·

The probability that both of the above events occur at the same time is
2 k-2

larger than 9 . Note that m 2: n~ implies i(m, k- 1) 2: i(n, k). Thus, with
some positive probability, we can convert Cn f p to a depth-(k -1) circuit Dm
over m 2: pn variables such that

1. every depth-1 subcircuit of Dm is of fan-in at most i(m, k- 1) and
2. there are at most 2L(m,k-l) depth-2 subcircuits of Dm.

By our inductive hypothesis, Dm does not compute 7!'m 1 and thus, Cn does
not compute 1l'n· Thus the claim holds fork. This proves the lemma. 0

Now we are ready to complete the proof of Theorem 8.3.

Proof of Theorem 8.3 Let n .2: 1 and let Cn be a depth-k circuit of size
(1/ 10)k/(k-1) 1/(k-1) • • •

bounded by 2 n . We can v1ew Cn as a depth-(k + 1) c1rcmt

all of whose depth-1 subcircuits are of fan-in 1. Let p = 1~, 8 = 110 (;1) 6,
and t = 1, and apply Lemma 8.4. Since a = ffp = 121 , the probability that
all depth-2 subcircuits of Cn f p can be rewritten so that the second and the
third levels of Cn f p have the same type and thus can be collapsed into one
is at least 1- 28 a 8 _2: 1 - 28 4-s = 1 - 2-s.

On the other hand, the expected number of variables in Cn f p is ;1. So,
with probability larger than l, Cn f p is dependent on at most m = ;1 vari
ables.

So, with probability (1 - 2-8) + l - 1 > 0, the above two events occur
at the same time. Thus, for some restriction p, Cn f p can be converted to a
circuit Dm such that

1. every depth-1 subcircuit of Dm is of fan-in at most i(m, k) and

8.2 An Exponential-Size Lower Bound for Parity 213

2. Dm has at most 2t(m,k) depth-2 subcircuits.

Then, by Lemma 8.10, Dm does not compute 11"m. Thus, Cn does not compute
11"n. This proves the theorem. 0 Theorem 8.3

8.2.2 Constructing an Oracle Separating PSPACE from PH

We will now use Theorem 8.3 to show that there is an oracle relative to which
PH is properly included in PSPACE. Our model of PSPACE oracle compu
tation even requires that the query tape is polynomially length bounded. (In
the model lacking this requirement, it is trivial to separate PSPACE from
PH via an oracle.)

Theorem 8.11 There is an oracle A such that PH A =F PSPACEA.

Proof Since for every oracle A, ®PA ~ PSPACEA, it suffices to construct
an oracle A such that ®PA ~ PHA. For each language A, define

W(A) ={On 111{0, 1}n n All is odd}.

Let M be a polynomial time-bounded Turing machine that, on input x E E",
guesses y of length lxl, and accepts if and only if y is in the oracle. Then for
every oracle A, and every x E E*, olxl E W(A) if and only if MA on x has an
odd number of accepting computation paths. Thus, W(A) E EBPA for every
oracle A.

In order to construct an oracle A relative to which W(A) fl. PHA, we
first introduce a view of PH in terms of constant-depth circuits and define
an enumeration of all relativized PH-machines based on that view. Then
we consider a very simple oracle construction scheme in which the machines
in the enumeration are "killed" one after another. Finally we argue that the
scheme will be successful, because construction failing at a stage would imply
that we could construct a constant-depth subexponential-size circuit family
for parity, which contradicts Theorem 8.3.

Recall that for a language A, A EB A denotes {Ox I x fl. A} U { 1x I x E A}.
First we draw an analogy between the polynomial hierarchy and constant
depth circuits.

Proposition 8.12 Let k ~ 1 be an integer and let A be a language. Let C
be one of Et·A or rrt·A 0 Then, for every L E c' there exist a polynomial p
and a polynomial-time computable function f : E" --+ E* such that, for every
X E E",

X E L-<=:::} (Q1Y1 : Y1 E Ep(lxl)) · · · (QkYk : Yk E EP(Ixl>)
(Qk+Ii : 1 $ j $ P(lxl)) [f((x, Y1, · · · , Yk, j)) E A EB A],

(8.3)

where the quantifiers alternate, and Q1 = 3 if C = Et·A and\;/ otherwise.

214 8. The Random Restriction Technique

Proof of Proposition 8.12 Let k ;:::: 1 and let C be either Et·A or II1'A.
Let L E C. Then there exist a polynomial Po and a polynomial time-bounded
deterministic oracle Turing machine M such that, for every x E E*,

X E L <==> (QlYl : Yl E EPo(lxll) (Q2Y2: Y2 E EPo(lxll) · · ·
(QkYk: Yk E EPo(lxll) [MA((x,yl, ... ,yk)) accepts],

(8.4)

where the quantifiers alternate, and Q1 = :3 if C = E1'A and Ql = V if
c = rrt·A. We divide the proof into four cases:

Case 1 C = E1'A and k is odd,
Case 2 C = E1'A and k is even,
Case 3 C = II1'A and k is odd, and
Case 4 C = II1'A and k is even.

First we consider Case 1. Here Qk = :3. Let p1 be a polynomial bounding
the runtime of M. We can assume that Pl is increasing; i.e., for all n ;:::: 0,
p1 (n + 1) > p1 (n). We may assume that, for all u E E*, M on input u makes
exactly p1 (lui) queries regardless of its oracle. We will replace M by a new
machine, M', that on each input u simulates M on input u while counting in
a variable C the number of queries that M makes along the simulated path.
When M halts, if Cis smaller than Pl (lui), then M' queries the empty string
to the oracle exactly Pl(lul)- C times. Then M' accepts if M on x accepts
along the simulated path and rejects otherwise.

Let N be a deterministic Turing machine that, on input w = (u, v), if
I vi = p1 (lui), then simulates M' on input u by assuming, for each i, 1 ~ i ~
p1(lul), that the answer of the oracle to the ith query is affirmative if the ith
bit of vis 1 and the answer is negative if the ith bit of vis 0. If lvl =f p1 (lui),
then N rejects w immediately. For each u E E* and each v E EP1 (1ul), and j,
1 ~ j ~ p1(lul), let R(u, v,j) denote the jth query of M' on input u along
the simulation carried out by Non input (u, v). Then, for all u, u E L if and
only if for some v, I vi = Pl (lui), it holds that N on input (u, v) accepts and
that, for all j, 1 ~ j ~ Pl (lui), R(u, v,j) E A if the jth bit of v is 1 and
R(u, v,j) E A otherwise.

Let so ¢A E9 A and s1 E A E9 A be fixed. We define a mapping fo. For
every w E E*, fo (w) is defined as follows:

• If for some u, v E E* and t, 1 ~ t ~ lvl, it holds that I vi = Pl (lui),
w = (u,v,t), and Non input (u,v) accepts, then f 0 (w) = VtR(u,v,t),
where Vt is the tth bit of v.

• If for some u,v E E* and t, 1 ~ t ~ lvl, it holds that lvl = Pl(lul),
w = (u,v,t), and Non input (u,v) rejects, then fo(w) =so.

• If neither of the above two conditions hold, then fo(w) = s1.

Then fo is polynomial-time computable, and for every u E E*, MA(u) accepts
if and only if

(:3v : v E EP1 (1ull) (Vt : 1 ~ t ~ Pl (lui)) [fo((u, v, t)) E A E9 A].

8.2 An Exponential-Size Lower Bound for Parity 215

By combining this with equation 8.4,

x E L {::::::::? (3y1 : y1 E :EPo(lxll) ... (3yk : Yk E :EPo(lxll)

(3v : v E :EP1 (1ull) (Vt : 1 ~ t ~PI (lui)) [fo((u, v, t)) E A Etl A),

where u = (x, y1, ... , Yk). Let r be a polynomial such that, for all x E
:E" and Yl, 00. ,yk E :EPo(lxll, l(x,yl, 00 • ,yk)l ~ r(lxl). Define p(n) =
Po(n) + PI(r(n)). We define a new mapping f. For every k + 2 tuple
w = (x, w1, ... , Wk, t), f(w) is defined as follows:

• If lwkl ~ p(lxl) and there exist some YI, ... ,yk,v E :E" such that
- for every i, 1 ~ i ~ k, Yi is the prefix of wi having length po(lxl),
-vis the suffix ofwk having length PI(I(x,yl, 00. ,yk)l), and
- 1 ~ t ~ PI(I(x,yl, oo. ,yk)l),
then f(w) = fo((x,yl, 00. ,yk),v,t).

• Otherwise, f(w) = 81.

Then f is polynomial-time computable and for every x E :E",

x E L {::::::::? (3y1 : y1 E :EP(Ixll) ... (3yk : Yk E :EP(Ixll)

(Vt: 1 ~ t ~ p(lxl)) [/((x,yl, oo. ,yk, t)) E A Etl A],

as desired.
We can treat Case 4 similarly. The only difference here is that the first

quantifier Q1 is V.
- pA pB -Next we consider Case 3. Let B = A. Since :Ek• = :Ek• and L belongs

to :E~·A, we obtain the following characterization of L as in Case 1: For every
X E :E",

x E L {::::::::? (3y1 : y1 E :EP(Ixll) ... (3yk : Yk E :EP(Ixll)

(Vt: 1 ~ t ~ p(lxl)) [f((x, Y1, · · · , Yk, t)) E B EBB),

where the quantifiers alternate. By negating both sides of the equality, for
every x E :E* ,

x E L {::::::::? (Vyl : Yl E :EP(Ixll) ... (Vyk : Yk E :EP(Ixll)

(3t: 1 ~ t ~ p(lxl)) [/((x, Y1, 00 • ,yk, t)) ~ B EBB).

Since A Etl A = A Etl A, the condition in the bracket can be writ
ten as f((x, y1, 00 • , Yk, t)) E B Etl B. Since B = A, this condition is
f((x,yl, oo, ,yk,t)) E AffiA. So, for every x E :E",

x E L {::::::::? (Vy1 : y1 E :EP(Ixll) ... (Vyk : Yk E :EP(Ixl))

(3t: 1 ~ t ~ P(lxl)) [f((x,yb · · · ,yk, t)) E A Etl A),

as desired. Case 2 is the same as Case 3 except that the first quantifier is 3.
This proves the proposition. D Proposition 8.12

Next we present our oracle construction scheme. Let {Pi}i~ 1 be an enu
meration of polynomials such that, for each i ~ 1, Pi(n) = ni + i. For all

216 8. The Random Restriction Technique

polynomials p, there is some i ~ 1 such that, for all n ~ 0, p(n) ~ Pi(n). Let
JI, f2, ... be an enumeration of all polynomial-time computable functions.
For each triple s = (i, j, k), let Ks (A) be the language in E~·A characterized
as in equation 8.3 with Pi and iJ in place of p and J, respectively. More
precisely, for every triple s = (i,j, k), for every x E E*, and for every oracle
A, x E Ks(A) if and only if

(Q1Y1 : Y1 E EP;(I:z:l)) ... (QkYk : Yk E EP;(I:z:l))

(Qk+lt: 1 ~ t ~Pi(lxi))[IJ((x,y1, ... ,yk,t)) E AEBA].

The language A is constructed in stages. At stage s = (i, j, k) we will
identify an integer is and extend A as well as A up to length is, so that
there exists some integer n ~ 0 such that on E W(A) {::::::::} on ¢ Ks(A). We
assume that for all i,j, k ~ 1, (i,j, k) ~ 1 and that {1, 1, 1) = 1. Let io = 0.
We put the empty string in A.

Lets= (i,j, k). The construction in stages proceeds as follows:

• Let Ao (respectively, A1) be the set of all strings put in A (respectively,
A) prior to stage s. It holds that Ao n A1 = 0 and Ao U A1 = (E*)~l.-t.

• Let r be the smallest polynomial in the enumeration such that, for all x E
E* and Y1, ... ,yk E EP;(I:z:l), it holds that lfj({x,y1, ... ,yk,j))l ~ r(lxl).

• For each n = is-1 + 1, is-1 + 2, ... , test whether there is a partition
(Bo, B1) of (E*)~r(n) such that Bo 2 Ao, B1 2 A1, and

If such a partition is found for n, then do the following:
- Set is to r(n).
- Add all strings in Bo - Ao to A.
-Add all strings in B1- A1 to A.
- Terminate the loop and proceed to the next stage.

We claim that this construction is successful at every stage. We prove the
claim by contradiction. Assume that at stages= (i, j, k), for all n ~ is_1 + 1,
the search for a desired partition fails, i.e., for all n ~ is-1 + 1 and for all
partitions (Bo, Bl) of Er(n) such that Bo 2 Ao and B1 2 A1, it holds that

We construct from Ks a family of depth-(k+ 1) circuits C1. C2 , ..• for parity
in the following way.

For each n ~ 1, let J-L(n) = min{l EN jl ~ is-1 + 1 1\ 21 ~ n}. For each
n ~ 1, the circuit Cn is constructed from c/>o below, which is the formula for
Ks on input O~t(n):

c/>o = (QlYl: Y1 E EP;(~t(n))) · · · (QkYk: Yk E EP;(~t(n)))

(Qk+lt: 1 ~ t ~Pi(J-L(n))) [IJ((O~'(n),yl. ... ,yk,t)) E AEBA].

8.2 An Exponential-Size Lower Bound for Parity 217

The quantifiers appearing in ¢o alternate; that is, in the case when QI = 3,
for all r, 1 ~ t ~ k + 1, Qr = 3 if r is odd Qr = V if r is even, and in the case
when QI = V, for all r, 1 ~ t ~ k + 1, Qr = V if r is odd Qr = 3 if r is even.
For each r, 1 ~ r ~ k, and each YI, ... , Yr E EP•(I-I(n)), let ¢r[YI, ... , Yr]
denote the formula

(Qr+IYr+l : Yr+l E EPdl-l(n))) · · • (QkYk: Yk E EPi(l-l(n)))

(Qk+It: 1 ~ t ~Pi(J.L(n))) [/j((O~-'(n),yi, ·· · ,yk,t)) E AEBA].

For each t, 1 ~ t ~ Pi(J.L(n)), and each YI, ... ,yr E EP•(I-I(n)), let
¢k+I [YI, ... , Yr. t] denote the formula

To construct Cn, for each of the ¢'s defined in the above, introduce a gate
corresponding to it. The type of the gates is determined as follows:

• The node corresponding to ¢o is the output gate. The output gate is an 1\

gate if QI = V and is an V gate if QI = 3.
• Each node corresponding to a ¢k+I formula is an input gate.
• Let 1 ~ r ~ k. Each node corresponding to a ¢r formula is an 1\ gate if

Qr+l = V and is an V gate if Qr+I = 3.

The inputs to the nonleaf gates are determined as follows:

• The inputs of the output gate are the gates corresponding to {¢I [yi] I YI E
EPdl-l(n))}.

• Let 1 ~ r ~ k- 1. Let g be a gate corresponding to ¢r [YI, . . . , Yr] for some
YI, ... , Yr E EP•(I-I(n)). The inputs of g are { ¢r+dYI, ... , Yr+IJI Yr+l E
EPdl-l(n))}.

• Let g be a gate corresponding to ¢r[YI, ... , Yk] for some YI, ... , Yk E
EPdll(n)). The inputs of g are { ¢k+I [YI, ... , Yk, tJI1 ~ t ~ Pi(J.L(n))}.

Since 21-1(n) ;::::_ n, E~-'(n) has cardinality at least n. Let Wn = {WI, ... , Wn} be
the smallest n strings of length J.L(n). Let YI, ... , Yk E EP•(I-I(n)) and 1 ~ t ~
Pi(J.L(n)). Let g be the input gate corresponding to ¢HdYI, ... , Yk, t]. Let
z = /j(Oil(n),yi, . .. ,yk,t). The label of g is determined as follows:

• If for some l, 1 ~ l ~ n, z = 1wz, then g is labeled Wz.
• If for some l, 1 ~ l ~ n, z = Owz, then g is labeled wz.
• If for some u E E* - Wn it holds that z = 1 u, hen g is assigned 1 if u E AI

and is assigned 0 otherwise.
• If for some u E E*-Wn it holds that z = Ou, then g is assigned 0 if u E AI

and assigned 1 otherwise.
• If z is the empty sting, assign g to 0.

Then work from the input level to eliminate all subcircuits whose output is
a constant regardless of the values of WI, ... , Wn· This is Cno The circuit Cn
clearly has depth k + 1.

218 8. The Random Restriction Technique

By assumption, for every B ~ {w1, · · · ,wn},

Since
on E W(Al u B) {::::::::} IIBII is odd

and
on E Ks(Al U B) <===> Cn(XB(wl) · · · XB(wn)) = 1,

Cn computes 11"n. For every n 2::. 1, the size of Cn is at most

L (2P•(~t(n))r + Pi(JL(n))(2P•(~t(n)))k < (pi(JL(n)) + 2)(2P•(~t(n)))k.
O~r~k

By definition, there exists a fixed constant c > 0 such that for every n ~ 1
the number JL(n) in the construction of Cn is at most clog n. So, for every
n 2::. 1, the size of Cn is at most

For some constant c1 > 0, this is at most

Hence, {Cn}n~l is a family of depth-(k + 1), size-0(2c' logk+l n) circuits com
puting the parity function. However, this is impossible due to Theorem 8.3

• I I i+lJ (1/lO)(k+l)/k 1/k) • . s1nce c 2 og ogn = o(2 n . Thus, the constructiOn 1s successful
at every stage. This proves the theorem. 0

8.3 PH and PSPACE Differ with Probability One

In the previous section, we proved an exponential-size lower bound for
constant-depth circuits for computing the parity function and, based on that
impossibility result, proved the existence of an oracle that separates PSPACE
from PH. One might be tempted to ask how common it is for us to find an
oracle that separates the two classes if we randomly search for one.

To formalize the question, consider the characteristic sequence for each
set; for each i ~ 1, the ith bit of the sequence is a 1 if and only if the ith
string of E* belongs to the set. For each set A, w(A) denotes the characteristic
sequence of A. Note that, for each set A, w(A) E {0, 1}"'. The question we
are asking is how dense is the collection, C, of sequences corresponding to
oracles that separate PSPACE from PH. The cardinality of all the subsets
of E* is N1. so ordinary counting methods do not apply to calculating the
density. So we use Lebesgue measure. The characteristic sequence of a set is a
real number in [0, 1]. First of all, we check whether Cis measurable in [0, 1],

8.3 PH and PSPACE Differ with Probability One 219

and then, if so, measure its density. The mapping from the characteristic
sequences to [0, 1] is one-to-one except for finite and cofinite sets. For a finite
set S, the characteristic sequence of S and the characteristic sequence of S
are the same real number. However, this is not an issue here since the number
of finite sets is countable.

It turns out that there are only two choices for the probability that PH
and PSPACE differ relative to a thus-chosen oracle-it's either 0 or 1 and,
thus, in order to settle the question of whether the probability is 0 or 1, we
have only to show either that the probability is not 1 or is not 0.

Proposition 8.13 p.(C) > 0 implies p.(C) = 1 and p.(C) < 1 implies
p.(C) = 0.

Proposition 8.14 Either p.(C) = 1 or p.(C) = 0. Thus, either PHA -:f:
PSPACEA with probability 1 or PHA -:f: PSPACEA with probability 0.

We will show that the verdict is 1.

Theorem 8.15 With probability 1, a random oracle separates PSPACE
from PH.

In order to prove the theorem, we need to define the notion of probabilistic
circuits. A probabilistic circuit is a circuit that takes, in addition to its actual
input bits, a special set of bits called random bits, each of which is assigned
either 0 or 1 with probability ~· The output of a probabilistic circuit is thus
subject to a probability distribution.

The following lemma states that a circuit family computing the parity
function correctly for more than half of the inputs can be made errorless at
the expense of small increases in the depth and the size.

Lemma 8.16 Let {Cn}n~l be a family of depth-d, size-s(n) circuits. Sup
pose that there is a constant f > 0 such that, for every n?. 1, the proportion
of the inputs for which Cn(x) -# 11"n(x) is at most ~ - €. Then there exists a
family {En}n~l of depth-(d + 7), size-O(n<> s(n) + ni3) circuits that correctly
computes the parity function, where a and f3 are constants depending only
on e.

Proof Let {Cn}n~l, d, s(n), and f be as in the hypothesis of the lemma.
Let n ?. 1. For each X= Xt · · · Xn E {0, l}n andy =Yo · · · Yn E {0, 1}n+l,
define

Hn(X, y) = Zt · · · Zn,

where for each i, 1 ~ i ~ n, Zi =Xi EEl Yi-1 EEl Yi, and define

Fn(x, y) = Cn(Hn(x, y)) EEl Yo EEl Yn· (8.5)

Note that for every x E {0, 1}n andy E {0, 1}n+l

220 8. The Random Restriction Technique

7rn(Hn(X, y))
= (x1 E9 Yo E9 yt) E9 (x2 E9 Y1 E9 Y2) E9 · · · E9 (xn E9 Yn-1 E9 Yn)

= 7rn(x) E9 Yo E9 Yn·

By rearranging terms, we have

7rn(x) = 7rn(Hn(X, y)) E9 Yo E9 Yn· (8.6)

By combining equations 8.5 and 8.6, for all x E {0, 1}n andy E {0, 1}n+1,

Cn(Hn(X, y)) = 7rn(Hn(X, y)) {::::::} Fn(X, y) = 7rn(x). (8.7)

Define c~ to be a probabilistic circuit that computes Fn(x, y) given X as the
input and y as the random bits. For all x, z E {0, 1}n, there exist exactly
two y E {0, 1}n+1 such that z = Hn(x, y). Then, by equation 8.7, for every
x E {0, 1}n, the probability that C~(x) =/:. 7rn(x) is precisely the proportion
of z E {0, 1}n such that Cn(z) =/:. 7rn(z). So, the error probability of C~ is at
most ~ -f. As the exclusive-or of three bits can be computed by a depth-2,
size-5 circuit, we can design c~ so that its depth is d + 4 and its size is at
most O(s(n) + n).

We will convert C~ to a deterministic circuit. Let a be an integer greater
than or equal to ~- Since f can be arbitrary small, we may assume that

0 < f < i, so a~ 2. Let D~1) be the circuit that computes the 1\ of f3alognl
copies of C~, where each copy has its own random bits. Since C~ computes
7rn with error probability at most ~ -f = ~(1-a- 1), the following conditions
hold:

1. For every x E {0, 1}n, if7rn(x) = 1, then D~1)(x) = 1 with probability at
least [~(1 + a-1)Jf3alognl ~ n-3a+2.

2. For every x E {0, 1}n, if 7rn(x) = 0, then D~1)(x) = 1 with probability at
most [~(1- a-1)] f3alognl ~ n-3a-2.

3. depth(D~1)) = d + 5 and size(D~1)) = O((s(n) + n) log n).

Next let D~2) be the circuit that computes the V of n3a copies of D~1),
where we attach the copies independent random bits. Then the following
conditions hold:

1. For every x E {0, 1}n, if 7rn(x) = 1, then each input bit to the output

gate (which is an V gate) of D~2)(x) becomes 0 with probability at most
1- n-3a+2, so, D~2) (x) = 0 with probability at most (1- n-3a+2)n3 "" =
(1- n-3a+2)n3""- 2n2 • This is at most 2-n2 for n ~ 2.

2. For every x E {0, 1}n, if 7rn(x) = 0, then each input bit to the output gate
of D~2)(x) becomes 1 with probability at most n-3a-2, so D~2)(x) = 0
with probability at least 1- n3an-3a-2 = 1- n-2.

3. depth(D~2)) = d + 7 and size(D~2)) = O(n3a(s(n) + n) logn).

8.3 PH and PSPACE Differ with Probability One 221

Next let D~3) be the circuit that computes the 1\ of n copies of the com

plement of D~2), where the copies are given independent random bits. Then
the following conditions hold:

1. For every x E {0, 1}n, if 1rn(x) = 1, then D~3)(x) = 1 with probability at
least (1 - 2-n2)n ~ 1 - n2-n2

• This is more than 1 - 2-n for n ~ 3.

2. For every x E·{o, 1}n, if 7rn(x) = 0, then D~3)(x) = 1 with probability at
most (n- 2)n. This is less than 2-n for n ~ 2.

3. depth(D~3)) = d + 7 and size(D~3)) = O(n3a+l(s(n) + n) logn).

Thus, D~3) computes 11"n with probability greater than 1 - 2-n. For each
x E {0, 1}n, let R(x) be the set of all assignments to the random bits that

make D~3) err on input x. Since D~3) makes an error with probability less
than 2-n,

II U R(x)ll < 2n2-n = 1.
xE{O,l}n

This implies that there is an assignment to the random bits not belonging to
R(x) for any x E {0, 1}n. Let r be such an assignment. Define En to be the

deterministic circuit constructed from D~3) by assigning r to the random bits.
Then En correctly computes 1rn(x) for all x E {0, l}n, depth(En) = d+ 7, and
size(En) = O(n3a+l(s(n) +n) logn) = O(n3a+2 (s(n) +n)) = O(n3a+2s(n) +
n 3a+3) as desired. This proves the lemma. D

Now we are ready to prove Theorem 8.15. Define W(A) to be the test
language we considered in Sect. 8.2; that is, W(A) is the set of all on such
that 11{0, 1}n n All is odd. Recall that we have constructed an enumera
tion K 1, K 2, . . . of relativized predicates specifying alternating quantifica
tions such that, for every Land A, L E PHA if and only if for some s ~ 1 it
holds that L = Ks(A).

The following proposition, which we present without a proof, is useful.

Proposition 8.17 If there exists E > 0 such that, for every s ~ 1,
IJ.({A I W(A) -=f. Ks(A)}) > E, then IJ.(C) ~ 1.

We obtain the following corollary from Proposition 8.17.

Corollary 8.18 If 11-(C) = 0, then there exist E > 0 and s ~ 1 such that,
for every n ~ 1, IJ.({A I on E W(A) {:::==}on E Ks(A)}) > ! +E.

Proof of Corollary 8.18 Suppose that ~J.(C) = 0. Then by taking the
contrapositive of Proposition 8.17, we have

(VE > 0) (3s ~ 1) [IJ.({A I W(A) -=f. K 8 (A)}) ~ E].

This is equivalent to

(VE: 0 < E < 1/2) (3s ~ 1) [~J.({A I W(A) = K 8 (A)}) ~ 1- E].

222 8. The Random Restriction Technique

This implies

1
(3f: 0 < f < 1/2) (3s ~ 1) [J.L({A I W(A) = Ks(A)}) > 2 + f].

The condition W(A) = Ks(A) implies that for every n ~ 1, onE W(A) {:::=:}
onE Ks(A). So, if J.t({A I W(A) = Ks(A)}) ~ 1- f then, for every n ~ 1,
J.t({A I on E W(A) {:::=:} on E Ks(A)}) > ~+f. Thus, the statement of the
corollary holds. 0 Corollary 8.18

Now the rest of the proof is reminiscent of that of Theorem 8.11.
Assume, to the contrary, that PHA = PSPACEA with probability 1; that

is, J.L(C) = 0. By Corollary 8.18, there exist some real f > 0 and some integer
s ~ 1 such that for every n ~ 1

1
J.t({A I onE W(A) {:::=:}onE Ks(A)}) > 2 +f.

Select such f and s. Let n ~ 1 and let 'D = {A I on E W(A) {:::=:} on E
Ks(A)}. Let Q be the set of all strings queried by Ks on input on. Note that
for every language A whether on E Ks (A) depends only on how A partitions
Q and whether on E W(A) and depends only on how A partitions En. We
claim that En ~ Q. To see why, assume En Sb Q. Divide En into two parts,
8 1 =En\ Q and 82 =En n Q. By assumption, 8 1 is nonempty. Since for
every A, onE W(A) if and only if the number of elements in An En is odd,
for every H ~ 82, the number of H' ~ 81 such that HUH' E 'Dis equal to
the number of H' ~ 81 such that HUH' rj_ 'D. This implies that J.L('D) = ~.
a contradiction. So, En ~ Q.

Let m = 2n- 1 and let V = {Oyl y E En-1}. Then IJVII = m. For each
H ~ Q - V, count for how many H' ~ V does it hold that H U H' E 'D.
Since J.L('D) > 4 + f, by the Pigeonhole Principle there is some H ~ Q - V
such that for more than ~ + f of H' ~ V, HUH' E 'D. Pick such an H.

Construct Cm from the circuit representing the computation of Ks on on
by assigning values to some input variables as follows:

• For each wE H, assign 1 to the input w and 0 to the input w.
• For each wE (Q- V)- H, assign 0 to the input wand 1 to the input w.
Then the proportion of the inputs of length m for which Cm computes 11'm
correctly is more than ~+f. This family, by Lemma 8.16, can be converted
to a family of depth-(k+7), superpolynomial-size circuits that correctly com
putes the parity function. However, this is impossible by Theorem 8.3. Thus,
J.L(C) = 1. This proves the theorem.

8.4 Oracles That Make the Polynomial Hierarchy
Infinite

In this section our major concern is whether there is an oracle relative to
which the polynomial hierarchy is infinite. Our viewpoint has been that the

8.4 Oracles That Make the Polynomial Hierarchy Infinite 223

®

~~ ••• • ••
•••

••• ••• • ••
Fig. 8.3 h~

relativized polynomial hierarchy is essentially a collection of constant-depth
circuits. So, if we can prove that for each k 2: 2 there exists a series of
functions computable by depth-k, polynomial-size circuits but not by depth
(k- 1), superpolynomial-size circuits with small fan-in depth-1 subcircuits,
then by using a method similar to that in the proof of Theorem 8.11, we
can construct for each k 2: 2 an oracle A(k) separating E~ from E~_ 1 . In
the oracle construction for Theorem 8.11 we basically kill each PH machine
by identifying a large enough length and then putting some strings of that
length in the oracle as well as putting some strings of that length outside the
oracle. The procedure can be done in such a way that the lengths that are
chosen are widely spaced. Then we can interleave separation procedures of
all levels to construct an oracle that separates all the levels of the hierarchy,
thereby making the hierarchy infinite.

The following are the magic functions that we use for circuit lower bounds.

Definition 8.19 Let k 2: 2 and m 2: 1. Define h~ to be
function of mk variables x 17 ••• , Xmk:

h~(x17 · · · ,Xmk) = (\ii1 : 1 :S i1 :S m) (3i2: 1 :S i2 :S m)
·· · (Qkik: 1 :S ik :S m) [x(i1, ... ,ik) = 1],

the following

(8.8)

where Q k = \i if k is odd and 3 otherwise and (i 1 , ... , ik) denotes the unique
number i, 1 ::; i ::; mk, whose m-adic representation is equal to i 1 · • • ik.
(Here we use the numbers 1, · · · , m instead of 0, · · · , m- 1.}

It is obvious that for each k 2: 2, and each m 2: 1, a circuit H~ for
computing h~ can be constructed in a straightforward manner by replacing

224 8. The Random Restriction Technique

each occurrence of V in the formula by an I\ and each occurrence of 3 in
the formula by an V. The circuit H!. has size 1 + m + m 2 + · · · + mk and
this is less than mk+l. In order to prove the impossibility result, can we
use the distribution Rp we used for the parity case? We doubt that that is
possible. Why? Basically, Rp is designed to destroy all the depth-2 circuits
and so, with high probability, a random restriction under Rp will not only
weaken the superpolynomial size depth-(k- 1) circuits but also h!;.. Thus,
we introduce a new kind of probability distribution for restrictions, in which
the probability of assigning 0 can be different from that of assigning 1.

Definition 8.20 Let 3 be a set of n variables with a fixed enumeration
x 1, ... ,xn. Let r, 1 ::::; r ::=:; n, be an integer. Let B = {B1, ... ,Br} be a
partition of 3 into nonempty sets. Let 8 = { s1, ... , Sr} be a set of variables
each varying over the values 0, 1, and*· Let q, 0 < q < 1, be a real number.

1. R:,8 is the distribution of restrictions p over 3 U 8 that are chosen as
follows:
a) For each i, 1 ::::; i ::=:; r, si = * with probability q and 0 with probability

1- q.
b) Then for each i, 1 ::::; i ::::; r, and each Xj E Bi, p(xi) = p(si) with

probability q and 1 with probability 1 - q.
2. For a restriction p E R:,8 , g(p) is the restriction a determined from p as

follows: For each i, 1 ::=:; i ::::; r, and each Xj E Bi,
• if p(xj) = * and for some k > j it holds that Xk E Bi and p(xk) = *•

then a(xj) = 1;
• otherwise, a(xi) = *·

3. R-;,8 is defined similarly except that the roles ofO and 1 are interchanged.

4. For a restriction p E R-;,8 , g(p) is defined similarly except that the roles
of 0 and 1 are interchanged.

Here the sets B 1, ... , Br correspond to the blocks of input bits that
are fed to the depth-1 subcircuits of h!;.. Note that for all p E R:,8 and i,
1 ::::; i ::=:; r, the restriction product pg(p) assigns* to at most one variable in
Bi, and if the product assigns * to exactly one variable, then all the other
variables in Bi are assigned 1. The same property holds for R;;,8 with 0 in
place of 1.

The following lemma parallels Lemma 8.4. The interested reader may refer
to the references we provide at the end of the chapter for its proof.

Lemma 8.21 Lett ~ 1, let s ~ 1, and let q be such that 0 < q < 1. Let
G be an 1\-V circuit (respectively, an V-I\ circuit) with bottom fan-in at most
t. For a random restriction p chosen from R:,8 (respectively, from R-;,8),

the probability that ar pg(p) can be rewritten as an V-I\ (respectively, an 1\-V
circuit) of bottom fan-in less than s is at least 1 - a 8 , where

4q 4qt
a = - 1- 1 < -1 - < 6qt.

2•- og2

8.4 Oracles That Make the Polynomial Hierarchy Infinite 225

Theorem 8.22 Let k?: 2. For all but finitely many m, and for every depth
k circuit C, C -I h!;, if C satisfies the following two conditions:

s-k
1. size(C) ~2m .
2. Each depth-! subcircuit of C is of fan-in at most m 3-k.

Proof The proof is by induction on k. For the base case, let k = 2. Let
m ?: 2. Suppose C is a depth-2 circuit satisfying properties 1 and 2 of the
theorem. Then m 1132 < m, so there is a restriction a that forces C to a
constant while keeping h!;, nonconstant. This implies that C -:f h!;.. Thus,
the claim holds for k = 2.

For the induction step, let k ?: 3 and suppose that the claim holds
for all k', 2 ~ k' < k. Let m ?: 1 be fixed and let C be a depth-k
circuitsatisfying properties 1 and 2 of the theorem. The circuit H~ is built
from h!;. by translating the formula defining the function. For simplicity, let
h = {1, ... , mk-1} and let /2 = {1, ... , mk-2}. Let A1, ... , Amk-1 be an
enumeration of all depth-1 subcircuits of H~ and let D 1, ... , Dmk-2 be an
enumeration of all depth-2 subcircuits of H~. Note for every k ?: 2 and ev
ery i E 11 that Ai is an /\-circuit if k is odd and an V-circuit if k is even.
For each j E /2, let T(j) be the set of all i E 11 such that Ai is a sub
circuit of Dj. Then, for every j E h T(j) = {m(j- 1) + 1, ... , mj} and
IIT(j)ll = m. For each i E /1, let Bi be the set of all variables appearing in
Ai and B = {B1, ... ,Bmk-1}. Let q = Tm and p be a random restriction

chosen under distribution R:,8 if k is odd and R;,8 if k is even.

Fact 8.23 If m is sufficiently large, with probability greater than ~, the
following holds for all i E /1: Either

1. p(si) = * and A r pg(p) = X! for some unique variable X! E Bi or
2. p(si) E {0, 1} and Airpg(p) = p(si)·

Proof of Fact 8.23 By symmetry we have only to consider the case
in which k is odd. If k is odd, then A1, ... , Amk-1 are /\-circuits and the
distribution to be used is R:,8 . Let i E h. Suppose p(si) = *· Then, exactly
one of the following is true: Air pg(p) = 1 and for some Xz E Bi, Air pg(p) =
xz. The former holds with probability (1- q)IIB;II, so the latter holds with
probability 1-(1-q)IIB•II. Next suppose p(si) = 0. Then either Airpg(p) = 1
or Airpg(p) = 0. Since Ai is an 1\ circuit and p(si) = 0, Airpg(p) = 1 if
and only if every variable in Bi is assigned 1. This occurs with probability
(1- q)IIB•II, so Airpg(p) = 0 with probability 1- (1- q)ll 8 •11.

Thus, either property 1 or property 2 holds with probability 1-(1-q)IIB•II.
Since III1II = mk- 1, the probability that for every i E 11 one of the two
conditions holds is

(1- (1- q)IIBdl)mk-1

= (1- (1- m-1/2)m)mk-1

226 8. The Random Restriction Technique

~ (1 - e-y'ffi)mk-1

~ 1- mk-1(2-rm)

5
>6

for sufficiently large m. This proves the fact. 0 Fact 8.23

Fact 8.24 If m is sufficiently large, with probability greater than ~,

ll{i E T(j) I p(si) =*}II~ l.;m > rm113l (8.9)
nm

holds for all j E h

Proof of Fact 8.24 Again, by symmetry we have only to consider the case
in which k is odd. Let j E h For each i E T(j), p(si) = *with probability
q = m- 112 . For each d, 0 $ d $ m, let Pd be the probability that for exactly
d of the i E T(j), p(s,) = *• i.e., ll{i E T(j) I p(si) =*}II =d. Then

Pd = (;)(m-1/2)d(1 -m-1/2)m-d.

The probability that equation 8.9 does not hold for j is Po+ · · · + p11 , where
v = L~J - 1. For all m ~ 2 and d such that 2 $ d $ m/2,

~ = (m _ d+ 1) (m-1/2) < (~) (m-1/2) = m.
Pd-1 d 1 - m-1/ 2 - 2 ! Vm

Also, for every m ~ 1,

Po = (1 _ m-1/2)m $ (1 _ m-1/2)m-1

and
p1 = m(m-1/2)(1 _ m-1/2)m-1 = Vm(1 _ m-1/2)m-1.

Thus, for every m ~ 2 and d such that 0 $ d $ m/2,

Pd $ (1- m-1/2)m-1(Vm)d.

For all m ~ 2, v = L1;(5J - 1 < m/2. Thus,

Po+··· +Pv
$ (1 - m-1;2)m-1 L (vm)d

$ (1-m-1/2)m-1(v+ 1)(vmt
(t:=)y'ffi/lnm

$ (1 _ m-1/2)m-1-'-Y:...."m--:-·---
lnm

$ (1- m-1/2)m-1(Jffl)Vm!lnm

= o(e-C!+•)Vme!(Inm)y'ffi/lnm)

8.4 Oracles That Make the Polynomial Hierarchy Infinite 227

for some constant t:, 0 < f <~-Since e-C!+•)Vme!Clnm)y'm/lnm = e-•vm,

Po+ ... + Pv = o(e-•Vm).

Since lll2ll = mk-2 , the probability that equation 8.9 does not hold for some
j E /2 is

Note that

for some t:1 > 0. So, the probability that equation 8.9 does not hold for some
j E /2 is

Thus, the probability in question is less than ~ if m is large enough.
0 Fact 8.24

Fact 8.25 For every k 2: 2, and form sufficiently large, with probability at
least~~ pg(p) can be extended to a restriction a such that H::,fa is equivalent

to H!,-; 1 , where m' = f m 1131.

Proof of Fact 8.25 By Facts 8.23 and 8.24, with probability greater than
0, for every j E h, D;fpg(p) is dependent on at least ..,;mjlnm > fm1131
depth-1 subcircuits, each of which is equivalent to a unique variable. So there
is some p that makes this happen. Pick such a p. Since H::, is a tree and since
for all but finitely many m, ..,;mjlnm > fm1131, we can extend pg(p), by
fixing more variables, to a restriction a in such a way that a leaves exactly
m' branches at every nonleaf node. Since the fan-in of every level-1 gate is 1,
the bottom two levels of this reduced circuit can be collapsed into 1. Thus,
a reduces H::, to H!,-; 1 . 0 Fact 8.25

Now we are at the final stage of the proof. Suppose that m is large, and
apply Lemma 8.21 to C with s = t = m 113k. Then with probability greater
than or equal to 1 - a 8 , pg(p) can be extended to a restriction a such that
each depth-2 sub circuit E of C fa can be rewritten as a circuit E' satisfying
the following conditions:

1. E is an 1\-V circuit if and only if E' is an V-1\ circuit.
2. Each depth-1 subcircuit of E' is of fan-in at most m 3-k.

Since a < 6qt = 6m-112 m3 -k < m-1/4, the probability that the event occurs
for all depth-2 subcircuits inC is at least

1- (m-1/4)ms-k 2ms-k

logm. a-le a-k
= 1-2- 4 m +m

s-k
= 1-w(Tm).

228 8. The Random Restriction Technique

So, the probability is more than j. Thus, with probability greater than ~,
there is a restriction a depending on p such that

1. Hf;. I a is equivalent to H;:,.-; 1 and

2. CIa can be converted to a depth k -1 circuit C' of size at most 2m3
-k :5

I 3-(k-1) -k

2(m) , each of whose depth-1 subcircuits is offan-in at most m 3 :5
(m')3-(k-t).

By our induction hypothesis, H;:,.-; 1 is not equivalent to Cf a. So, C cannot
compute Hf;.. This proves the theorem. 0

Theorem 8.26 There is a relativized world A in which PHA is infinite.

Proof For each k 2:: 2 and each language A, define Lk(A) as follows:

where x 1 , ••• , x 2kn is an enumeration of all strings of length kn in increasing
lexicographic order. More precisely, for every k 2:: 2, every language A, and
every n 2:: 1 ,

on E Lk(A) {::::::::} (Q1Y1 : Y1 E En) (Q2Y2 : Y2 E En)

· · · (QkYk : Yk E En)[y1 · · · Yk E A],

where y 1 • · · Yk denotes the concatenation of y1 , ... , Yk and for each i,
1 :5 i :5 k, Qi = V if i is odd and :3 if i is even. It is clear from the def
inition that for every oracle A and every k 2:: 2, Lk(A) E IT1. We construct
an oracle A such that, for every k 2:: 2, Lk(A) ¢ E1_ 1 . Since for every
k 2:: 2, E1 = EL 1 implies IT1 = ELl' this oracle separates E1 from EL 1

for all k 2:: 2, and thus makes the polynomial hierarchy infinite. We use
the same enumeration p 1 , P2, ... of polynomials and the same enumeration
/ 1 , f2, ... of polynomial-time computable functions as we did in the proof of
Theorem 8.11. Recall, by Proposition 8.12 that, for every k 2:: 1 and for every
all A ~ E*, if a language L belongs to E1'A, then there exist a polynomial Pi
and a polynomial-time computable function /j such that, for every x,

X E L {::::::::} (QIYI : Y1 E EP<(Ixl)) · · · (QkYk: Yk E EPi(lxl))

(Qk+Iz: z E {1, · · · ,pi(lxl)})
[fj(x, YI, ... , Yk, z) E AE9A],

(8.10)

where for every l, 1 :5 l :5 k + 1, Ql = :3 if l is odd and Ql = V if l is even. For
triples s = (i, j, k) and oracle A, let Ks(A) denote the set of all x satisfying
the condition on the right-hand side.

The language A is constructed in stages. At stage s = (i, j, k) we will
identity an integer is and extend A as well as A up to length is, so that there
exists some integer n 2:: 0 such that on E Lk+ 1(A) {::::::::} on ¢ Ks(A). We
assume that for all i,j,k 2::1, (i,j,k) 2::1 and that (1,1,1) = 1. Let io = 0.
We put the empty string in A.

8.4 Oracles That Make the Polynomial Hierarchy Infinite 229

Lets= (i,j, k}. Suppose that we are at the beginning of the stages. Let
Ao (respectively, A 1) be the set of all strings put in A (respectively, A) prior
to stage s. It holds that Ao n A1 = 0 and Ao U A1 = (E*)~e.- 1 • Consider
the following three conditions:

n > ls-1 1

n s-(k+l)
(k + 1)2(k+ 1)p;(n) < 2<2) , and

Pi(n) < (2n)a-<k+t).

(8.11)

(8.12)

(8.13)

Since Pi is a polynomial and k is fixed at stage s, there exists an integer n 0

such that for all n ~ no n satisfies all the three conditions. We claim that for
some n ~ no there exists a partition (Bo, B1) of (E*)~n such that B 0 2 A 0 ,

B1 2 A1, and
onE LkH(Bi) {::::::::} on¢ Ks(Bi).

We prove the claim by way of contradiction. Assume that the claim does
not hold, i.e., for all n ~ no and all partitions (Bo, Bi) of (E*)~n such that
Bo 2 Ao and B1 2 A1, it holds that

(8.14)

For each n ~ 1, let p.(n) denote the smallest integer l such that l ~ £8 _ 1 + 1
and 21 ~ n. For each n ~ 1, the circuit Cn is constructed from the formula
for K 8 on input OJL(n). Let ¢o be the formula

x E L {::::::::} (Q1Y1 : Y1 E EP•(Ixll) · · · (QkYk: Yk E EP•(Ixll)

(Qk+1z : z E {1, · · · ,pi(ixi)}) [fi(x, Yi! · · ·, Yk, z) E A E9 A],

where for every l, 1 ::; l ::; k + 1, Qt = :3 if l is odd and Qt = V if lis even. For
each r, 1 ::; r ::; k, and each Yl! ... , Yr E EP• (JL(n)), let ¢r [Y1, ... , Yr] denote
the formula

(QrHYr+1 : Yr+1 E EP;(JL(n))) · · · (QkYk: Yk E EP•(JL(n)))

(Qk+1t: 1::; t ::;pi(p.(n))) [fi((OJL(nl,y1, · · · ,yk,t}) E AE9A].

For each t, 1 ::; t ::; Pi(p.(n)), and each Y1 1 ••• 1 Yr E EP•(JL(n)), let
¢k+dY11 ••• , Yr. t] denote the formula

To construct Cn, for each of the ¢'s defined in the above, introduce a gate
corresponding to it. The type of the gates is determined as follows:

• The node corresponding to ¢ 0 is the output gate. The output gate is an V
gate.

• Each node corresponding to a ¢k+l formula is an input gate.
• Let 1 ::; r ::; k. Each node corresponding to a ¢r formula is an I\ gate if

r + 1 is even and an V gate if r + 1 is odd.

230 8. The Random Restriction Technique

The inputs to the nonleaf gates are determined as follows:

• The inputs of the output gate are the gates corresponding to {¢I [yl] I YI E
EP<(J<(n))}.

• Let 1 :5 r :5 k - 1. Let g be a gate corresponding to ¢r [YI, . . . , Yr] for some
Yb ... ,Yr E EP<(J<(n)). The inputs of g are {¢r+I[YI 1 ••• ,Yr+IJI Yr+l E
EP<(J<(n)) }.

• Let g be a gate corresponding to ¢r[YI, ... , Yk] for some YI, ... , Yk E
EP•(J<(n)). The inputs of g are {¢k+dYI, ... ,yk, tJI1 :5 t :5 Pi(J.t(n))}.

Let Wn = {wi, ... , Wnk+l} be the smallest nk+I strings oflength (k+1)p.(n).
Let YI, ... , Yk E EP<(J<(n)) and 1 :5 t :5 Pi(J.t(n)). Let g be the input gate cor
responding to lPk+dYI, ... ,yk,t]. Let z = /j(O~<(n),yi, ... ,yk,t). The label
of g is determined as follows:

• If for some l, 1 :5l :5 nk+I, z = 1wz, then g is labeled wz.
• If for some l, 1 :5 l :5 nk+I, z = Owz, then g is labeled wz.
• If for some u E E*- Wn it holds that z = 1u, then g is assigned 1 if u E AI

and is assigned 0 otherwise.
• If for some u E E* - Wn it holds that z = Ou, then g is assigned 0 if u E AI

and is assigned 1 otherwise.
• If z is the empty sting, g is assigned 0.

Then work from the input level to eliminate all subcircuits whose output is
a cot;tstant regardless of the values of WI, ... , Wnk+l. This is Cn. The circuit
Cn clearly has depth k + 1.

By assumption, for every B ~ {w1, · · · ,WnHt},

Since

and
on E Ks(AI u B) <===> Cn(XB(wl) · · · XB(Wnk+t)) = 1,

Cn computes h~+l. For all but finitely many n ~ n0 , both (8.12) and (8.13)
3 -(k+l)

hold. So, for all but finitely many n, the size of Cn is smaller than 2m
and each depth-1 subcircuit of Cn has fan-in smaller than n 3 -(k+ll. Thus, by
Theorem 8.22, Cn cannot compute h~+I. So, there exists an assignment to
WI, ... , Wnk+l with respect to which Cn disagrees with h~+I. This implies
that there is a set Y ~ {WI, ... , Wnk+t} such that

This is equivalent to

8.6 Bibliographic Notes 231

where B 1 = A1 U Y. Let r be the smallest integer such that for all
Yt. ... ,Yk E Ep,(n) and t, 1 ~ t ~ Pi(n), IJ;((on,yl, ... ,yk,t))l ~rand
B0 = (E*):::;r- B 1 . Then (Bo,Bl) is an extension of (A0 ,A1), which con
tradicts our assumption that equation 8.14 holds for every extension. This
proves our claim. So, there is an extension (B0 , Bl) of (A0 , At) such that equa
tion 8.14 does not hold. Pick such an extension. Set is be the smallest integer
r such that r ~ ls-1 and for all Y1, ... ,yk E EP•(n) and t, 1 ~ t ~ Pi(n),
If;((On, Yl, ... , Yk, t))I ~ r. We will set A1 to B1 and set Ao to (E*):::;r- B1.
Then the property Lt+l =/= Ks(A) will be preserved in the future stages. This
proves the theorem. 0

Corollary 8.27 There is a relativized world in which PSPACE =/=PH and
PH is infinite.

8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite
with Probability One?

Does a "probability-one" separation hold for infiniteness of the polynomial
hierarchy? Proving such a result seems out of reach as long as we use the
function family {h~h,m~l· In order to apply the method in Sect. 8.3, the
function family :F must possess the following property:

Any deterministic circuit computing :F with bounded error can be
converted, at the cost of constant increase in depth and polynomial
increase in size, to a probabilistic circuit computing :F with bounded
error probability.

Our function family {h~}k,m~l seems to lack this property. Can we find an
other family with this property? The question is subtle. Functions with the
property are more or less symmetric, in the sense that the outcome is heavily
dependent on the number of 1s in the input bits. In general, symmetric func
tions, such as the parity function, are "provably" harder than constant-depth,
polynomial-size circuits. So, a family endowed with the property seemingly
cannot be used to separate the polynomial hierarchy.

8.6 Bibliographic Notes

Baker, Gill, and Solovay [BGS75] introduced the concept of oracle separa
tions. They construct an oracle relative to which P = NP and a another
oracle relative to which P =/= NP. The meaning and interpretation of ora
cle-also known as relativization-results has been the topic of interesting
discussions [Har85,All90,HCRR90,HCC+92,For94]. Though much is known
about relativization theory (see [Ver94]), many open problems remain (see,
e.g., [HRZ95]).

232 8. The Random Restriction Technique

The random restriction technique was invented independently by Furst,
Saxe, and Sipser [FSS84] and by Ajtai [Ajt83]. Both groups proved
Theorem 8.1. The exponential-size lower bound for depth-2 circuits, men
tioned in the proof of Theorem 8.1, is due to Lupanov [Lup61].

An exponential-size lower bound for parity as well as an oracle separation
of PSPACE from PH was first proved by Yao [Yao85]. These two results were
improved by Hastad [Has87,Has89]. Our presentation in Sect. 8.2 is based on
the approach of Hastad.

The notion of random oracles was pioneered in the study by Bennett
and Gill [BG81]. They showed that P =f. NP with probability 1. Proposi
tions 8.17 and 8.13 are from their paper. The probability-one separation
of PSPACE from PH is due to Cai [Cai89]. Babai [Bab87] presents a sim
pler proof built on Hastad's result. Our presentation is based on Babai's
proof [Bab87]. Lemma 8.16 is due to Ajtai and Ben-Or [AB084].

The function h~ of Sect. 8.4 and the biased restriction scheme presented in
Sect. 8.4 are both due to Sipser [Sip83]. Using these techniques, Sipser proves
a polynomial-size lower bound for constant-depth circuits computing h~. He
conjectured that it is possible to strengthen the result to superpolynomial
size. Yao [Yao85] proves an exponential-size lower bound, but the paper did
not contain a proof. Based on this lower bound, Yao constructs an oracle
making PH infinite. Hastad provides a complete proof of Yao's lower bound.
Actually, Hastad's result [Has87] significantly improves upon Yao's result.
Lemma 8.21 is taken from Hastad's thesis [Has87]. Our presentation is based
on the function proposed by Sipser. This function gives a size lower bound
weaker than that of Hastad [Has87].

The random restriction technique has been widely used as a tool for prov
ing lower bounds and constructing oracles separating complexity classes. For
example, Ko [Ko89] constructs, for each k 2:: 1, an oracle that makes the
polynomial hierarchy separate up to exactly E~ while making PSPACE dif
ferent from (or equal to) the polynomial hierarchy. Sheu and Long [SL94]
show that there exists an oracle relative to which, for all k 2:: 2, ~~ ~ E~ and
e~ ~ ~~- They also prove that the extended low hierarchy is indeed infinite.
Bruschi [Bru92] constructs, for every k 2:: 1, an oracle relative to which there
exists a set in E~ that is immune to ~~.

A perceptron [MP88] is an AND-OR circuit with a threshold gate at the
top. Improving upon Hastad's switching lemma, Green [Gre91] proves an
exponential lower bound on the size of constant-depth perceptrons comput
ing parity. Based on the lower bound he proves that there is a relativized
world in which EBP ~ ppPH. Berg and Ulfberg [BU98] construct functions
that are computable by linear-size, depth-k boolean circuits and that for no
k < logn/(6loglogn) can be computed by polynomial-size, depth-(k- 1)
perceptrons. Based on the lower bound they show that there is an oracle A
relative to which, for all k 2:: 2, E~·A ~ ppEt~2.

8.6 Bibliographic Notes 233

Pitassi, Beame, and Impagliazzo [PBI93] obtain an exponential lower
bound on the size of bounded-depth Frege proofs for the Pigeonhole Principle
and an O(log log n) lower bound on the depth of polynomial-size Frege proofs
for the Pigeonhole Principle. Beame, Impagliazzo, and Pitassi [BIP98] show
that for no functions k(n) can the problem of determining whether a given
n-node graph has an s-t path of length at most k(n) be solved by polynomial
size circuits of depth o(log log k(n)). There is a survey by Beame [Bea94] that
discusses a variety of switching lemmas.

9. The Polynomial Technique

One way of understanding the computational flexibility inherent in a com
plexity class, C, is to determine the closure properties the class possesses and
lacks. Under which operations is the class closed: complementation? union?
intersection? symmetric difference? And under which reducibilities is the class
closed? That is, for a class C, we may naturally ask: For which reductions :::;r
does it hold that Rr(C) ~ C? Answering such a question can give insight not
just into the computational flexibility of a class but also into the identity of
the class. If C is closed? under some operation and V is not, then C =f. V.
And, more typically in the world of complexity, if C is closed under some
operation and V has to date defeated all efforts to prove it closed under that
operation, then we may take this as one piece of evidence that may suggest
that the classes may differ.

The focus of this chapter is on proving closure properties of PP (and
related classes) via construction of low-degree multivariate polynomials of a
special kind of counting function, the gap functions. Gap functions are those
that count the difference between the number of accepting and rejecting com
putation paths of nondeterministic Turing machines. The breakthrough on
these difficult problems came from a novel polynomial construction technique
for approximating the sign function. Combining this technique with gap func
tions gives us relatively easy proofs of the properties.

This chapter is organized as follows. In Sect. 9.1 we introduce GapP and
show its closure properties. We demonstrate the usefulness of GapP functions
by presenting some simple closure properties of PP and C=P. In Sect. 9.2 we
introduce an approximation formula for the sign function and use it to prove
closure properties of PP. In particular, we prove that PP is closed under
intersection and under polynomial-time truth-table reductions. In Sect. 9.3
we introduce GapL, the logarithmic space version of GapP, and we show
that the probabilistic logspace hierarchy collapses. In Sect. 9.4 we discuss an
important open issue.

236 9. The Polynomial Technique

9.1 GEM: The Polynomial Technique

A GapP function counts the difference between the number of accepting and
rejecting computation paths of a nondeterministic Turing machine.

Definition 9.1 Let M be a halting nondeterministic Turing machine, i.e.,
one that halts on all inputs and along all computation paths. The gap function
of M, denoted by #gapM, is a mapping from E* to Z defined for all x E E*
by

#gapM(x) = #accM(x)- #rejM(x).

GapP is the collection of all gap functions of polynomial time-bounded non
deterministic Turing machines.

GapP offers the following new characterization of PP.

Proposition 9.2 Let L be a language. L belongs to PP if and only if there
exists some total function f E GapP such that, for every x E E*, x E L if
and only if f(x) ~ 0.

Proof Let L be an arbitrary language. Suppose that L is in PP. So there
exist a polynomial p, a language A E P, and a total function f E FP such that,
for every x E E*, x E L if and only if ll{y IIYI = p(lxl) 1\ (x, y) E A}ll ~ f(x).
Define M to be the nondeterministic Turing machine that, on input x E E*,
guesses bE {0, 1} and y E EP(Ixl), and accepts x if either (b = 0 and (x, y) E
A) or (b = 1 and the rank of yin EP(Ixl)_i.e., {xI z E EP(Ixl) 1\ y ~lex z}-is
at most 2P(Ixl)- f(x)) and rejects otherwise. The machine M can be made to
run in polynomial time. For every x E E*, M on input x has exactly 2P(Ixi)+I
computation paths and #accM(x) is equal to

2P(Ixl) - f(x) + ll{y E EP(Ixl) I (x, y) E A }II·

This is at least 2P(Ixl) if x E L and is less than 2p(lxl) otherwise. Since 2p(lxl) is
exactly half of 2p(lxl)+l, for every x E E*, x E L if and only if #gapM(x) ~ 0.

Conversely, suppose that L is a language and f is a GapP function such
that, for every x E E*, x E L if and only if f(x) ~ 0. Let M be a nonde
terministic Turing machine such that f = #gap M and let p be a polynomial
bounding the runtime of M. Define N to be the nondeterministic Turing ma
chine that, on input x E E*, operates as follows: N simulates M on input x
while counting in a variable C the number of nondeterministic moves that M
makes along the simulated path. When M halts, N guesses a binary string
z of length p(lxl)- C using exactly length p(lxl) - C bits and also guesses a
single bit b. Then N accepts if and only if either

• z E 0* and the simulation path was accepting, or
• z fj. 0* and b = 0.

9.1 GEM: The Polynomial Technique 237

For every input x E :E*, the number of computation paths of N on input x
is exactly 2p(ixl)+1, and the number of its accepting computation paths is

2#accM(x) + (2P(Ixi) - #accM(x)- #rejM(x))

= #accM(x)- #rejM(x) + 2P(Ixll.

So for every x E :E*, x E L if and only if #accN(x) ;::: 2P(Ixl). Let A =

{(x,y) IIYI = p(ixi)+li\N on input x along path y accepts}. Then, for every
x, x E L if and only if the number of y E :EP(Ixl)+l such that (x, y) E A is at
least 2P(Ixl). Since the function f(x) = 2P(Ixl) is polynomial-time computable,
this implies that L E PP. This proves the proposition. 0

The above characterization simplifies the process of proving containment
of languages in PP; we now have only to construct a GapP function that
is nonnegative on all members and negative on all nonmembers. It is thus
meaningful to know what functions belong to GapP.

Proposition 9.3

1. Every total mapping in FP from :E* to Z is a member of GapP.
2. Every function in #P is a member of GapP.
3. Let f E GapP and let total function g : :E* --+ :E* be a member of FP.

Let h : :E* --+ Z be defined for all x E :E* by

h(x) = f(g(x)).

Then hE GapP.
4. Let f and g be GapP functions. Let h : :E* --+ Z be defined for all x E :E*

by
h(x) = f(x) + g(x).

Then h E GapP.
In general, for each polynomial p and each f E GapP, let h : :E* --+ Z be
defined for all x E :E* by

h(x) = L f((x, w)).
lwi=P(Ixl)

5. Let f and g be GapP functions. Let h : :E* --+ Z be defined for all x E :E*
by

h(x) = f(x)g(x).

Then h E GapP.
In general, for each polynomial p and each f E GapP, let h : :E* --+ Z be
defined for all x E :E* by

h(x) = IT f((x, i)),
I:::;i:::;p(lxl)

where the symbol i appearing as the second argument on the pairing is a
binary encoding ofi. Then hE GapP.

238 9. The Polynomial Technique

Proof (1) Let f : E* --+ Z be a total function in FP. There exists a
polynomial p such that, for every x E E*, the absolute value of f(x) is
less than 2P(Ixl). Pick such a p. Define M to be the nondeterministic Turing
machine that, on input x E E*, computes f(x), guesses y E EP(Ixll, and
executes one of the following depending on the sign of f(x):

• In the case where f(x) ;::: 0, if the rank of y in EP(Ixl) is no greater than
f(x) then M accepts x; otherwise, M guesses a bit band accepts x if and
only if b = 0;

• In the case where f(x) < 0, if the rank of y in Ep(lxl) is no greater than
- f(x) then M rejects x; otherwise, M guesses a bit band accepts x if and
only if b = 0.

Recall that the rank of a string y E EP(Ixl) is the number of strings in Ep(lxl)

that are lexicographically less than or equal to y. The process of guessing a bit
b and accepting if and only if the bit is a 0 generates precisely one accepting
path and one rejecting path each time it is applied. Hence the paths that go
through this process contribute a sum of 0 to the gap of M. This implies that
for every x E E*, #gapM(x) is precisely f(x) if f(x) ;::: 0, and is precisely -1
times the absolute value of f(x) if f(x) < 0. Thus #gapM =f.
(2) We use the same "contribution canceling" technique as in the proof of
part 1. Let f = #accM be a function in #P, where M is some nondeter
ministic polynomial-time Turing machine. Define N to be the machine that,
on input x E E*, nondeterministically guesses and simulates a path of M on
input x, and then executes the following:

• If M on the path has accepted then N on that path accepts x; otherwise,
N on that path guesses a bit b and accepts if and only if b is a 0.

Then, for every x E E*, #accN(x) = #accM(x) + #rejM(x) and #rejN(x) =
#rejM(x), so #gapN(x) = #accM(x). Since M is polynomial time-bounded,
N can be made to run in polynomial time. Thus f E GapP.
(3) Let f = #gapM for some nondeterministic polynomial-time Turing ma
chine M. Let g be a total function in FP. Define N to be the machine that,
on input x E E*, computes y = g(x), guesses and simulates a path of M
on input y, and accepts on the guessed path if and only if M accepted y
on the guessed path. Then for every x E E* #gapN(x) = f(g(x)). Since g
is polynomial-time computable, g is polynomially length-bounded, and so N
can be made to run in polynomial time. Thus hE GapP.
(4) We prove the general statement only. Let f = #gap M for some nonde
terministic polynomial-time Turing machine M. Define N to be the nonde
terministic machine that, on input x E E*, guesses w E {0, 1 }P(Ixl), guesses
and simulates a path of M on input (x,w), and then accepts on its current
path if M has accepted on that path and rejects on its current path other
wise. Then for every x E E* #gapN(x) = h(x). Since pis a polynomial and
M is polynomial time-bounded, N can be made to run in polynomial time.
Thus hE GapP.

9.1 GEM: The Polynomial Technique 239

(5) We prove the general statement only. Let f = #gapM for some non
deterministic polynomial-time Turing machine M. For each x E E* and i,
1 :5 i :5 p(jxl), let S(x, i) denote the set of all computation paths of f on
input (x, i) and, furthermore, for each 7r E S(x, i), define a(x, i, 7r) = 1 if 7r
is an accepting computation path and -1 otherwise. Then for each x E E*

h(x) = L a(x, 1, 7ri) · · · a(x,p(jxl), 1l"p(jxl)).
11"1ES(x,l)

Define N to be the nondeterministic Turing machine that, on input x E E*,
behaves as follows: N nondeterministically guesses and simulates a path of
M on input (x, i) for all i, 1 :5 i :5 p(ixi). In the course of doing this, N
computes the parity of the number of values of i, 1 :5 i :5 p(jxi), such that
M on input (x, i) rejects. When all the simulations have been completed, N
accepts x on its current path if and only if this value is even. Note that, for
every x E E*, on the path of N on input x corresponding to the guesses
(7ri,7r2, ... ,7l"p(jxl)), the product a(x,1,7ri) ... a(x,p(jxl),1l"p(jxl)) is 1 if and
only if N accepts along that path and that the product is -1 if and only if
N rejects along that path. Thus, for every x E E*, #gapN(x) = h(x). Since
p is a polynomial and M is polynomial time-bounded, N can be made to run
in polynomial time. This implies h E GapP. Q

Proposition 9.3 gives an alternative characterization of PP. Let f be a
function in GapP witnessing that a language L belongs to PP. Define g for
all x E E* by g(x) = 2f(x) + 1. The constant functions 2 and 1 are both
FP functions, so they are GapP functions by part 1 of Proposition 9.3. So
by parts 4 and 5, g belongs to GapP. For every x E E*, g(x) is always odd
and so never equals zero. Also, for every x E E*, g(x) > 0 if and only if
f(x) :;:: 0. Hence, g also witnesses that L E PP. Thus we have proved the
following result.

Proposition 9.4 For every language L, L belongs to PP if and only if there
exists a function f E GapP such that, for every x E E*, f(x) :;:: 1 if x E L
and f(x) :5. -1 otherwise.

Based on the above proposition, it is easy to prove that the class PP is
closed under complementation. Take an arbitrary language L in PP. Let f be
a GapP function witnessing the membership of L in PP as stated in Propo
sition 9.4. Define f' = -f. Then f' E GapP (by part 5 of Proposition 9.3,
via the constant GapP function g(x) = -1) and witnesses that L E PP in
the sense of Proposition 9.4.

Proposition 9.5 PP is closed under complementation.

The following proposition follows immediately from part 3 of Proposi
tion 9.3.

Proposition 9.6 PP is closed under polynomial-time many-one reductions.

240 9. The Polynomial Technique

In the next section we will prove various closure properties of PP, pro
ceeding from intersection and union towards polynomial-time constant-round
truth-table reductions. In the rest of this section, we demonstrate the use
fulness of GapP-based characterizations of complexity classes by presenting
some closure properties of C=P.

Recall that C=P is the class of languages L for which there exist a poly
nomial p and a language A E P such that, for every x E E*, x E L if and
only if the number of y E EP(Ixl) such that (x, y) E A is exactly 2P(Ixll- 1 .

By a proof similar to that of Proposition 9.2, we can obtain the following
characterization of C=P in terms of GapP functions.

Proposition 9. 7 Let L be any language. L belongs to C=P if and only if
there exists some f E GapP such that, for every x E E*, x E L if and only if
f(x) = 0.

A simple tweak-squaring the function f in the above-gives us the
strengthened direction of the following proposition.

Proposition 9.8 A language L belongs to C=P if and only if there exists
a nonnegative function f E GapP such that, for every x E E*, x E L if and
only if f(x) = 0.

A perceptive reader may notice the similarity between C=P and coNP;
by replacing GapP by #P we obtain a definition of coNP. Indeed, to the best
of our knowledge every closure property possessed by coNP is possessed by
C=P, and vice versa, and every collapse of reducibility degrees that holds for
coNP also holds for C=P and vice versa. We now give some examples. It is
well-known that coNP is closed under polynomial-time disjunctive truth-table
reductions and under polynomial-time conjunctive truth-table reductions. We
show below that these closures hold for C=P.

Theorem 9.9 C=P is closed under polynomial-time disjunctive truth-table
reductions and under polynomial-time conjunctive truth-table reductions.

Proof Let A E C=P and take f to be a GapP function witnessing, in
the sense of Proposition 9.8, that A E C=P. Suppose that a language L is
reducible to A via a polynomial-time disjunctive truth-table reduction. That
reduction maps each x E E* to a list of strings, g(x), such that x E L if and
only if at least one member of the list belongs to A. Define the function h for
all X E E* by

h(x) = IT f(yj),
I::;j::;m

where (y1, ... , Ym) is the list g(x). Recall that by convention TI1::;j<O f(yj) =
1. By parts 3 and 5 of Proposition 9.3, h E GapP. Let x E ~* and let
g(x) = (y1 , ... , Ym). If x E L, then there exists some i, 1 ~ i ~ m, such that
Yi EA. For this i we have f(Yi) = 0, and this implies h(x) = 0. If x E L, then

9.2 Closure Properties of PP 241

there is no i, 1 ~ i ~ m, such that Yi </. A, and so there is no i, 1 ~ i ~ m,
such that f(Yi) = 0. So h(x) =f. 0. Hence g witnesses that L E C=P in the
sense of Proposition 9.8.

For the conjunctive reducibility case, suppose that a language L is re
ducible to A via a polynomial-time conjunctive truth-table reduction. That
reduction maps each x E E* to a list of strings, g(x), such that x E L if and
only if all the members in the list belong to A. Define the function h for all
X E E* by

h(x) = L f(YJ),
l~j~m

where (y1, ... , Ym} is the list g(x). By parts 3 and 4 of Proposition 9.3,
hE GapP. Let x E E* and let g(x) = (Yl, ... , Ym}· Suppose x E L. Then
there is no i, 1 ~ i ~ m, such that Yi E A, so there is no i, 1 ~ i ~ m,
such that f(Yi) > 0. Since f ;:::: 0, this implies that h(x) = 0. Suppose x E L.
Then there is some i, 1 ~ i ~ m, such that Yi E A, so there is some i,
1 ~ i ~ m, such that f(Yi) > 0. Since f ;:::: 0 this implies that h(x) > 0. Thus
LEC=P. 0

A language A is coNP-many-one reducible to B, denoted by A~~np B, if
there exist a polynomial p and a polynomial-time computable total func
tion g such that for all x E E*, x E A if and only if it holds that
(Vy E I;P(Ixl))[g((x, y}) E B]. It is well known that coNP is closed under
coNP-many-one reductions. We show below that the closure holds for C=P·

Theorem 9.10 C=P is closed under coNP-many-one reductions.

Proof Let A E C=P and take f to be a GapP function witnessing, in
the sense of Proposition 9.8, that A E C=P. Suppose that a language L is
reducible to A via coNP-many-one reduction. Let p be a polynomial and let
g be a polynomial-time computable total function witnessing that L~~np A.
So for every x E E*, x E L and only if (Vy E EP(Ixl))[g((x, y}) E A]. Define
the function h for all x by

h(x) = L f((x, y}).
IYI=P(Ixl)

Then h is in GapP by part 4 of Proposition 9.3. Suppose x E L. Then,
for all y E EP(Ixl), (x, y} E A, so, for all y E EP(Ixl), f((x, y}) = 0. Thus,
h(x) = 0. Suppose x E £. Then, for some y E EP(Ixl), (x, y} E A, so, for some
y E EP(Ixl), f((x, y}) =f. 0. Since f is nonnegative, this implies that h(x) > 0.
Thus, h witnesses that L E C=P in the sense of Proposition 9.8. 0

9.2 Closure Properties of PP

The goal of this section is to prove essential closure properties of PP. We first
prove the closure of PP under intersection. Then we prove its closure under

242 9. The Polynomial Technique

polynomial-time truth-table reductions and under polynomial-time constant
round truth-table reductions.

To show that PP is closed under intersection, it would suffice to have a
two-variable polynomial q having only positive coefficients such that, for all
integers z1, z2, q(z1 , z2) > 0 if and only if (z1 > 0 and z2 > 0). Then using
as arguments to q the GapP representations of £ 1 and £2 would yield a
GapP representation of £ 1 n £ 2 • Unfortunately, no such polynomial exists.
However, we only need this property to hold for Jzd and Jz2J up to 2p(n) for
some appropriate polynomial p. The following lemma, which is the basis of
all the results we prove in this section, addresses this issue. Below, we assume
that {0,1} ~E.

Lemma 9.11 For every L E PP and every polynomial r, there exist GapP
functions g : E* --+ N and h : E* --+ N+ such that, for all x E E*, h(x) > 0
and, for all x E E* and bE {0,1},

1. ifXL(x) = b, then 1- 2-r(jxl) ~ g(A(~~)) ~ 1, and

2. if XL(x) = 1 - b, then 0 ~ g(Af~~)) ~ 2-r(jxl).

Here XL is the characteristic function of L, i.e., for every x E E*, XL(x) = 1
if x E L and XL(x) = 0 otherwise.

The proof of Lemma 9.11 makes uses of a formula that approximates the
sign function of integers, i.e., the function that maps all positive integers to
+ 1 and all negative integers to -1.

Definition 9.12 (Low-Degree Polynomials to Approximate the Sign
Function) Let m and r be positive integers. Define:

Qm(z) = -Pm(z)- Pm(-z).

Am,r(z) = (Qm(z))2r.

Bm,r(z) = (Qm(z)2r) + (2Pm(z))2r.

n () = (2Pm(z)) 2r
m,r Z Qm(z)

Sm,r(z) = (1+Rm,r(z))-1 .

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

Rm,r(z) and Sm,r(z) are two auxiliary functions that will help us under
stand the properties of Am,r(z) and Bm,r(z). In the next lemma we explore
properties of Am,r(z), Bm,r(z), and Sm,r(z).

Lemma 9.13

1. For all positive integers m and r, Sm r(z) = A13"'·rfz~.
t 1n,r Z

9.2 Closure Properties of PP 243

2. For every positive integers m and r, both Am,r(z) and Bm,r(z) are poly
nomials in z of degree O(rm).

3. For all integers m, r ;:::: 1 and every integer z,
a) if 1 ~ z ~ 2m, then 1 - 2-r ~ Sm,r ~ 1, and
b) if -2m ~ Z ~ -1, then 0 ~ Sm,r(z) ~ 2-r.

Proof The proofs of (1) and (2) are by routine calculation. We leave them
to the reader. To prove (3), let m and r be positive integers. First consider
the case when 1 ~ z ~2m. In this case Pm(z) ;:::: 0 and Pm(-z) < 0. We
prove the following claim.

Claim 9.14 If 1 ~ z ~2m, then 0 ~ Pm(z) <- 'P ~-z).

Proof of Claim 9.14 The claim clearly holds for z = 1. So suppose
2 ~ z ~2m. There is a unique i, 1 ~ i ~ m, such that 2i ~ z < 2i+l. Lett
be that i. Then (i) 2t ~ z and (ii) z/2 < 2t. By combining (i) and (ii) we get
0 ~ (z- 2t) < ~. and from (ii) we get z + 2t > 3;, and thus, ~ < 1- z- 2tl/3.

By combing the two inequalities, we have (z- 2t)2 < (-z~ 2·) 2 • Note that
z- 1 < z + 1 and iz- 2il ~ z + 2i for every i, 1 ~ i ~ m. Thus, in light of
the definition of Pm, Pm(z) < - 'P ~-z). D Claim 9.14

Now by the above claim 0 ~ Pm(z) < - 'P ~-z). Combining this with

Pm(-z) ~ 0 yields Qm(z) > B'P J-z) > 0. Thus

0 < R (z) < 9 m -z = - < 2-r. (2(-l)P ())2r (1)2r
- m,r -~Pm(-z) 4

Since Rm,r(z) ;:::: 0 and since for every 8;:::: 0, (1 + 8) > 0 and (1 + 8)(1- 8) =
1 - 82 ~ 1, we have

1;:::: Sm,r(z) = 1 + R~,r(z) > 1- Rm,r(z) > 1- 2-r.

Hence (3a) holds.
Next consider the case when -2m ~ z ~ -1. For this range of values

of z, in light of Claim 9.14 we have 0 ~ Pm(-z) < - 'P 9(z). This implies
0 < Qm,r(z) < -Pm(z). Thus

,.., () (2'Pm(z)) 2r r r
'~m,r Z ;:::: -Pm(z) = 4 > 2 .

This implies
S () 1 1 -r

m,r Z = 1 + Rm,r(z) < Rm,r(z) < 2 .

Hence (3b) holds. D Lemma 9.13

244 9. The Polynomial Technique

Proof of Lemma 9.11 Now we turn to proving Lemma 9.11. Let L E PP
and f be a GapP function witnessing, in the sense of Proposition 9.4, the
membership of Lin PP. Then, for every x E E*, the absolute value of f(x) is
at least one. Let m be a polynomial such that, for every x E E*, the absolute
value of f(x) is at most 2m(lxl). Let r be an arbitrary polynomial. Define:

h(x) = Bm(lxl),r(lxl)(f(x)),

g((x, 1}) = Am(lxl),r(lxl)(f(x)), and

g((x, 0}) = Bm(lxl),r(lxl) (f(x))- Am(lxl),r(lxl) (f(x)).

Then, for every x E E", g((x,O}) + g((x, 1}) = h(x). For every x E E", by
part 1 of Lemma 9.13, Sm(lxl),r(lxl)(f(x)) = g(~(~))) and since g((x, 0}) +
g((x, 1}) = h(x), 1- Sm(lxl),r(lxl) (f(x)) = 9L(~~). So, by Lemma 9.13 and the

first claim of the previous sentence, 1 - 2-r(lxl) _::; g(~(~))) _::; 1 if f(x) > 0

and 2-r(lxl) > ~ > 0 if f(x) < 0. Since ~ = 1 - g((('))) we have
- li"{X) - li"{X) h X '

1 - 2-r(lxl) < ~ < 1 if f(x) < 0 and 2-r(lxl) > ~ > 0 if f(x) > 0.
- h(x) - ' - h(x) -

Now it remains to prove that both g and h are in GapP, but this is easy to
prove because we have Proposition 9.3. We will leave that verification as an
exercise for the reader. 0 Lemma 9.11

9.2.1 PP Is Closed Under Intersection

All the groundwork has now been done, and so we may give the proof of the
closure of PP under intersection.

Theorem 9.15 PP is closed under intersection.

Proof Let L and L' be arbitrary languages in PP. Let r be the constant
polynomial 2. Let g and h be the two functions given by Lemma 9.11 for L
and r and let g' and h' be those for L' and r. For every x E E*, the following
conditions hold:

• ;! < g(x,l)) < 1 if x E L and 0 < g((x,l)) < ! otherwise.
4- hx - -h(x)-4

• ;! < g' x,l)) < 1 if x E L' and 0 < g'((x,l)) < ! otherwise.
4 - h'(x - - h'(x) - 4

Define
() _g((x,1}) g'((x,1})_~

p x - h(x) + h'(x) 2·

For every X E E*' if X E L n £', then the first two terms of p(x) are both
greater than or equal to ~ so p(x) ~ 2(~) - ~ = 0; and if either x r/. L
or x r/. L', then one of the two is at most ~ and both are at most 1, so
p(x) .::; ~- ~ < 0. So for every X E E*' X E L n L' if and only if p(x) ~ 0.
Define the function T by T(x) = 2h(x)h'(x)p(x). So

T(x) = 2(g((x, 1})h'(x) + g'((x, 1})h(x))- 3h(x)h'(x).

9.2 Closure Properties of PP 245

Since h and h' are both positive, for every X E E*' X E L n L' if and
only if T(x) ~ 0. By Proposition 9.3, T E GapP. Thus, by Proposition 9.2,
L n L' E PP. 0

For every Land L', L U L' = L nIl. Thus, in light of Proposition 9.5,
we have the following corollary to Theorem 9.15.

Corollary 9.16 PP is closed under union.

Corollary 9.17 extends these results to obtain a much stronger conclusion
than closure under union or intersection. The reason that Corollary 9.17
implies closure under union and intersection is that PP is closed under disjoint
union, and clearly AU B ~~-tt A EBB and An B ~~-tt A EBB.

Coropary 9.17 PP is closed under polynomial-time bounded-truth-table re
ductions.

Proof Let A E PP and L be ~~-tt-reducible to A for some k ~ 1. It
follows, via augmenting Appendix B's definition with the fact that we can
add on ignored queries in such a way as to make a k-tt reduction always ask
exactly k queries, that there is a polynomial time-bounded Turing machine
M such that on each input x E E*, M generates a list of strings (y1, ... , Yk)
and a k-ary boolean function a, such that x E L if and only if

The y's and a are functions of x. For each k-bit string b = b1 · • · bk, define
sb to be the set of all X E E* such that the boolean function a that M
generates on X has the value 1 at b. For each i, 1 ~ i ~ k, define rp> to be
the set of all x E E* such that the ith string that M on input x generates
belongs to A. Similarly, define r?> with A in place of A. By Proposition 9.6

PP is closed under ~~-reductions, so for every i, 1 ~ i ~ k, rp> belongs
to PP. Furthermore, since PP is closed under complementation, for every i,
1 ~ i ~ k, Ti(o) is in PP. Now

Since PP is closed under intersection and k is a constant, each 8&1 ... bk n
nl<i<k Ti(b,) is in PP. So since PP is closed under union and 2k is a constant,
L EPP. 0

9.2.2 PP Is Closed Under Truth-Table Reductions

The following result is so general that it implies, as each consequences, all
the results of Sect. 9.2.1.

Theorem 9.18 PP is closed under polynomial-time truth-table reductions.

246 9. The Polynomial Technique

Some preparation is necessary for the proof of Theorem 9.18. Below, we
assume that {0, 1} ~ E. We fix a scheme for encoding any nonempty list of
strings into a string. Let # be a symbol not in E and let E = E U { #}. For
each integer k ~ 1, and k strings Yl, ... , Yk, let

Note that Ak is a mapping from (E*)k to (E)* and is polynomial-time com
putable and polynomial-time invertible. For each k ~ 1, Let Uk be the range
of Ak, i.e., {w I wEE* and for some Y1, ... , Yk E E*, w = Ak(YI. ... , Yk)}.
Note that for all positive integers k, l, k 1- l, each element in Uk has exactly
k - 1 occurrences of # and each element in U1 has exactly l - 1 occurrences
of#, and thus, Uk and U1 are disjoint. So, given a string w E Uk>l Uk one
can compute in polynomial time the integer k ~ 1 such that w E U/. and the
unique list of strings [YI, ... , Yk] such that w = Ak(YI, ... , Yk)·

A query generator is a Turing machine that maps each input string to
a nonempty list of strings encoded using A. A query generator g is length
increasing if for all x E E* each element in the list that g(x) encodes has
at least !xi bits. For a query generator g and a language A, define r: to
be the function that maps each x E E* to XA(y 1) • • • XA(Yk), where g(x) =
Ak(YI, ... , Yk)·

Let M be a polynomial-time machine computing a truth-table reduction
of some language L to some language A. Then there is a polynomial-time
machine computing a truth-table reduction of L to A that makes at least one
query for each input. To see this, define N to be the oracle Turing machine
that on each input x does the following: N simulates M on input x and then
accepts x if M accepts and rejects otherwise, but just before accepting or
rejecting N checks whether a query is made during the current simulation,
and if no query is made, N makes a query about the empty string and ignores
the oracle's answer. Since N makes the additional ignored query exactly in
the case when M does not make a query, N computes a truth-table reduction.
Furthermore, N is clearly polynomial time-bounded, makes at least one query
for each input, and for each oracle, accepts the same language as M does with
the oracle. In particular, L(NA) = L(MA). The addition of one query may
deprive N of some properties about the queries M, but this is fine.

The following proposition summarizes the above discussion.

Proposition 9.19 If a language L is polynomial-time truth-table reducible
to a language A, then there exists a polynomial-time oracle Turing machine
M computing a truth-table reduction from L to A such that for each input
x E E*, M makes at least one query to its oracle.

Let M be a polynomial-time oracle Turing machine computing a truth
table reduction from a language L to a language A in the sense of Propo
sition 9.19. Since M makes at least one query for each input, we can split

9.2 Closure Properties of PP 247

the program of M into two parts, query generation and evaluation of oracle
answers. More precisely, we have the following proposition.

Proposition 9.20 lf a language L is polynomial-time truth-table reducible
to a language A, then there exist some polynomial-time query generator g
and some polynomial-time computable evaluator e : E* x E* --+ {0, 1} such
that, for each x E E*,

Below is a key technical lemma that is used to prove Theorem 9.18.

Lemma 9.21 Let g be a polynomial-time computable, length-increasing
query generator and let A be a language in PP. For every polynomial r there
exist GapP functions s : E* --+ N and t : E* --+ N+ such that, for every
x, w E E*, the following two conditions hold:

• Jiw = rA then 1- 2-r(lxl) < ~ < 1.
J g' - t(x) -

• Ji W ...J. rA then 0 < s((x,))) < 2-r(lxl).
J -r g' - t(x -

Throughout this and the following sections we will use the term natural
polynomials to refer to univariate polynomials with positive coefficients. For
every univariate polynomial p that is not natural there is a natural polynomial
p' such that, for every n, p(n) ~ p'(n). Note that every natural polynomial is
strictly increasing on domain [0, oo); i.e., for every integer n ~ 0, the value of
the polynomial at n is less than the value of the polynomial at n+l. Note also
that the class of natural polynomials is closed under addition, multiplication,
and composition. More precisely, for all natural polynomials p and q, the
polynomials p(n) + q(n), p(n)q(n), and p(q(n)) are natural polynomials.

Proof of Lemma 9.21 Let g and A be as in the statement of the lemma.
Define m to be the function that maps each x E E* to the number of elements
(not necessarily distinct) in the list that g(x) encodes. Let p be a polynomial
such that, for all x E E*, m(x) ~ p(lxl). Let r be an arbitrary polynomial.
Define q to be a natural polynomial such that, for all n, q(n) ~ p(n) + r(n).
By Lemma 9.11, there exist GapP functions s0 : E* --+Nand to : E* --+ N+
such that, for all y E E* and b E {0, 1 },

• 1 - 2-q(lyl) < so((y,b)) < 1 if X (y) = b and
- to(y) - A '

• 0 < so((y,b)) < 2-q(lyl) otherwise. - to(y) -

Defines: E* X E*--+ N for all x,w E E* by

• if lwl-1- m(x) then s((x,w)) = 0, and
• if lwl = m(x) then s((x,w)) = Ih~i::;m(x) so((yi>wi));

and then define t : E* --+ N+ for all x E E* by

248 9. The Polynomial Technique

t(x) = IT to(Yi),
l~i~m(x)

where g(x) = Am(x)(Yt. ... , Ym(x))· Then for all strings x, w E E* the fol
lowing conditions hold:

• s((x,w)) ~ 0 and t(x) > 0.
• If lwl-:f. m(x), then s(l(~'))) = 0 .

• If lwl = m(x) and w I- r:(x), then 0 < s(~(~))) <
2-min{q(IYtl) •... ,q(IY ... <.,ll)}. Since q is natural the upper bound is at most
2-q(min{IYtl •... ,ly...,<.,>l}). Since g is length-increasing and q is natural, this
bound is at most 2-q(lxl) < 2-r(lxl).

• If w = rA then 1 > s((x,w)) > 1-m(x)2- min{q(ly1 1), ···• q(IY ... <zli)}. Since q is
g' - t(x) -

natural the lower bound is at least 1-m(x)2-q(mln{IYtl, ···· IY"'<"'l I}). Since g
is length-increasing and q is natural, the bound is at least 1-p(lxl)2-q(lxl).
Since q(n) = p(n) + r(n) and p(n) < 2p(n) for all n, the lower bound is at
least 1 - 2-r(lxl).

This proves the lemma. D Lemma 9.21
Now we turn to proving Theorem 9.18.

Proof of Theorem 9.18 Let A E PP. Let L be ~fcreducible to A. By
Proposition 9.19 there is a polynomial-time machine, M, computing a truth
table reduction from L to A that makes at least one query for each input, and
by Proposition 9.20, there exist some polynomial-time query generator g and
some polynomial-time evaluator e that jointly achieve the same effect as M.
Without loss of generality, we may assume that g is length-increasing. If not
we will replace A by A'= {Oily I i ~ 0 1\ yEA} and, for all x E E*, replace
the value of g(x) by Ak(OI"'Ilyt. ... , olxllyk), where g(x) = Ak(Yt. ... , Yk)·
A' is in PP, and this altered analog of g remains polynomial-time computable
and is a length-:increasing query generator.

Define m to be the function that maps each x E E* to the number of
(not necessarily distinct) elements in the list g(x) encodes. Let p be a natural
polynomial such that, for every x E E*, m(x) ~ p(lxl). Define r(n) = p(n)+2.
By Lemma 9.21, there exist GapP functions s : E* X E* --+ Nand t : E* --+ N+
such that, for all x, w E E*, the following two conditions hold:

• The fraction s(l(~j>> is between 1 - 2-r(lxD and 1 if w = r:.
• The fraction s(l(~'))) is between 0 and 2-r(lxl) otherwise.

Define s* : E* --+ N for all x E E* by

s*(x) = L e(x,w)s((x,w)).
lwl=m(x)

9.2 Closure Properties of PP 249

Then for every x E E* the following conditions hold:

• If X E L, then e(x, r:) = 1, so that st·(~J) is at least 1 - 2-r(txt) = 1 -

2-P(IxiJ+2 > l
• If X rt L then e(x, r:) = 0 and for every w =1- r:' s(W~i)) is between 0

and 2-r(txtl. Since there are at most 2P(Ixt) many w of length m(x), st·(~J)
is between 0 and 2P(txt)2-r(lxl) = ~·

Thus, for every x E E*, x E L if and only if st·(w ~ !· Now define H(x) =

2s*(x)- t(x). Then, for every x E E*, x E L if and only if H(x) ~ 0. It is
easy to see that H(x) is in GapP. Hence L E PP. This concludes the proof
of Theorem 9.18. D Theorem 9.18

9.2.3 PP Is Closed Under Constant-Round Truth-Table
Reductions

We finally extend the closure property of PP to its strongest known form.
Let k ~ 1 be an integer. A language A is polynomial-time k-round truth

table reducible to a language B (write A srt[kJ B) if there exists a polynomial
time-bounded oracle Turing machine M such that M makes exactly k rounds
of parallel queries to its oracle and such that, for every x E E*, x E A if
and only if M B on input x accepts. Let M be a machine that computes a
polynomial-time k-round truth-table reduction. We envision that M executes
a query round as follows:

• Let [y1 , .•• , Ym] be the list of queries to be made. The machine M writes
on the query tape Yl # · · · #Ym#, where # is a symbol not in E. Then the
machine M enters the query state.

• Let b = b1 • • • bm, where for every i, 1 S i S m, bi = 1 if Yi is a member of
the oracle and bi = 0 otherwise. In the next computation step, the following
two things occur. (i) The word on the query tape is (by magic) replaced
by b so that the first letter of b is stored in cell1 of the tape. (ii) The head
on the query tape is moved to cell 1.

Now we prove the theorem that states the closure property of PP in its
strongest form.

Theorem 9.22 For every k > 1, PP is closed under polynomial-time k
round truth-table reductions.

Proof of Theorem 9.22 The proof is by induction on k. The base case
is k = 1, which we have already proven as Theorem 9.18. For the induction
step, let k = ko > 1 and suppose that the claim holds for all values of k less
than ko. Let L be srt!krreducible to A E PP via a polynomial-time Turing
machine M. We may assume that for every x E E*, M on input x makes

250 9. The Polynomial Technique

exactly k rounds of queries regardless of its oracle. We will replace M by
a new machine, M', that on each input x simulates M on input x with the
following two additional tasks: (1) If M enters the query state for the (k+ 1)st
time, then M' rejects x without executing the current step of M. (2) If M
halts and if M made fewer than k query rounds, M' executes additional
ignored query rounds so as to make the total number of query rounds on
input x equal to k, and then accepts or rejects according to the outcome of
the simulation of M on input x. The two additional tasks do not increase
the computation time significantly. Since M is polynomial time-bounded the
new machine M' can be made polynomial time-bounded.

By "configuration" of M' we mean an object consisting of the contents of
its tapes, the position of its heads, and its state. A configuration describes
the exact condition the machine M' is in. Suppose that M' has h work tapes.
Let r be the union of the tape alphabets of M', which includes {0, 1 }. Let $
be a symbol not in r and r' = r U {$}. Let d be the smallest integer such
that the cardinality of r' is at most 2d. Fix ad-bit encoding of the symbols
in r'. Take any configuration s of the machine M', where M' has X on the
input tape with the head located on cell r 1, for each i, 1 :::;; i _::;; h, wi on the
ith work tape with the located on cell Pi, and y on the query tape with the
head located on cell r2. This configuration S is encoded by replacing each
symbol of r' appearing in the word

by its d-bit encoding. Since M' is polynomial time-bounded, there is a poly
nomial p such that, for every x E "E*, and for every configuration S of M' on
input x, the encoding length of Sis at most p(lxl).

Define C to be the set of all strings (x, i, b) that satisfy the following two
conditions:

• xE"E*,i;:::1,andbE{0,1}.
• The binary encoding of the configuration of M' on input x relative to A

when its (k- 1)st round of queries has length at least i and b is equal to
the ith bit of the encoding.

Then Cis polynomial-time (k-1)-round truth-table reducible to A, so by our
induction hypothesis, C belongs to PP. We claim that L is polynomial-time
two-round truth-table reducible to A EB C. To prove this claim, note that the
configuration of M' on an input x E "E* with oracle A can be computed via
parallel queries

(x, 1,0), ... , (x,p(lxi),O), (x, 1, 1), ... , (x,p(lxl), 1)

to the C part of the oracle, where p is a polynomial such that, for every
x E "E* and every oracle Q, MQ on input x halts within p(lxl) steps. If the
encoding length of the configuration is d, then the oracle gives a positive
answer to precisely one of (x, i, 0) and (x, i, 1) for each i, 1 :::;; i :::;; d, and to

9.2 Closure Properties of PP 251

neither of them for any i, d + 1 ~ i ~ p(Jxi). Once the configuration has
been computed, the query strings in the kth round can be computed in time
polynomial in JxJ. Then the rest of the computation of M' can be simulated
with a single parallel query round to the A part of the oracle.

We have proven the conclusion inductively for k > 2, but not for k = 2.
We need to show that PP is closed under polynomial-time two-round truth
table reductions. Let L be ~ft!2rreducible to some set A E PP via machine
M. As discussed in the first part of the proof, we may assume that for every
x E E*, M on input x makes precisely two rounds of queries regardless of
its oracle. Furthermore, we may assume that there is a natural polynomial
p such that, for every x E E*, M on input x makes at each round precisely
p(Jxi) queries, each of length p(Jxl), regardless of its oracle. To see why, let p
be a natural polynomial strictly bounding the runtime of M. We will replace
A by its padded version A' = {On1x In;::: 0 1\ x E A}. Then, for each input
x E E*, a query y to A can be replaced by the query OP(Ixl)-lyl- 11y to A' (we
here are tacitly using the fact that p(Jxl) ;::: JyJ + 1 for each such query y).
Then we modify M so that before entering the query state M checks whether
the number of query strings currently placed on the query tape is p(Jxl). If
not, M appends sufficiently many copies of a dummy query OP(Ixl) to the list
to make the number equal to p(Jxl). Call this new machine M'.

Define B = { (x, i} I x E E* 1\ 1 ~ i ~ p(Jxi) 1\ and the ith query of M' on
input x with oracle A' at the second round is in A'}. Then Lis ~it-reducible
to A' EB B. Since A E PP, A' belongs to PP. Thus it suffices to show that
BEPP.

Since A' is in PP there exist a polynomial time-bounded nondeterministic
Turing machine N and a natural polynomial q such that, for every x E E*, N
on input x has precisely 2q(lxl) computation paths and N is such that x E A'
if and only if #accN(x) ;::: 2q(lxl)-l. Define r(n) = p(n) + q(p(n)) + 1. Let
g be the query generator corresponding to the first query round of M'. By
Lemma 9.21, there exist GapP functions s ;::: 0 and t > 0 such that for all
strings x and w, x, w E E*, the fraction s(i{~j)) is between 1 and 1 - 2-r(lxl)

if w = r:' and is between 0 and 2-r(lxl) otherwise. Define, for all X E E* and
i, 1 ~ i ~ p(Jxl),

*(') "" # ((.)) s((x,w}) s x,t = ~ accN z x,t,w t(x) .
lwl=p(lxl)

Here z(x,i,w) denotes the ith query that would be made by M' on input x
in the second round in the case when the answers to the first round queries
are provided by the string w. Put another way, for each j, 1 ~ j ~ p(Jxl),
the answer to the jth query is treated as being affirmative if the jth bit of w
is 1 and treated as being negative otherwise.

We claim that for all x E E* and i, 1 ~ i ~ p(JxJ), (x, i} E B if and
only if s:~=)i) ;::: 2q(p(lxl))-l_ !·To prove this claim suppose (x,i} E B. Since

252 9. The Polynomial Technique

z(x, i, r{) is precisely the ith query in the second round of M' on input

X with A' as the oracle, #accN(z(x, i, r{)) is at least 2q(iz(x,i,r:')l)-l =
A'

2q(p(lxi))-I Since s((x,rv (x))) > 1- 2-r(lxi) and all the terms appearing in
· t(x) -

s* are nonnegative, s*(x,i) 2: 2q(p(lxi))-I(1- 2-r(ixD). This is equal to

2 q(p(lxl))-1 _ 2q(p(ixi))-p(ixi)-q(p(ixi))-l = 2q(p(lxl))-l _ 2-p(lxl)-1,

and this is more than 2q(p(ixi))-I- ~-On the other hand, suppose {x,i) ¢B.
Then #accN(z(x, i, r:(x))) ~ 2q(p(lxi))-I - 1. For every w =f. r: of length

p(ixi), #accN(z(x, i, w)) is at most 2q(p(lxl)) and sw~>) is at most Tr(ixi).

Since the number of w =f. r: is 2P(Ixl) - 1, s:~~)i) is at most

(2q(p(lxl))-1 _ 1) + (2P(ixl) _ 1)2q(p(lxi))2-r(ixl)

< 2q(p(ixl))-l _ 1 + 2p(ixi)2q(p(ixi))Tr(ixi)

= 2q(p(lxl))-l _ 1 + 2p(ixi)+q(p(ixi))-p(ixi)-q(p(ixi))-l

= 2q(p(lxl))-l _ ~-
2

Thus the claim holds.
Now define

H({x i)) = { 2s*(x, i)- t(x) if 1 ~ i_ ~ p(lxi),
' 0 otherwise.

Then by the above claim, for every x E E* and i, 1 ~ i ~ p(lxi), {x, i) E B if
and only if H({x, i)) 2: 0. It is easy to see that H is a GapP function. Hence
BE PP. This proves the theorem. 0 Theorem 9.22

Does PP have even stronger closure properties than that expressed as
Theorem 9.22? The logical next step would be for Theorem 9.22 to extend
to nonconstant k, perhaps k = O(logn). If k can be outright arbitrary then
we are in effect asking whether PP is closed under polynomial-time Turing
reductions, i.e., whether PP = pPP. This is an open question, and asserts
that two classes in the "counting hierarchy" P, PP, pPP, ppPP, PppPP, ...
are equal, i.e., pPP = PP (which is not known to imply other equalities
in that hierarchy). Nonetheless, we show in the following section that the
analogous hierarchy based on logspace does collapse.

9.3 The Probabilistic Logspace Hierarchy Collapses

9.3.1 GapL Functions and PL

Recall that a language L belongs to PL if and only if there is a logarithmic
space-bounded, polynomial time-bounded probabilistic Turing machine M

9.3 The Probabilistic Logspace Hierarchy Collapses 253

such that, for every x E E*, x E L if and only if the probability that M on
input x accepts is at least ! . Recall also that #L is the class of all functions
f such that for some logarithmic space-bounded, polynomial time-bounded
nondeterministic 'lUring machine M it holds that f = #accM. We define the
logarithmic-space version of GapP, namely, GapL.

Definition 9.23 GapL = {#gapM IM is a logarithmic space-bounded, poly
nomial time-bounded nondeterministic Turing machine}.

Proposition 9.24 and Lemma 9.25 are analogous to Proposition 9.3 and
Lemma 9.11, respectively. Note, however, that part 4 of Proposition 9.24
deals with only polynomially many terms. The proofs of Proposition 9.24
and Lemma 9.25 are quite similar to those of their polynomial-time versions,
and thus are omitted.

Proposition 9.24

1. Let f : E* --+ Z be a logspace-computable, total function. Then f belongs
to GapL.

2. #L ~ GapL.
3. Let f E GapL and let g : E* --+ E* be a logspace-computable function.

Define h for all x E E* by

h(x) = f(g(x)).

Then hE GapL.
4. Let f and g be GapL functions. Define h for all x E E* by

h(x) = f(x) + g(x).

Then h E GapL. In general, for each polynomial p and f E GapL, define
h for all x E E* by

h(x) = L f((x, i)).
l~i~p(lxl)

Then h E GapL.
5. Let g and g be GapL functions. Define h for all x E E* by

h(x) = f(x)g(x).

Then h E GapL. In general, for each polynomial p and f E GapL, define
h for all x E E* by

h(x) = IT f((x, i)).
l~i~p(lxl)

Then h E GapL.

254 9. The Polynomial Technique

Lemma 9.25 For each L E PL and each polynomial r, there exist GapL
functions g : E* -+ N and h : E* -+ N+ such that, for all x E E*,

1 if XL(x) = b then 1 - 2-r(lxl) < g((x,b)) < 1 and
• ' - h(x) - '

2. if XL(x) f. b, then 0 S g(~(~))) S 2-r(lxl).

The PL hierarchy is defined under a restriction, called the Ruzzo-Simon
Tompa relativization (the RST relativization), that stipulates that nondeter
ministic space-bounded oracle Turing machines must behave deterministically
during query generation. We call a logarithmic space-bounded, polynomial
time-bounded machine working under that restriction an RSTNL machine.

Definition 9.26 A language L belongs to PL relative to an oracle A if there
exists an RSTNL machine M such that, for every x E E*,

x E L <===> #gapMA(x) 2:0.

For any class C, PLc ={PLAIA E C}.

Definition 9.27 The PL hierarchy PLH is defined as follows, where rela
tivization is interpreted in the sense of Definition 9.26.

(9.7)

This hierarchy collapses to PL.

Theorem 9.28 PLH = PL.

To prove the theorem it suffices to show that the second level of the hierar
chy, PLPL, collapses to PL. The proof is reminiscent of that of Theorem 9.22,
but more careful treatment is required because of the space bounds imposed
on RSTNL machines.

9.3.2 Oblivious Oracle NL Machines

We say that an oracle Turing machine is oblivious if its queries are dependent
solely on the input, not on the oracle. Let M be any RSTNL machine. We
can turn M into an equivalent oblivious RSTNL machine as follows.

Without loss of generality, we may assume that M has exactly one work
tape. Let c be an integer constant such that, for every nonempty x E E*,
M on x uses cells 1, ... , clog lxl on the work tape for storage. Here log lxl is
shorthand for flog2 lxll, and we will use this notation throughout this section.
Cells 0 and clog lxl + 1 hold special delimiters to caution M's finite control
not to move the head out of that region; thus the position of M's head ranges
from 0 to clog lxl + 1. We assume that the same treatment is applied to the
input tape so that the range of the input-tape head is between 0 and lxl + 1.
We also assume that the query tape of M is write only, that the cells of the

9.3 The Probabilistic Logspace Hierarchy Collapses 255

query tape are numbered 0, 1, ... , and that each time M enters the query
state, the word written on the query tape is submitted to the oracle, the tape
is blanked (by magic), the head is moved to cell 0, and then M enters the
state qy ES if the word belongs to the oracle and the state qNo otherwise.

Now we modify the behavior of M in three steps. First we require that
there is a polynomial p such that, for all n ~ 0, p(n) > 1, and such that, for
each x E E*, M on input x makes precisely p(Jxl) queries on every compu
tation path. To meet this requirement let p(n) be a natural polynomial with
a positive constant term such that M is p(n) time-bounded. Since p(n) is
natural, for all n ~ 0, p(n) ~ p(O). Since the constant term of p(n) is posi
tive, p(n) > 0. Thus, for all n ~ 0, p(n) > 0. We modify M so that it counts
the number of queries that it has made so far and adds dummy queries (e.g.,
about the empty string) just before halting to make the number of queries
equal to p(Jxl). Call this new machine M1. Since pis a polynomial, counting
the number of queries requires only O(log Jxl) space. Thus M1 is an RSTNL
machine.

Next we require that M1 have a special state qgen such that M1 enters
qgen exactly when it is about to begin generation of a query. To meet this
requirement we modify M1 so that it keeps track of the position of the query
tape head and, whenever the action it is about to take involves shifting of
that head from cell 0 to 1 it puts off the move for one step and gets in and
out of qgen· Call this new machine M2. Then M2 is an RSTNL machine.

Finally we replace each query of M2 by a sequence of queries consisting of
all potential queries of M2. For each natural number n ~ 1, let In be the set
of all query IDs (instantaneous descriptions) of Min which the state is qgen·

More precisely, In is the set of all triples (i,j,w) such that 0 ~ i ~ Jxl + 1,
0 ~ j ~ clog JxJ + 1, and w E yc!oglxl, where Y is the set of all symbols
(including "blank") that may appear on cells 1, ... , clog Jxl of M. A query
ID (i,j,w) represents the situation in which M2 is in state qgen and its input
tape head is positioned on cell i, its work-tape head is positioned on cell j,
and the contents of the work tape on cells 1, ... , clog Jxl are w. Since M2
generates its query deterministically, for every x E E*, all possible queries
of M2 on x can be generated one after another by cycling through all IDs
I E Ilxl and simulating M2 on x from I until M2 enters the query state. Such
an enumeration requires only O(log n) tape cells.

So, we now modify M2 to construct a new, two-tape machine N that
behaves as follows on an input x E E*: N simulates M2 on x using tape 1
while keeping track of M2's state q, input-tape head positiun i, work-tape
head position j, and work-tape contents w on tape 2. When M2 accepts
or rejects N does the same. Whenever M2 enters state qgen, N does the
following:

Step 1 N records the current values of i, j, and won tape 2. These values
will be referred to as into imem, Jmem, and Wmem, respectively.

256 9. The Polynomial Technique

Step 2 N continues the simulation until M2 enters the query state, but N
avoids writing on the query tape by keeping the head on cell 0.

Step 3 Instead of immediately entering the query state, N suspends the
simulation of M2 and makes all the potential queries of M2 on input x.
This is carried out by simulating M2 on input x from each query ID in
Ilxl: For each i, 0 ~ i ~ lxl + 1, each j, 0 ~ j ~ clog lxl + 1, and each
WE ycioglxl,
(a) N simulates M2 on input x from ID (i,j, w) until M2 enters the query

state to generate the query string corresponding to that ID; and
(b) if i = imem 1 j = Jmem 1 and w = Wmem 1 then N records the answer

from the oracle into a variable ans.
Step 4 N returns to the simulation of M2 on x that had been suspended

at the beginning of Step 3 with ans as the oracle answer.

Note that in Step 3b there is always exactly one combination of i, j, and w
that passes the three equality tests, and that generates the same query that
M2 would have made during the simulation in Step 2. Hence the value of ans
is precisely the answer that M2 would have obtained. As there is no extra
nondeterministic move that N makes, the only difference between M2 and
N is that N inflates its query sequence. Thus, for every x E E* and every
oracle A, #gapNA(x) = #gapMA(x). Define m(n) = p(n)IIInll· Then m is
bounded by some polynomial. For every x E E*, the number of queries that
N on x makes is precisely m(lxl) and the query sequence is the same on all
computation paths. Thus, N is an oblivious RSTNL machine.

9.3.3 Collapsing the PL Hierarchy

Theorem 9.28 follows immediately from the following claim.

Proposition 9.29 PLPL =PL.

Proof Let L E PLPL via an oblivious oracle machine N and an oracle
A E PL. As we did in the proof of Theorem 9.18, we can assume that N's
query strings are longer than its input. Let p be a polynomial bounding the
runtime of N. Let q be a natural polynomial such that, for every x E E*,

• #accNA(x) ~ 2q(lxD, and
• x E L {::::::=:} #acCNA(x) ~ 2q(lxi)-l.

Let m be a polynomially bounde.d function, as defined above, that maps each
integer n to the number of queries that N makes on each input of length n.
Then m(n) ~ p(n) for all n. For each x E E* and i, 1 ~ i ~ m(lxl), let Yx,i
denote the ith query string of N on x. Pick a natural polynomial r such that
r(n) ~ p(n) + q(n). For each x E E* and w, lwl = m(lxl), let a(x, w) denote
the number of accepting computation paths that M on input x would have
if for every i, 1 ~ i ~ m(lxl), the oracle answer to the ith query of N on
input x is taken to be affirmative if the ith bit of w is a 1 and otherwise is

9.3 The Probabilistic Logspace Hierarchy Collapses 257

taken to be negative. Then, for every x E E*, a(x,r~(x)) = #accNA(x), and
for every wE r;m(l:z:D, a(x,r~(x)) ~ 2q{l:z:D. Since N is an oblivious RSTNL
machine we can view it as a query generator, so we may use r~(x) to denote
the answer sequence that the oracle A provides toN on input x.

By Lemma 9.25, there exist nonnegative function g E GapL and a strictly
positive function hE GapL such that, for all x E E* and bE {0, 1},

• 1 > g(((,b)) > 1 - Tr{l:z:J) if XA(x) = b and
- h~ - '

• 0 < ~ < 2-r(l:z:J) otherwise. - h"(X)-

Define, for each x E E*,

s(x) = L a(x, w) II
lwl=m(l:z:l) l~i~m{l:z:J)

and
t(x) = II h(Y:z:,i)·

19~m{l:z:J)

We claim that, for every x E E*,

x E L <===? s(x) > 2q(l:z:J)-l - ~
t(x)- 4'

To prove the claim let X E E*. First suppose X E L. For w = r~. the fraction

() _ f1l<i<m(l:z:l) g((Y:z:,i, wi))
K-X,W- t(x)

is at least
1- m(!xi)T min{r(IY.,,tl), ... , r(IY.,,m<I.,IJI)}.

Because m is bounded by p, because r is a natural polynomial, and because
the machine N is a length-increasing query generator, the above amount is
at least

1 _ P(!xi)2-P(I:z:l)-q(l:z:J)-l > 1 _ 2-q(l:z:l)-1.

Thus the fraction ~ is at least

Next suppose that x (j. L. For w = r~, K-(x, w) ~ 1 and a(x, w) =
#accNA(x) ~ 2q{l:z:J)- 1. For other w of length m(!xl), a(x,w) < 2q(l:z:l)
and

K-(x, w) ~ 2- min{r(IY.,,l 1), ... , r(IY.,,m(l.,lll)}.

Because m is bounded by p, because r is a natural polynomial, and be
cause the machine N is a length-increasing query generator, this is at most

258 9. The Polynomial Technique

TP(I:r:l)-q(l:r:l)-l. Since the number of w, lwl = m(lxl), such that w =f r~(x)
is 2m(l:r:l) - 1 < 2P(I:r:l), Itxt is less than

2q(l:r:l)-l -1 + 2p(l:r:l)2-p(l:r:l)-q(l:r:l)-l

= 2q(l:r:l)-l - 1 + 2-q(l:r:l)-1

< 2q(l:r:l)-l- ~-
- 2

Thus the claim holds.
Now define

d(x) = 4s(x)- (2q(l:r:l)+l -1)t(x).

Then, for every x E E*, x E L if and only if d(x) ~ 0. We claim that
d E GapL. Proving this may seem easy at first glance, for we have already
done something similar for GapP to prove Theorem 9.22. However, the ma
chines here are logarithmic space-bounded and, for all x E E*, s(x) is defined
as a sum of 2m(l:r:l) terms that are indexed by w of length m(lxl). So, for a
nondeterministic machine to produce s as its gap function, it may seem nec
essary that the machine has space to store w. This is obviously impossible
here, since the machines need to be logarithmic space-bounded. Hence we
need a trick.

By Proposition 9.24 the second term of d is in GapL. We thus concentrate
on proving that s E GapL. Let G be a logarithmic space-bounded machine
such that g = #gap0 . For every x E E*, s(x) can be written as

L a(x,w)
lwl=m(l:r:l)

Define T to be the machine that, on input x E E*, simulates N on x as follows:
For each i, 1 ::=; i ::=; p(lxl), when N enters the query state for the ith time,
instead of making the query, it guesses a bit wi, simulates G on (Y:r:,i, wi),
and returns to the simulation of N with Wi as the oracle answer. During the
entire simulation the machine N counts using a variable R the number of i,
1 ::=; i ::=; p(lxl), such that G rejected. At the end of the simulation, if N has
accepted then T accepts if and only if R is even; on the other hand, if N has
rejected then T guesses one bit b and accepts if and only if b = 0.

Let x be fixed. For simplicity, let m denote m(lxl) and for each i, 1 ::=; i ::=;
m, let Yi denote Yx,i· Each computation path 7r ofT on x is divided into the
components

Here w corresponds to the bits w1 , ••• , Wm, 7ro corresponds to the nondeter
ministic moves of N on input x with w as the oracle answers, 7ri corresponds
to the nondeterministic moves of G on input (Yi, wi) for all i, 1 ::=; i ::; m,
and b corresponds to the guess b at the end in the case when N's simulation
is rejecting. Write E(1r) = 1 if N has accepted along the path 1r ofT and
E(1r) = 0 otherwise. For each i, 1 ::; i ::=; m, write Fi(7r) = 1 if G on (yi, wi)

9.4 Is PP Closed Under Turing Reductions? 259

accepts along the path 1r ofT and Fi(7r) = -1 otherwise, where the value of
wi is the ith bit of the w-component of 7r. Since the process of guessing the
bit b and accepting if and only if b = 1 has the effect of canceling the contri
bution to the gap ofT of the paths passing through the process, #gapT(x)
is the sum of

E(~) (c{<IF<(•)~)II • - 1) - c{<IF•(•l~lll;. odd I)) ,
where 1r ranges over all computation paths ofT on input x. Since the product
of terms chosen from {+1,-1} is +1 if the number of -1's appearing in the
product is even and is -1 otherwise, the second term in the above is equal
to

II Fi(7r),
19~m

and so #gapT(x) equals

L E(7r) II Fi(7r).
11' l~i~m

For each u E Em, let Q(u) denote the set of all computation paths ofT on
input x whose w-component is equal to u. Then #gapT(x) can be written as

lwl=m 11'EQ(w)

Since the paths for N and those for the simulation of G are pairwise inde
pendent for each fixed w, this is the same as

Thus s(x) = #gapT(x). It is easy to see that Tis logarithmic space-bounded
and polynomial time-bounded. Hence T witnesses that s E GapP. D

9.4 OPEN ISSUE: Is PP Closed Under
Polynomial-Time Turing Reductions?

Is PP closed under polynomial-time Turing reductions? The question is sub
tle. By Toda's Theorem (Theorem 4.12), PH~ pPP. Also, EBP is included in
pPP. If PP is closed under Turing reductions, then PP includes both PH and
EBP. However, it is known that there exist oracles relative to which PH~ PP
and oracles relative to which EBP ~ PP. These results indicate that rela
tivizable proof techniques, such as machine simulations, cannot settle the
PP = pPP question.

260 9. The Polynomial Technique

9.5 Bibliographic Notes

Gill [Gil77] and Simon [Sim75] independently introduced the class PP (Si
mon used different notation for the class, though). The definition of Gill is
via probabilistic Turing machines, while Simon's definition employs nondeter
ministic Turing machines. They both observed that the class is closed under
complementation (Proposition 9.5). They left open the question of whether
the class is closed under union. Russo [Rus85] and Beigel, Hemachandra, and
Wechsung [BHW91] made progress on the problem by showing the closure
of the class under symmetric difference and under polynomial-time parity re
ductions, respectively. Beigel, Reingold, and Spielman [BRS95] affirmatively
resolved the problem (Theorem 9.15).

The approximation scheme (Definition 9.12) that Beigel, Reingold, and
Spielman used in the proof is based on a formula of Newman [New64]. Pa
turi and Saks [PS94] applied Newman's Formula to show approximations of
threshold circuits by parity circuits.

In addition to the closure property under intersection, Beigel, Reingold,
and Spielman shoyved a number of closure properties of PP, including clo
sure under polynomial-time O(log n) Turing reductions, but they left open
the question of whether the class is closed under ~it-reductions. Fortnow
and Reingold [FR96] gave an affirmative answer to the question by prov
ing Theorem 9.18. They also proved Theorem 9.22. Later, using a different
technique, Beigel and Fu [BFOO] showed that PP and PL are closed under
P-uniform NC1-reductions and under logspace-uniform NC1-reductions, re
spectively. Caussinus et al. [CMTV98] use Newman's formula to prove that
the class probabilistic-NC1 is closed under intersection.

Gupta [Gup95] and Fenner, Fortnow, and Kurtz [FFK94] were the first to
formulate the concept of gap functions. Fenner, Fortnow, and Kurtz defined
the class GapP, and Proposition 9.3 is from their paper.

The class PL is due to Gill [Gil77], but his definition does not require
that the probabilistic machines be polynomial time-bounded. Jung [Jun85]
proved that the two versions are identical. Allender and Ogihara [A096]
show that this equality holds with respect to any oracle under the RST
restriction. The RST restriction first appears in a paper by Ruzzo, Simon,
and Tompa [RST84]. The collapse of the PL hierarchy (Theorem 9.28) is due
to Ogihara [Ogi98].

The class C=P is due to Simon [Sim75], who first proved (using different
notation) C=P ~ PP. Wagner [Wag86] rediscovered this class, introduced the
name C=P, and proved its closure under ~~tcreductions. A paper by Beigel,
Chang, and Ogiwara [BC093] presents the folklore "squaring technique"
(see Proposition 9.8). This paper also proves Theorem 9.10. Gundermann,
Nasser, and Wechsung [GNW90] show that C=P is closed under polynomial
time positive truth-table reductions. Ogiwara [Ogi94b] shows that C=P and
coC=P are both closed (downward) under polynomial-time positive Turing
reductions. Ogihara [Ogi95a] shows that its closure under ~fcreductions, its

9.5 Bibliographic Notes 261

closure under P-uniform NC1-reductions, and its closure under P-uniform
AC0 -reductions are all equal.

Allender and Ogihara [A096] define C=L, the logarithmic-space version
of C=P, and prove a number of its closure properties. Allender, Beals, and
Ogihara [AB099] show that the C=L hierarchy collapses.

A. A Rogues' Gallery of Complexity Classes

The form is the meaning, and indeed the classic Greek mind, with
an integrity of perception lost by later cultures which separated the

two, firmly identified them.
-Vincent Scully, The Earth, the Temple, and the Gods [Scu62]

To the computer scientist, structure is meaning. Seeking to understand na
ture's diverse problems with man's humble resources, we simplify our task
by grouping similarly structured problems. The resulting complexity classes,
such as P, NP, and PSPACE, are simply families of problems that can be
solved with a certain underlying computational power. The range of interest
ing computational powers is broad-deterministic, nondeterministic, proba
bilistic, unique, table lookup, etc.-and a suitably rich palette has been de
veloped to reflect these powers-P, NP, PP, UP, Pjpoly, etc. These classes
can themselves be studied in terms of their internal structure and behavior.
This chapter briefly reviews the definitions, meanings, and histories of the
central complexity classes covered in this book.

The "selected facts and theorems" lists in the tables that follow when
possible give references for their facts and theorems. However, in those cases
where the facts are presented in this book, the citation in the right margin is
merely to the chapter that presents the result. This should not be interpreted
as in any way claiming that such results are due to this book. Rather, the
Bibliographic Notes section of the appropriate chapter should be consulted
to learn the history and source of the result.

Complexity theory is so broad and rich that in an appendix of this size it
would be impossible to define or collect the field's most important theorems.
Thus, the choice of theorems here is eclectic, with the goal simply of giv
ing a resource pointing towards some of the results known for these classes.
However, to making the theorem lists below more useful as starting points
into the original literature, we have in some cases included theorems whose
statements involve concepts or classes are not discussed or defined in this
book.

264 A. A Rogues' Gallery of Complexity Classes

A.l P: Determinism

P = UDTIME[nk]
k

= { L I L is accepted by a polynomial-time deterministic

'lUring machine}.

P, deterministic polynomial time, is the class that is widely thought to
embody the power of reasonable computation. In the 1930s, Godel, Church,
'lUring, and Post [God31,Chu36,Thr36,Chu41,Pos46,Dav58] asked what could
be effectively solved by computing machines-that is, what problems are
recursive? In fact, these founding figures went beyond that. In a rediscovered
1956 letter to von Neumann, Godel focused not only on the importance of
the number of steps a 'lUring machine may need to perform a certain task
(deciding whether a formula has a proof of a given length), but also used two
particular polynomial bounds (linear and quadratic) as examples of efficient
computation, in contrast with exhaustive search (see [Har89,Sip92] for more
on this letter). Von Neumann was dying at the time, and it does not seem
that he or Godel ever followed up on the issues that Godel had raised.

Starting in the 1960s, computer scientists, unaware of Godel's letter and
its musings in this direction, began to ask which problems can be efficiently
solved by computers. The theory of P and NP, and indeed complexity theory
itself, sprang from this desire to understand the limits of feasible computation.
The notion that polynomial time, Uk DTIME[nk], is the right class to repre
sent feasible computation was suggested by Cobham and Edmonds [Cob64,
Edm65] (who, again, were unaware of Godel's letter). Note that polynomi
als grow slowly and are closed under composition (thus allowing subroutine
calls in the sense that a polynomial-time machine making subroutine calls to
polynomial-time subroutines yields an overall polynomial-time procedure).
These features support the claim that P is a reasonable resource bound. The
view that p loosely characterizes "feasibility" is widely accerted.

One might argue that an algorithm that runs for 10101 n 10100 steps on
inputs of size n is not practical. Problems are known that provably require
high-degree polynomial algorithms (artificial problems must exist via the de
terministic time hierarchy theorem [HS65] [HU79, Theorem 12.9], and some
what artificial cat-and-mouse games and pebbling problems [KAI79,AIK84]),
and natural problems are known that may require high-degree polynomial
algorithms (permutation group membership from generators [Hof82,FHL80],
robotics configuration space problems [SS83]). 1

1 Of course, many natural problems are known to have superpolynomial lower
bounds. For example, Meyer and Stockmeyer [MS72] and Fischer and Rabin
[FR74] show, respectively, problems that require exponential space and double
exponential nondeterministic time. The problems listed here are natural, fun
damental polynomial-time problems that may require high-degree polynomial
algorithms.

P - Polynomial Time

Power
Feasible computation.

Definition
P = Uk DTIME[nk].

Background

A.l P: Determinism 265

P was described as embodying the power of feasible computation by Cob
ham [Cob64] and Edmonds [Edm65]. The field of design and analysis of algo
rithms attempts to place as many problems as possible in P.

Complete Languages
P has countless well-known complete languages under ~:;, reductions (see
the list compiled by Greenlaw, Hoover, and Ruzzo [GHR95]). Typical P
complete problems include determining whether a given context-free grammar
is empty [JL76] and determining whether a given output bit of a given circuit
on a given input is on [Lad75a]. Kasai, Adachi, and Iwata [KAI79] have shown
combinatorial games providing additional natural complete problems for P.

Sample Problem
In a fixed, reasonable proof system, asking if x is a proof of T is a polynomial
time question. In particular, in polynomial time we can check whether assign
ment x satisfies boolean formula F.

Selected Facts and Theorems
1. For each k, there are relatively natural problems, having to do with games

of pursuit and evasion, whose deterministic time requirements are O(nk).
[AIK84]

2. P = L <==> P has sparse hard sets with respect to logspace many-one
reductions (or even logspace bounded-truth-table reductions).

([CS99,vM96], see also [Ogi96b,CNS96])
3. All P sets are rankable (i.e., have a polynomial-time computable function

that, given any string x, computes the number of strings in the set that
are lexicographically less than or equal to x) <==> P = P #P.

([GS91], see also [HR90])
4. All infinite P sets are compressible (i.e., each P set A has a polynomial-time

computable, one-to-one function f such that f(A) = E*) if E = NENP.
([GHK92], see also [GH96])

5. If every dense P set has at most a sparse subset of Kolmogorov-easy strings,
then all polynomial-time pseudorandom generators are insecure.

[All89c,HH96]

Fig. A.l P

266 A. A Rogues' Gallery of Complexity Classes

Nonetheless, there is a widely held feeling that fundamental natural prob
lems belonging to P will have polynomial-time algorithms of low degree. The
field of design and analysis of algorithms attempts to prove that key problems
are in P, and then to show that they have algorithms of low time complexity
(there exist many books on the analysis of algorithms, e.g., [AHU74,CLRS01,
Koz92]).

A.2 NP: Nondeterminism

NP = UNTIME[nk]
k

Two roads diverged in a yellow wood,
And sorry I could not travel both

And be one traveler ...
-Robert Frost, The Road Not Taken

= { L I L is accepted by a polynomial-time nondeterministic

'lUring machine}.

P contains the problems we can solve. NP symbolizes the problems man
needs to solve to efficiently structure and optimize his world. The P=NP
question asks whether the computers built by man's ingenuity have the power
to solve the problems formed by nature's complexity.

NP is the class of languages accepted by nondeterministic polynomial
time Turing machines [HU79]. Intuitively, a nondeterministic machine is one
that is allowed to make guesses during its computation, and always guesses
correctly. Equivalently, a language L is in NP if there exists a polynomial-time
computable relation R(·, ·) and a polynomial q such that

L ={xI (3y: IYI ~ q(lxl)) [R(x,y)]}.

In the early 1970s, the work of Cook and Karp [Coo71,Kar72] showed
that NP has natural complete, or "hardest," languages-languages to which
every other NP problem can be polynomial-time many-one reduced. These
problems stand or fall together: If one NP-complete problem is in P then all
NP-complete problems are in P. During the past quarter century, hundreds of
problems from all areas of mathematics, computer science, and operations re
search have been shown NP-complete. If P=NP then these and many crucial
optimization problems can be solved in polynomial time. And, just as impor
tantly, if P =J. NP then no NP-complete problem can be solved in polynomial
time.

However, the implications of P = NP are even more profound. An NP ma
chine can answer the question, in a fixed formal system, "Does this theorem

NP - Nondeterministic Polynomial Time

Power
Guessing. Nondeterminism.

Definition
NP = Uk NTIME[nk].

Alternate Definition

A.2 NP: Nondeterminism 267

A language L is in NP if there exists a polynomial q and a polynomial-time
predicate R such that, for each x,

x E L -¢==} (3y: IYI ~ q(lxl)) [R(x,y)].

Background
In the early 1970s, Cook [Coo71] and Levin [Lev75], followed by a key paper
by Karp [Kar72], initiated the study of NP and its complete problems. Many
NP-complete problems are now known, and the study of NP's structure is a
unifying theme of complexity theory.

Complete Problems
NP has hundreds of ~~-complete (polynomial-time many-one complete) prob
lems [GJ79].

The most studied NP-complete problem is satisfiability. SAT = { F I boolean
formula F is satisfiable} was shown to be Thring-complete for NP by Cook.
Karp showed that SAT and many other problems are ~~-complete for NP.

There are a few problems that are known to be in NP, yet have been neither
proven to be NP-complete nor proven to be in P. Examples of such problems
are graph isomorphism (i.e., {(G, H) I G and Hare isomorphic}) and primality.

Fig. A.2 NP-part I

have a proof (of reasonable size)?" Thus NP embodies the power of guess
ing, or creating, mathematical proofs. P embodies the mechanical process
of verifying whether a proof is correct. Asking whether P =f:. NP is another
way of asking whether the creative process in mathematics rises above the
complexity of mere mechanical verification. Since men are likely to create
mathematical proof structures only of small size, asking whether P = NP is
one way of asking whether machines can usurp man's role in mathematical
discovery. Breakthroughs during the 1990s in the theory of probabilistically
checkable proofs have given alternative new insights into the power of NP and
the nonapproximability of NP optimization problems (see, for example, the
treatments in [Aro94,Sud92,ACG+99]). NPNP is the most extensively stud
ied computational complexity class, and many insights into NP's structure
have been found during the past decade. Nonetheless, our understanding of
NP is fragmented, incomplete, and unsatisfying.

268 A. A Rogues' Gallery of Complexity Classes

NP - Nondeterministic Polynomial Time

Selected Facts and Theorems
1. P ~ NP.
2. The following are equivalent:

a) P=NP.
b) Some NP-complete problem is in P.
c) All NP-complete problems are in P.

3. [Cook's Theorem] Let N; be a standard enumeration of NPTMs (non
deterministic polynomial-time Turing machines). There is a polynomial
time computable function !cooK, mapping from machine-string pairs to
boolean formulas, such that

a) ('v'i)('v'x)[N;(x) accepts ¢=:::? fcooK(N;,x) is satisfiable],
b) (3 polynomial-time computable function gcooK)('v'i)('v'x)

[gcooK(fcooK(N;,x)) = (N;,x}], and
c) (3hcooK E FP) ('v'i) ('v'x) ('v'a) (if a is a satisfying assignment of

fcooK(N;, x), then hcooK(N;, x, a) outputs an accepting computa
tion path of N;(x)].

In particular, SAT is ~~-complete for NP. (Coo71,Lev75]
4. NP is closed under union and intersection.
5. NP is closed downward under positive Turing reductions.

((Sel82b], see also (HJ91])
6. P =/; NP ==> NP - P contains sets that are not NP-complete. (Lad75b]
7. If NP has sparse ::;~-hard sets, or even sparse ~~tt-hard sets then P = NP.

(see Chap. 1)
8. If NP has sparse ~~-complete sets, then the polynomial hierarchy collapses

to 8~. (see Chap. 1)
9. If NP has sparse ~~tt-hard sets, then RP = NP and P =UP.

(see the Bibliographic Notes of Chap. 1)
10. If NP has sparse ~~-hard sets, the polynomial hierarchy collapses to NPNP

(and even to zppNP, and even to S~).
(see the text and Bibliographic Notes of Chap. 1)

11. NP- P contains sparse sets if and only if E =/; NE. (see Chap. 1)
12. Many-one one-way functions exist if and only if P =/; NP. (see Chap. 2)
13. Many-one one-way functions exist if and only if strongly noninvertible,

total, commutative, associative, 2-ary, many-one one-way functions exist.
(see Chap. 2)

14. ('v' L E NP)[L~randomized USAT]. (see Chap. 4)

Fig. A.3 NP-part II

A.3 Oracles and Relativized Worlds

All is for the best in the best of all possible words.
-Voltaire, Candide

The seminal paper on oracles was by Baker, Gill, and Solovay [BGS75]. Since
then oracles have been discussed extensively in the literature (see, just as
a few examples, the seminal paper by Bennett and Gill on random ora
cles [BG81], the insightful leaf-language/oracle connection work of Bovet,

A.3 Oracles and Relativized Worlds 269

NP- Nondeterministic Polynomial Time

Selected Facts and Theorems (Continued)
15. (3 A)[PA = NPA]. (3 B)(P8 ~ NP8]. Indeed, with probability one rela-

tive to a random oracle, P and NP differ. (BGS75,BG81]
16. All paddable NP-complete sets are p-isomorphic to SAT. [BH77,MY85]
17. With probability one relative to a random oracle, there are NP-complete

sets that are not P-isomorphic. [KMR95]
18. There is a relativized world in which all NP-complete sets are P-

isomorphic. [FFK96]
19. If P = NP and Sis sparse then

where K[·, ·]represents time-bounded Kolmogorov complexity. (HH88b]
20. If the graph isomorphism problem is NP-complete, then the polynomial

hierarchy collapses. (GS89,BHZ87,GMW91,Sch88]
21. If P ~ NP n coNP then there is a set S so (1) S E P and S ~ SAT,

and (2) no P machine can find solutions for all formulas in 8-that is, for
any polynomial-time computable function g, there will be a formula f E S
such that g(f) is not a satisfying assignment of f. (BD76]

22. For each k > 0, Rt-T(NP) = R~k-l-tt(NP). (Bei91a]
23. NP n coNP has ~~-complete sets if and only if NP n coNP has ~~-

complete sets. (Gur83,HI85]
24. SAT is iteratively enumerable, i.e., there is an honest, polynomial-time

function f and a string xo such that SAT= {xo, f(xo), f(f(xo)), .. . }.
(HHSY91]

25. e~ = NC1(NP) (Got95,0gi95a]
26. NP = PCP(O(logn),0(1)), i.e., NP is the class of languages L for which

there exists a probabilistic polynomial-time oracle protocol V that uses
O(log n) coin tosses, makes 0(1) queries, and, for all x E E*, satisfies the
following two conditions:
• if x E L, then there is an oracle A relative to which V on input x accepts

with probability 1,
• if x ~ L, then, for every oracle A, V on input x relative to A accepts

with probability less than ~- (ALM+98]

Fig. A.4 NP-part III

Crescenzi, and Silvestri [BCS95], and Vereshchagin [Ver94], and the open
questions paper by Hemaspaandra, Ramachandran, and Zimand [HRZ95]).
We may think of an oracle B as a unit-cost subroutine for the set B. For
example, P8 (NP8) is the class of languages computable by deterministic
(nondeterministic) polynomial-time Turing machines given unit-cost subrou
tines (i.e., subroutines that return in one time unit) that test membership
in B. We may think of such a subroutine as changing the ground rules of
computation under which the machines operate.

We can also define what it means to relativize a complexity class not with
a single set but with another complexity class:

270 A. A Rogues' Gallery of Complexity Classes

For example, NPNP = UAENP NPA = NPSAT. We may think of cv as the
class of languages recognized by C machines given free access to the power of
some member of V.

Though the issue is controversial, many have argued that oracles are a
useful tool in understanding possibilities for complexity classes (see, e.g.,
Allender's and Fortnow's eloquent discussions [All90,For94]). Certainly, if we
show that some complexity result T holds in a relativized world (that is,
with some oracle B), we know that relativizable proof techniques cannot
disprove T. This is because a relativizable disproof ofT would disprove T
in all relativized worlds, but we know that Tis true in the world relativized
by B.

Many crucial results in complexity theory can be relativized in conflicting
ways. For example, there are oracles A and B so that pA = NPA yet pB =/:.
NPB [BGS75]. Since most known mathematical proof techniques seem to
relativize, such techniques cannot resolve such central questions as P = NP.
However, starting around 1990 (but see Hartmanis et al. [HCC+92] for a
discussion suggesting that nonrelativizable techniques have a much longer
history than is commonly realized), the field has witnessed the emergence of
some quite nontrivial nonrelativizable proof techniques (for example, those
of [LFKN92,Sha92]). Chap. 6 is devoted to the discussion of a key technique of
this sort. The breadth of the applicability of these techniques to complexity
theoretic issues is an active research topic [Har85,All90,HCRR90,HCC+92,
For94].

Though oracles exist to certify many unlikely situations--e.g., there is an
oracle A for which pA = NPA = PSPACEA, we should not think of oracles
as telling us what is the case in the world of computation. Rather, we should
think of oracles as suggesting the limitations of relativizable proof techniques.

A.4 The Polynomial Hierarchy and Polynomial Space:
The Power of Quantifiers

A.4.1 The Polynomial Hierarchy

A deck of cards was built like the purest of hierarchies, with every
card a master to those below it and a lackey to those above it.

-Ely Culbertson, Total Peace

The polynomial hierarchy was defined by Meyer and Stockmeyer [MS72,
Sto76] as a time-bounded analogue of the Kleene hierarchy (also known as

A.4 The Polynomial Hierarchy and Polynomial Space 271

PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy
and Polynomial Space

Power
Alternating polynomially bounded existential and universal quantifiers.

Definition

El; =II!; P.

8f+t = R6(togn)-T(Ef}, i 2: 0.
P E~

Lli+! = p • ' i 2: 0.

~p N E~
L.oi+! = p • ' i 2: 0.

IIf+t = coEf+t = {L I L E Ef+1 }, i 2: 0.

PH= UEf.

·PSPACE = UDSPACE[nk].
k

Alternate Definition
L is in Ef if there is a polynomial q and a polynomial-time predicate R such
that, for all x it holds that

x E L {=} (3w, : lwtl $ q(lxl)) (Vw2 : lw2l $ q(lxl)) · · ·
(QiWi: lw•l $q(lxi))[R(x,w,,···,w•)],

where Qi is 3 if i is odd and V if i is even.

Background
The polynomial hierarchy was defined by Meyer and Stockmeyer [MS72,Sto76].
Researchers later introduced refined, intermediate levels, namely, the 81levels
(see [PZ83,Wag90]).

Fig. A.5 The polynomial hierarchy and PSPACE-part I

the arithmetical hierarchy) from recursive function theory [Rog67]. The defi
nitions of the polynomial hierarchy appear in Fig. A.5. In particular, Eb = P,
Ei = NP, IIi = coNP, 8~ = R~(logn)-T(NP), .6.~ = pNP, and E~ = NpNP.

The levels of the polynomial hierarchy have natural descriptions in terms
both of Turing machines and logical formulas. Just as the Kleene hierarchy's
levels are characterized by quantifier alternation, so also are the levels of
the polynomial hierarchy characterized by alternating polynomially bounded
quantifiers [Sto76,Wra76]. For example,

NP = { L I (3k) (3 polynomial-time predicate P)

[x E L {=:::} (3y : IYI .$ lxlk) [P(x, y)]]}, and

II~ = { L I (3k) (3 polynomial-time predicate P)

[x E L {=:::} (Vy: IYI .$ lxlk) (3z : lzl .$ lxlk) [P(x, y, z)]]}.

272 A. A Rogues' Gallery of Complexity Classes

PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy
and Polynomial Space

Complete Languages
Canonical complete languages exist for each level of the hierarchy ([Wra76],
and the techniques of [Har78]) and for PSPACE [Sto76].

NP has many well-known natural complete problems (see [GJ79]). PSPACE
also has many natural complete problems. For example, Fraenkel et
al. [FGJ+78] showed that generalized checkers is PSPACE-complete, and Iwata
and Kasai [IK94] showed that generalized Othello is PSPACE-complete.

I:~ also has some interesting, natural complete problems. Some date as far
back as the 1970's, when the early work of Meyer and Stockmeyer showed
that Integer Expression lnequivalence is :E~-complete. Other :E~-completeness
results include Huynh's [Huy84] work on inequivalence of certain types of
context-free grammars, Schaefer's [SchOlb] work on Ramsey-type problems,
and Umana's [Uma98] work on boolean formula minimization problems. I:~
has natural complete problems, for example, Schaefer's [Sch99,Sch00] work on
the VC-dimension. Schaefer has written a nice compendium of natural complete
problems for I:~, II~, I:~, II~, etc. [SchOla].

Papadimitriou [Pap84] showed that natural problems are complete for ~~,
including Unique Optimal Traveling Salesperson. Hemaspaandra, Hemaspaan
dra, and Rothe [HHR97] showed that it is 8~-complete. to check who the
winner is in the election system developed in 1876 by Lewis Carroll.

Problems asking when greedy algorithms perform well are also known to be 8~
complete [HR98]. Wagner[Wag87] provided a valuable framework for proving
8~-completeness results.

Fig. A.6 The polynomial hierarchy and PSPACE-part II

This characterization by alternating quantifiers is handy. When asked the
complexity of MINIMAL-FORMULAS = {F I F is a boolean formula
and no equivalent boolean formula is shorter than F}, we can reflect for
a moment on the underlying quantifier structure and quickly note that
MINIMAL-FORMULAS E II~. That is, MINIMAL-FORMULAS is the set of
all F such that for every shorter formula F' there exists a variable assignment
on which F and F' differ.

The work of Chandra, Kozen, and Stockmeyer [CKS81] develops machines
that accept the languages at each level of the polynomial hierarchy. Known
as alternating Turing machines, the action of these machines alternates be
tween existential and universal blocks, and mirrors the underlying quantifier
structure of the classes.

We say that the polynomial hierarchy collapses if, for some k, E~ = II~
(thus E~ = PH). A crucial open question is, does the polynomial hierarchy
collapse? That is, is some fixed number of quantifiers powerful enough to
simulate all fixed arrangements of quantifiers? Oracles are known for which
the hierarchy collapses [BGS75] and for which the hierarchy does not col-

A.4 The Polynomial Hierarchy and Polynomial Space 273

PH, PSPACE, P, NP, coNP, pNP, NPNP, ... -The Polynomial Hierarchy
and Polynomial Space

Selected Facts and Theorems
1. For k ~ 0, I:~ U II~ ~ 8~+ 1 ~ 6.~+ 1 ~ I:~+ 1 n II~+ 1 .
2. PH ~ PSPACE.
3. PH = PSPACE ===} PH collapses.
4. For any k?. 1, I:~= II~ ===} I:~ =PH (Downward Separation). [Sto76]
5. For any k?. 0, I:~ = I:~+ 1 ===} I:~ =PH (Downward Separation). [Sto76]
6. pNP n coNP = NP n coNP. NpNP n coNP = NP.

7. 8~ = Rft(NP).
([Sel79,Sch83], see also [Sel74,Lon78,Sel78])

[Hem89]
8. (3A)[PA = PSPACEA].
9. EBPPH c BPPEllP c ppEllP c p#P[l] c p#P.

10. ppPH ~ p#P. - - -

11. IP = PSPACE.
12. (3 A)[PA 'I NPA 'I NPNPA 'I ... 'I PSPACEA].
13. The following are equivalent:

a) PH collapses.
b) There is a sparse set S such that PHs collapses.

[BGS75]
(see Chap. 4)
(see Chap. 4)
(see Chap. 6)

(see Chap. 8)

c) For all sparse sets S, PHs collapses. ([BBS86], see also [LS86])
14. The following are equivalent:

a) PH= PSPACE.
b) There is a sparse set S such that PHs = PSP ACEs.
c) For all sparse sets S, PHs= PSPACEs. ([BBS86], see also [LS86])

15. ProbA (PHA ~ PSPACEA) = 1. ([Cai89], see also [Bab87]
16. PSPACE = NPSPACE = Probabilistic-PSPACE. [Sav70,Sim77b]
17. For each j there is an oracle A such that (I:})A 'I (I:}+ 1)A = PSPACEA.

[Ko89]
18. There is an oracle relative to which, for all j ~ 2, 8} ~ 6.} ~ I:}.

(see the text and Bibliographic Notes of Chap. 8)
19. pNPSPARSE n NP = pNP. (KS851

NPNP 8 NPSEBSAT
20. If Sis sparse set, then P = P . [Sch86a]
21. If the polynomial hierarchy collapses with probability one relative to a

random oracle, then the polynomial hierarchy collapses. [Boo94]
22. E 'I PSPACE. [Boo74a]
23. For each k > 1 it holds that: Rf-T(I:n = R~-T(I:n ===} I:~ n II~ = PH.

([BF99], see also [HHH99a]

Open Problems
• Does the polynomial hierarchy collapse?
• ProbA (PA 'I NPA 'I NPNPA 'I · . -) = 1?
• ProbA (PA 'I NPA n coNPA) = 1?

Fig. A. 7 The polynomial hierarchy and PSPACE-part III

274 A. A Rogues' Gallery of Complexity Classes

lapse (Chap. 8). An exponential analog of the polynomial hierarchy col
lapses (Hem89].

A.4.2 Polynomial Space

To me every hour of the light and dark is a miracle,
Every cubic inch of space is a miracle.

-Walt Whitman, Miracles

PSPACE is the class of languages accepted by polynomial-space Turing ma
chines. PSPACE embodies the power of polynomially bounded quantifiers. A
quantified boolean formula is an expression of the form

where f is a quantifier-free boolean formula and the Xi are boolean vari
ables. QBF, the set of true quantified boolean formulas, is a well-known
PSPACE-complete problem, and shows how PSPACE embodies the power of
alternating quantifiers (Sto76].

There are many PSPACE-complete problems. Adversary (game) prob
lems are often PSPACE-complete. For example, the generalized versions of
GO (LS80] and Othello (IK94] are PSPACE-complete. In a fixed formal sys
tem, whether a theorem has a polynomial "proof presentation" -basically,
whether given an eraser and a polynomial-sized blackboard one can convince
an uncreative, deterministic actor of the truth of the theorem-can be deter
mined in PSPACE (HY84].

A.5 E, NE, EXP, and NEXP

E = Uc>O DTIME(2cn] and NE = Uc>O NTIME(2cn] are exponential-time
analogs of P and NP. The structure of these exponential-time classes is linked
to the structure of polynomial-time classes. In particular, the complexity of
tally2 and sparse sets within NP is tied to the structure of E and NE (Boo74b,
HH7 4,HY84,IDS85,CGH+ 88,CGH+ 89].

EXP = Uc>O DTIME[2nc] and NEXP = Uc>O NTIME[2nc] are alternate
exponential-time analogs of P and NP. They are particularly useful in clas
sifying the complexity of logics. For example, the satisfiability problem of
propositional dynamic logic is EXP-complete [Pra79,FL79], as are the sat
isfiability problems of various attribute-value description formalisms (BS93]
and various branching time logics [EH85]. Various logic problems are also
known that are complete for NEXP (see (Pap94, Chap. 20]). NEXP has also
proven central in understanding the complexity of interactive proof systems
(see Chap. 6).

2 Tis a tally set if T ~ 1* = {~:, 1, 11, 111, ... }.

A.5 E, NE, EXP, and NEXP 275

E, NE, EXP, and NEXP- Exponential-Time Classes

Power
Exponential-time deterministic and nondeterministic computation.

Definitions

E = U DTIME[2cn].
c

NE = U NTIME[2c"].
c

EXP = U DTIME[2nc].
c

c

Background
The complexity of sparse sets in the polynomial hierarchy is closely re
lated to the structure of exponential-time cla..o:;ses [Boo74b,HH74,HY84,HIS85,
CGH+89].

Complete Languages
All these classes have straightforward canonical complete languages that cap
ture the actions of generic machines (see the techniques of [Har78]). The sat
isfiability problem of propositional dynamic logic is EXP-complete. Various
problems from logic (e.g., whether a given Schonfinkel-Bernays expression has
a model) known to be complete for NEXP (see [Pap94, Chap. 20]).

Selected Facts and Theorems
1. E ~ NE. PSPACE ~ EXP ~ NEXP.
2. E =/; NP. [Boo72]
3. E <;; EXP. NP <;; NE <;; NEXP. [HS65,Coo73,SFM78]
4. The strong exponential hierarchy collapses, i.e., pNE

E U NE U NPNE U NPNpNE U · · ·. [Hem89]
5. MIP = NEXP. (see Chap. 6)
6. E = NE if and only ifthere are no tally sets in NP- P. [Boo74b,HH74]
7. E = NE if and only if there are no sparse sets in NP - P. [HIS85]
8. NE = coNE if and only if every sparse set in NP is NP-printable. [HY84]
9. All ~~-complete sets for EXP have infinite P subsets. [Ber76]

10. E =/; PSPACE. [Boo74a]
11. All ~i-tt-complete sets forE are ~~-complete for E. [HKR93]
12. All ~i-tt-complete sets for NE are ~~-complete for NE. [BST93]
13. If EXP ~ P /poly, then EXP = MA.

{see the Bibliographic Notes of Chap. 6)

Fig. A.8 E, NE, EXP, and NEXP

276 A. A Rogues' Gallery of Complexity Classes

P fpoly - Nonuniform Polynomial Time

Power
Small circuits. Table lookup.

Definition
P /poly denotes { L I (30 E P) (3 polynomial f) [L E 0/ f]}, where 0/ f denotes
the class of all sets such that for some function h satisfying ('v'n) [lh(n}l = f(n))
it holds that L = {xI (x, h(lxl)) E 0}.

Selected Facts and Theorems
1. P /poly= {L I (3 sparse S)[L E P 8]}. (see [BH77))
2. P/poly = {LI (30 E P}(3polynomialf)[L E 0/*f]}, where Oj*f

denotes the class of all sets such that for some function h satisfying
('v'n} [lh(n}l ~ f(n}) it holds that L ={xI (x, h(lxl}) E 0}.

3. pP/poly /poly= Pjpoly.
4. NP ~ P /poly ~ PH = zppNP.

5. BPPaW ~ p#P(l[.

6. BPP ~ P /poly.
7. P-sel ~ P /poly (indeed, even P-sel ~ P /quadratic).

[KW98)
(see Chap. 4}
(see Chap. 4)
(see Chap. 3}

NPNPA NPAEllSAT
8. If A E P /poly, then P ~ P . In particular,

NPP /poly n NP NP
pNP pNP • The analogous inclusions hold for
(NP n coNP)/poly. ([Kob94), see also [Gav95,Kob95)}

NPNPA NPAEllSAT
9. If A E NP /poly n coNP /poly, then NP ~ NP . In particu-

NPNpcoNP /poly n NP NPNP
lar, NP = NP .

10. P /poly # EHSPARSE}.

Fig. A.9 P /Poly

A.6 P /Poly: Small Circuits

[HNOS96b)
[GW93)

L is in P jpoly if and only if L has small circuits, i.e., there is a family of
"representations" (see [Sav72,Sch86b]) of boolean circuits 0 1 , 0 2 , ... and an
integer k such that:

• IOil ~ ik + k, and
• X E L {:::=::} Olxl accepts X [KL80).

More typically, and more generally, this is formalized as follows.

Definition A.l [KLBO}

1. For any set A and any function f, A/ f denotes the class of all sets L
such that for some junction h satisfYing ('v'n) [lh(n)l = f(n)] it holds that

L ={xI (x, h(lxl)) E A}.

2. For any class C and any junction f, C / f denotes

{L I (30 E C) [L E Off)}.

A.7 L, NL, etc.: Logspace Classes 277

3. For any set A and any class of functions :F, A/ :F denotes

{L I (3f E :F) [L E A/f]}.

4. For any class C and any class of functions :F, Cf:F denotes

{L I (3C E C) (3f E :F) [L E C/ f]}.

Equivalently, a language L is in P /poly if and only if there is a sparse3

set S so that L E P8 (this equivalence is due to Meyer, see [BH77, p. 307]
and [KL80]).

Intuitively, sets in P /poly are "close" to being in polynomial time. With a
small amount of advice (e.g., the circuit description), a polynomial machine
can recognize these sets. However, the advice may be terribly hard to com
pute; thus it is not surprising that P /poly contains sets arbitrarily high in
the Kleene hierarchy.

Some important natural sets that are not known to be in P are known to
have small circuits. For example, the set of primes is not known to be in P, but
has small circuits and belongs to the class ZPP (which itself implies possession
of small circuits) (Rab76,Adl78,APR83,GK99]. More generally, any set in the
probabilistic class BPP has small circuits.

Karp and Lipton show it unlikely that all NP sets have small circuits:
If NP has small circuits (i.e., if NP ~ P8 for some sparse set S) then the
polynomial hierarchy collapses to its second level. In the wake of their result,
a flurry of related research has extended our knowledge of the implications
of "NP ~ P8 , S sparse," and of "NP ~ P8 , S sparse, S E NP" (see the sur
veys (HOW92,You92] or the papers (AHH+93,KW98]). This line of research
is discussed in Chap. 1.

A.7 L, NL, etc.: Logspace Classes

Much of the polynomial-time world (of P, NP, EDP, etc.) is echoed in the
world of logspace computation. L and NL denote the languages acceptable
by Turing machines running in, respectively, deterministic and nondeter
ministic logspace. (DL is the logspace analog of (DP. The study of logspace
analogs of modulo classes was initiated by Buntrock et al. ([BDHM92], see
also (HRVOO]).

The logspace world provides only a partial analogy to the polynomial
time world. For example, NP = coNP is a major open question. Nonetheless,
the beautiful logspace analog of this, NL = coNL, is known to hold, due to
work of Immerman (Imm88] and Szelepcsenyi (Sze88].

3 A set S is sparse if there are at most polynomially many elements of length at
most n inS, i.e., (3k)('v'n ~ l}[j{x I xES 1\ ixi ~ n}l ~ nk).

278 A. A Rogues' Gallery of Complexity Classes

L, NL, etc.: Logspace Classes

Power
Various types of logspace-bounded computation.

Definition
L and NL denote the sets acceptable by, respectively, deterministic and non
deterministic logspace computation.

{ I there is a nondeterministic logspace Turing machine N }
UL = L such that L = L(N) and, for all x, the computation tree .

of N on input x has at most one accepting path

{
there is a nondeterministic logspace Turing machine N and }
a (deterministic) logspace-computable function f so that

C=L = L for each x it holds that x E L if and only if #accN(x) = ·
f(x)

{ I there is a probabilistic logspace-bounded Turing machine}
PL = L N so that for each x it holds that x E L if and only if .

Pr[N on input x accepts] ;::: 1/2

Background
PL was introduced by Gill [Gil77]. Gill defined PL as the class of all languages
L for which there exists a probabilistic logarithmic space-bounded machine M
with unlimited computation time such that, for all x, x E L if and only if
the probability that M on input x accepts is at least t. Jung [Jun85] proves
that a definition in which the machines are required to additionally run in
polynomial time in fact gives the same class. C=L was first studied by Allender
and Ogihara [A096]. UL was first studied by Buntrock et al. [BJLR91].

Complete Languages
It is well known that PL and C=L have canonical complete languages. The
language {(G,s,t,m) I G is a topologically sorted directed graph 1\ s,t are
nodes in G 1\ m is an integer 1\ the number of paths in G from s to t is
at least m} is logspace many-one complete for PL. With "equal to" in place
of "at least," this language becomes logspace many-one complete for C=L·
Jung [Jun85] presents a PL-complete problem that is related to the evaluation
of polynomials over integer matrices. Allender and Ogihara [A096] show the
problem of testing singularity of a given integer matrix is complete for C=L· It
is unknown whether UL has a complete language.

Selected Facts and Theorems
1. NL = coNL. [Imm88,Sze88]
2. NL/poly ~ UL/poly (and so NL/poly = UL/poly). (see Chap. 4)
3. The class of languages accepted by probabilistic logspace machines that

are required to run in polynomial time exactly equals PL. [Jun85]
4. PL = PLPL. (see Chap. 9)
5. LC=L = C=LC=L. [AB099]
6. RL ~ SC2 • [Nis94]
7. All sets that are complete for NL with respect to 1-L (one-way-logspace)

reductions reductions are polynomial-time isomorphic. (Analogous results
hold for NP and many other classes.) [All88]

Fig. A.lO L, NL, and other logspace classes

A.8 NC, AC, LOGCFL: Circuit Classes 279

The class PL was defined by Gill [Gil77] as a logarithmic space, unlimited
computation-time version of PP. Jung [Jun85] showed that the polynomial
time version of PL is identical to the unlimited-time version. Various models
of relativized nondeterministic/probabilistic logspace computation have been
studied in the literature [LL76,Sim77a,RS8l,RST84]. A widely used model
is the Ruzzo-Simon-Tompa model [RST84], in which the logspace oracle
machines are required to behave deterministically whenever query strings are
generated. Allender and Ogihara [A096] showed that Jung's result relativizes
under the Ruzzo-Simon-Tompa model. They also considered the logspace
analog of the counting hierarchy.

The oracle hierarchies of PL and C=L are known to collapse [Ogi98,
AB099]. Damm [Dam91], Toda [Tod9la], Valiant [Val92], and Vinay [Vin91]
independently observed that the determinant function is complete for #L.
Since the determinant function is in NC2 [BCP83], this implies that the vari
ous logspace classes are in NC2 . Nisan [Nis94] show that randomized logspace,
RL, is contained in SC2 , the class of languages accepted by polynomial-time
machines that use O(log2 n) space. Allender, Beals, and Ogihara [AB099],
Santha and Tan [ST98], and Hoang and Thierauf [HTOO] present algebraic
problems that are complete for reducibility closures of C=L.

A.8 NC, AC, LOGCFL: Circuit Classes

LOGCFL is the logspace many-one reducibility closure of the context-free
languages.

A boolean circuit Cn with n inputs is a labeled, directed acyclic graph
with nodes having in-degree zero or at least two. Nodes with in-degree zero
are labeled from the set { 0, 1, x 1, ... , Xn, x 1, ... , Xn} and all other nodes
are labeled by either 1\ or V and compute 1\ or V, respectively. A language
L is accepted by a family F = { Cn}n~1 of boolean circuits if, for every x,
x E L if and only if Clxl on x evaluates to 1. A family {Cn}n~1 is logspace
uniform (P-uniform) if there exists a logarithmic space-bounded (polynomial
time-bounded) Turing machine that computes the description of Cn given
ln.

For k 2: 1, NCk [Pip79] is the class of languages accepted by logspace
uniform, O(logk n)-depth, polynomial-size, bounded fan-in (all 1\ and V

gates have in-degree two) circuit families. NC = Uk> 1 Nck. For k ~
0, Ack [Coo85,CSV84] is the class of languages accepted by logspace
uniform, O(logk n)-depth, polynomial-size, unbounded fan-in (no restriction
on the fan-in) circuit families. AC = Uk>o Ack. Moreover, SAck [BcD+sg]

is the class of languages accepted by logspace-uniform, O(lol n)-depth,
polynomial-size, semi-unbounded fan-in (all 1\ have in-degree two) circuit
families.

280 A. A Rogues' Gallery of Complexity Classes

NC, AC, and LOGCFL - Polynomial-Size, Polylog-Depth Circuits

Power
Boolean operations.

Definition

LOGCFL = {L IL is logspace many-one reducible to a context-free} .
language

{ I
L is accepted by a logspace-uniform family of}

NCk = L p_oly~omial-size, O(logk n)-depth, bounded fan-in .
CirCUit

{ I
L is accepted by a logspace-uniform family of}

ACk = L p_ol~omial-size, O(logk n)-depth, unbounded fan-in .
c1rcmt

Alternate Definition

NCk _ {L IL is accepted by a deterministic polynomial-time}
- Turing machine with 0(c logk n) reversal ·

ACk _ {L IL is accepted by a logspace bounded alternating Tur-}
-. ing machine with O(clogk n) alternation ·

LOGCFL = SAC1.

Selected Facts and Theorems
1. ACk ~ NCk+1, k ~ 0. [Ruz80]
2. Sorting can be done in NC1, so the parity function is in NC1. [AKS83]
3. The parity function is not in ACb, and thus, AC0 I NC1. Even stronger, no

family of constant-depth, superpolynomial-size unbounded-fan-in circuits
can compute the parity function. (see Chap. 8)

4. For each k ~ 1, there is a family of functions F = {fn}n;o:I such that
F can be computed by a family of depth-k, polynomial-size unbounded
fan-in circuits but cannot be computed by a family of depth-(k - 1),
superpolynomial-size unbounded-fan-in circuits. (see Chap. 8)

5. PL U EBL ~ NC2 • [BCP83]
6. NL ~ LOGCFL. [Sud78]
7. LOGCFL is closed under complement. [BCD+89]
8. SAC0 is not closed under complement. However, for each k ~ 1, SACk is

closed under complement. [Ven91,BCD+89]

Fig. A.ll NC, AC, and LOGCFL

A.9 UP, FewP, and US 281

Cook [Coo85] proposed to use notation NCk in the honor of Pippenger,
who characterized NCk as the languages accepted by reversal bounded Tur
ing machines [Pip79]. Chandra, Stockmeyer, and Vishkin [CSV84] studied
the nonuniform version of AC. Cook [Coo85] proposed notation ACk for
the languages accepted by logspace alternating Turing machines with alter
nation bound O(logk n). Cook pointed out (attributed to Cook and Ruzzo
in [Coo85]) that the class is the same as the uniform version of the class
studied by Chandra, Stockmeyer, and Vishkin. The letter "A" in AC thus
stands for "alternating." Ruzzo [Ruz80] showed that ACk ~ Nck+I for all
k ~ 0. Hence, AC = NC. Sudborough [Sud78] gave a complete character
ization of LOGCFL as the languages accepted by nondeterministic auxil
iary pushdown automata in logspace and polynomial-time, which character
ization yields NL ~ LOGCFL. Ruzzo [Ruz80] showed that the pushdown
automata class by Sudborough is included in AC 1 thereby showing that
LOGCFL ~ AC 1• Venkateswaran [Ven9l] strengthened the upper bound by
showing that LOGCFL = SAC1•

Though we have used logspace-uniformity as the default uniformity type
of NCk, ACk, and SACk, many other types of uniformity are also important
in the literature, ranging from P-uniformity down to extremely restrictive
notions of uniformity. Regarding the former, see for example Allender's pa
per [All89b]. Regarding the latter, we mention that UE•-uniformity, which
was introduced by Ruzzo ([Ruz81J, see also [Coo85]), is an attempt at captur
ing what one would mean by "NC -uniformity," and is often used when study
ing NC 1 . Uniformity types that are even more restrictive have been proposed
and studied by Barrington, Immerman, and Straubing [BIS90]. Ruzzo [Ruz81J
has compared various logspace-uniformity conditions and shown that NC
with k ~ 2 is robust under the choice of logspace-uniformity conditions.

A.9 UP, FewP, and US: Ambiguity-Bounded
Computation and Unique Computation

{ I
there is a nondeterministic polynomial-time Turing}

UP = L machine N such that L = L(N) and, for all x, N(x) .
has at most one accepting path

{ lthere is a nondeterministic polynomial-time Turing }
US= L machine N such that, for all x, x E L {=::::} N(x) .

has exactly one accepting path

Above, the N (x) is used to denote the computation of machine Non input
x, and in particular is denoting above, as a shorthand, the computation tree
of Non input x.

The classes UP and US capture the power of uniqueness (for UP, some
prefer the term unambiguity). Given a boolean formula fa typical US ques
tion would be, "Does f have exactly one solution?" UP has a related but

282 A. A Rogues' Gallery of Complexity Classes

subtly different nature. UP is the class of problems that have (on some NP
machine) unique witnesses. That is, if there is an NP machine M accepting
L and for every input x the computation M(x) has at most one accepting
path, then we say L E UP. We call NP machines that accept on at most one
path for all inputs categorical machines. Valiant started the study of UP and
categorical machines [Val76].

UP has come to play a crucial role in both cryptography and complexity
theory. In cryptography theory, Grollmann and Selman [GS88] prove that
one-to-one one-way functions4 exist if and only if P =f UP, and one-to-one
one-way functions whose range is in P exist if and only if P =I UP n coUP.
Thus we suspect that P =f UP because we suspect that one-to-one one-way
functions exist.

A central question in complexity theory, first asked by Berman and Hart
manis [BH77], is "How many NP-complete problems are there?" Berman and
Hartmanis conjectured that there is only one NP-complete problem, which
appears in many guises. That is, they conjectured that all NP-complete sets
are polynomial-time isomorphic (P-isomorphic). Indeed, they showed that
all then-known and all paddable NP-complete sets are P-isomorphic ([BH77]
and Mahaney and Young [MY85]). Note that the conjectured P-isomorphism
of NP-c~mplete sets implies P =f NP.

Kurtz, Mahaney, and Royer [KMR95] have shown that relative to a ran
dom oracle there are NP-complete sets that are not P-isomorphic. Fenner,
Fortnow, and Kurtz [FFK96] have shown that there is an oracle world in
which all NP-complete sets are P-isomorphic.

Joseph and Young found NP-complete "k-creative" sets that are not ob
viously P-isomorphic to SAT. However, if no one-to-one one-way functions
exist then these sets are isomorphic to SAT. This led to the following conjec
ture (see [JY85,KLD86,KMR88,KMR95,Rog97]). Since one-to-one one-way
functions exist if and only if P =f UP, this conjecture links P = UP to the
structure of NP.

One-Way Conjecture One-to-one one-way functions exist if and only if
non-P-isomorphic NP-complete sets exist.

This coupling between UP and NP has been weakened. Hartmanis and
Hemachandra [HH91a] show that there is a relativized world in which the
One-way Conjecture fails. That is, there is a world in which there are no one
to-one one-way functions yet there are non-P-isomorphic NP-complete sets.

4 By range(!) we denote UieE• f(i). A function f is honest if (3 polynomial q)
(Vy E range(f))(:Jx)[lxl ~ q(IYI) A f(x) = y]. A one-to-one one-way function is
a total, single-valued, one-to-one honest, polynomial-time computable function
f such that rl (which will be a partial function if range(!) i= I:*) is not
computable in polynomial time [GS88].

A.9 UP, FewP, and US 283

UP, FewP, and US - Unambiguous Polynomial Time, Polynomial
Ambiguity Polynomial Time, Unique Polynomial Time

Power
Categorical acceptance. Unambiguity; polynomial-bounded ambiguity; unique
ness.

Definition

{ I there is a nondeterministic polynomial-time Thring rna-}
UP = L chine N such that L = L(N) and, for all x, N(x) has at .

most one accepting path

{ lthere is a nondeterministic polynomial-time Thring rna-}
FewP = L chine Nand a polynomial q such that L = L(N) and, .

for all x, N(x) has at most q(ixl) accepting paths

{ I there is a nondeterministic polynomial-time Thring rna-}
US = L chine N such that, for all x, x E L ¢::::> N(x) has .

exactly one accepting path

Alternate Definition

{

there is a polynomial-time predicate P and a polynomial }
q such that, for all x,

UP = L 1. x rf. L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 0, and ·

2. x E L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 1

FewP = L 1. x rf. L ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll = 0, and . {

there is a polynomial-time predicate P, a polynomial q,}
and a polynomial q' such that, for all x,

2. x E L ~ 1 ~ II{Y I IYI 5 q(ixl) 1\ P(x, y)}ll ~
q' (I xi)

{
there is a polynomial-time predicate P and a polynomial }

US = L q such that, for all x, x E L ¢::::> II{Y I IYI ~ q(ixl) 1\ ·
P(x, y)}ll = 1

Background
UP was defined by Valiant (Val76]. US was defined by Blass and Gure
vich (BG82]. FewP was defined by Allender and Rubinstein (All86,AR88]. UP
is related to cryptography (GS88] and some think it central to conjectures in
complexity theory ((JY85,KMR88], but see also [HH91a]).

Complete Problems
UP and FewP may not have complete languages. There are relativized worlds
in which they do not have complete languages (and indeed in which FewP
lacks ~~-hard sets for UP) [HH88a,HJV93]. On the other hand, there are
relativized worlds in which pA # upA # NPA yet upA does have complete
languages [HH88a].

USAT ={!If has exactly one satisfying assignment} is complete for US.

Fig. A.12 UP, FewP, and US-part I

284 A. A Rogues' Gallery of Complexity Classes

UP, FewP, and US - Unambiguous Polynomial Time, Polynomial
Ambiguity Polynomial Time, Unique Polynomial Time

Selected Facts and Theorems
1. P ~ UP ~ NP n US ~ NP ~ coUS.
2. UP is closed under intersection.
3. FewP ~ SPP = sppFewP. (KSTT92,FFK94,FFL96]
4. If UP has sparse ~~-hard sets, then all UP sets are Lowa, i.e., for each set

L in UP it holds that NPNPL = NPNP. (HR97]
5. P ~ UP <==:::? one-to-one one-way functions exist. {see Chap. 2)
6. Unambiguous (i.e., one-to-one) one-way functions exist if and only if

bounded-ambiguity one-way functions exist. Equivalently, P ~ UP <==:::?
P ~ UP<k· (see Chap. 2)

7. P ~ FewP <==:::? polynomial-to-one one-way functions exist.
{see the Bibliographic Notes of Chap. 2)

8. P ~UP n coUP <==:::? one-to-one one-way functions whose range is in P
exist. (GS88]

9. P = FewP if and only if all sparse sets in P are P-printable. (AR88]
10. If UP has complete languages then it has a complete language of the form

L =SAT n A, A E P. (HH88a]
11. (3A)[PA ~ upA = NPA]. (Rac82]
12. (3A)[PA = upA A NP = EXP] (and so relative to this oracle A, NPA not

only differs from UPA but even is pA_immune, as a side effect of the known
fact that EXP contains P-immune sets). (BBF98]

13. (3A)[PA = FewPA ~ NPA]. (3B)[PB ~ upB ~ FewPB ~ NPB]. (Rub88]
14. (3A)[UPA has no complete languages]. [HH88a]
15. (3A)[PA ~ upA ~ NPA and upA has complete languages]. [HH88a]
16. (VA)[NiA is categorical] =* (VA)[L(NiA) E pNPEM]. (HH90]
17. There is a reasonable {i.e., pA ~ NPA) oracle A for which pA = UPA

(that is, there are no one-to-one one-way functions) yet there are sets that
are ~~A -complete for NPA and are non-PA-isomorphic. [HH91a]

18. P ~UP n coUP if and only if there is a setS so {1) S E P and S ~SAT,
and {2) f E S =* f has exactly one solution, and {3) no P machine can
find solutions for all formulas in 8-that is,

g(f) = { ~he unique satisfying assignment of f
ff/.8
/ES

is not a polynomial-time computable function. [HH88a]
19. P, UP, and NP all differ with probability one relative to a random oracle.

(Bei89,NRRS98]
20. Primes E UP n coUP. (FK92]

Fig. A.13 UP, FewP, and US-part II

A.9 UP, FewP, and US 285

Their oracle consists of a collapsing component (PSPACE) unioned with an
extraordinarily sparse diagonalizing component.

Theorem A.2 There is a reasonable (i.e., pA f. NPA) oracle A for which
pA = UPA (that is, there are no one-to-one one-way functions) yet there are
sets that are :5~ A -complete for NPA and are non-pA -isomorphic.

This does not imply that the One-Way Conjecture is false, though it does
open that possibility. This theorem, however, suggests that the conjecture is
unlikely to be proved by standard techniques.

There is a "promise" in the definition of UP. In particular, a UP machine
must have the property that on each input, its number of accepting paths is
either one or zero. There is no known way to enumerate all machines having
this property without also enumerating machines not having this property.
Since such enumerations are a central tool in proving the existence of com
plete sets [Sip82,HH88a,BCS92,Bor94), this precludes the standard method of
proving that the class has complete sets. In fact, there are relativized worlds
in which UP lacks complete sets ([HH88a), see also [HJV93)).

Attempts to find an NP analog of Rice's Theorem have instead led to
analogs of Rice's Theorem for UP (unainbiguous polynomial-time) and its
constant-ambiguity cousins. In p~U"ticular, all nontrivial counting properties
of circuits are hard for these classes ([BSOO,HROOJ, see also [HT)).

The class FewP, defined by Allender and Rubinstein [All86,AR88), is an
analogue of UP that restricts machines not to one accepting path but to at
most polynomially many accepting paths. Clearly, P ~UP ~ FewP ~ NP,
and Allender and Rubinstein [AR88) show that P = FewP if and only if all
sparse sets in P are P-printable.5

Definition A.3 L E FewP if there is a nondeterministic polynomial-time
Turing machine N so that N accepts language L and for some polynomial q,

(Vx) [N(x) has at most q(lxl) accepting paths].

Many authors prefer to use the term unambiguous computation to refer
to UP, and reserve the term unique computation for the class US. Note
that there is a key difference between UP and Few P on one hand, and US
on the other hand. UP and FewP are indeed about computation that has
a limit on the ambiguity (the number of solutions, i.e., accepting paths, of
the underlying machine). In contrast, though the machine for a US set by
definition accepts exactly when there is exactly one accepting computation
path, it is legal for the machine on some inputs to have huge numbers of
accepting paths-it merely is the case that such inputs are not members of
the set.

5 A set Sis ?-printable if there is a polynomial-time Turing machine M such that
for each n, M(ln) prints all elements of S of length at most n [HY84].

286 A. A Rogues' Gallery of Complexity Classes

#P- Sharp P (Counting Solutions)

Power
Counting solutions.

Definition

#P = {f I (3 nondeterministic polynomial-time Thring machine N) ('v'x)
[f(x) = #accN(x)]}.

Background
#P was first studied by Valiant (Val79a], who showed that counting versions
not only of NP-complete problems but also of some P problems can be #P
complete.

Complete Problems
#SAT, the function mapping from boolean formulas to their numbers of solu
tions, is a representative #P function: p#P(l) = p#SAT[ll.

Fig. A.14 #P-part I

A.lO #P: Counting Solutions

One potato, two potato, three potato, four,
Five potato, six potato, seven potato, more.

-Children's Rhyme

#P = {!I (3 nondeterministic polynomial-time Turing machine N) (\lx)

[f(x) = #accN(x)]},

where #accN(x) denotes the number of accepting paths of N(x).
#P is the class of functions that count the accepting paths of nondeter

ministic polynomial-time Turing machines. For example, the function that
maps any boolean formula to its number of satisfying assignments is a #P
function. To create a language class, as opposed to a function class, we usually
discuss p#P. Toda [Tod9lc] has shown that p#P 2 ppPH (Chap. 4).

#P is closely related to PP, probabilistic polynomial time: pPP =
p#P [BBS86].

The possibility of approximating #P functions has been much studied.
Stockmeyer [Sto85] shows that 6.~ machines can approximate #P functions
within a tight factor. Cai and Hemachandra ([CH91], see also [CH89]) and, in
dependently, Amir, Beigel, and Gasarch [ABGOO], show that the range of #P
functions cannot be reduced to polynomial size unless P = p#P (Chap. 6).

#P is intimately connected to the complexity of ranking-determining
the position of elements in a set [GS91,HR90,Huy90,BGS91].

Though #P intuitively is the counting analog of NP, there are some cu
rious flaws in the analogy. Valiant [Val79a] has shown that even some P

A.lO #P: Counting Solutions 287

#P- Sharp P (Counting Solutions)

Selected Facts and Theorems
1. ppPH C p#P c PSPACE. (see Chap. 4)
2. pPP = p#P. - (BBS86)
3. If #SAT has a polynomial-time computable enumerator then P = p#P.

(see Chap. 6)
4. If there is an NP-complete set L that with respect to some polynomial

time witnessing relation for it, RL, is not #P-complete, then P =f. p#P.
(FHT97)

5. If P =f. p#P and FewP = NP, then each NP-complete set has some
polynomial-time witnessing relation with respect to which it fails to be
#P-complete. (FHT97)

6. ppa'lP ~ p#P(lJ. (see Chap. 4)
7. #P is closed under addition and multiplication. (see Chap. 5)
8. The following are equivalent:

a) UP= PP.
b) #P is closed under proper subtraction.
c) #P is closed under integer division.
d) #P is closed under every polynomial-time computable operation.

(see Chap. 5)
9. If #P is closed under proper decrement, then coNP ~ SPP and NP ~

FTMkP. (see the text and Bibliographic Notes of Chap. 5)
10. If UP = NP, then #P is closed under proper decrement. (see Chap. 5)
11. If #P is closed under integer division by two, then EBP = SPP (and so

PH~ PP). (see Chap. 5)
12. If #P is closed under minimum, then NP = UP and C=P = SPP.

(see Chap. 5)
13. If #Pis closed under maximum, then C=P = SPP. (see Chap. 5)
14. If #P is closed under integer division by two, then EBP = SPP (and so

PH~ PP). (see Chap. 5)

Open Problems
• p#P(l) = p#P?
• p#P = PSP ACE?
• Find a complexity class equality that completely characterizes whether #P

is closed under proper decrement.

Fig. A.15 #P-part II

sets have #P-complete counting versions, at least under some reducibilities.
And Fischer, Hemaspaandra, and Torenvliet [FHT97] have shown that un
der certain complexity-theoretic assumptions, not all counting versions of
NP-complete sets are ~i-T-complete for #P.

Goldsmith, Ogihara, and Rothe [GOROO] have studied the complexity of
#P1 [Val79b], the tally analog of #P.

288 A. A Rogues' Gallery of Complexity Classes

ZPP, RP, coRP, and BPP - Error-Bounded Probabilism

Power
Error-bounded probabilism.

Definition

{
there is a probabilistic polynomial-time Turing machine }

BPP _ L M so that for each x it holds that (a) if x E L then
- Pr[M(x) accepts] ~ 3/4, and (b) if x ¢. L then Pr[M(x) ·

rejects] ~ 3/4

{
there is a probabilistic polynomial-time Turing machine}

RP _ L M so that for each x it holds that (a) if x E L then
- Pr[M(x) accepts] ~ 1/2, and (b) if x ¢. L then Pr[M(x) ·

rejects]= 1

coRP= {L I L E RP}.

ZPP = RP n coRP.

Alternate Definition

{

there is a polynomial-time predicate P and a polynomial }
q such that, for all x,

BPP = L 1. X rf. L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ t2q(Jzl), ·
and

2. X E L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ ~2q(izl)

{

there is a polynomial-time predicate P and a polynomial }
q such that, for all x,

RP = L 1. x ¢. L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll = 0, and ·
2. X E L ==> II{Y I IYI ~ q(lxl) 1\ P(x, y)}ll ~ 2q(Jzl)-l

Background
Gill [Gi177] wrote the seminal paper on error-bounded probabilistic computa
tion.

Complete Languages
No complete sets are known for any of these classes. There are relativized
worlds in which ZPP has no ~~-hard set in BPP (or even IP), and thus in
which none of these classes have complete sets ([HJV93], see also [Sip82]).

Fig. A.16 ZPP, RP, coRP, and BPP-part I

A.ll ZPP, RP, coRP, and BPP: Error-Bounded
Probabilism

A language L is in BPP if there is a probabilistic polynomial-time Turing
machine M (essentially, a Turing machine that can flip an unbiased coin)
such that for each x E Lit holds that M(x) accepts with probability at least
3/4, and for each x fl. Lit holds that M(x) rejects with probability at least
3/4.

A.ll ZPP, RP, coRP, and BPP: Error-Bounded Probabilism 289

ZPP, RP, coRP, and BPP - Error-Bounded Probabilism

Selected Facts and Theorems
1. P ~ ZPP = RP n coRP c~~:.~c ~ BPP. [Gil77]
2. RP ~ NP. - - [Gil77]
3. NPBPP ~ zppNP. [ZF87J
4. zppNPBPP = zppNP. ([AK01], see also [ZH86,GZ97])
5. BPPBPP = BPP. [Ko82,Zac82]
6. zppZPP = ZPP. [Zac82]
7. BPP ~ P /poly. (see Chap. 4)
8. BPPEilP ~ p#P(I(_ (see Chap. 4)
9. PH ~ BPPEilP. (see Chap. 4)

10. NP ~ BPP ===? RP = NP. [Ko82]
11. NP ~ BPP ===? PH ~ BPP. [Zac88]
12. Primes E ZPP. [AH92]
13. If A E BPP, then NPNPA ~ NPAE!)SAT. In particular, NPNpBPP n NP =

NPNP. [Sch86b]
14. If #GA, the function counting the number of automorphisms of graphs

has a polynomial-time computable enumerator then the Graph Isomor
phism Problem, { (G, H) I G and H are isomorphic graphs}, belongs to the
class RP. [BCGT99]

Fig. A.17 ZPP, RP, coRP, and BPP-part II

Most computer scientists, if stopped on the street and asked for a defi
nition of "feasible computation," would say "P" and walk on. Yet, there is
another possibility: BPP. Suppose the error probability of the machine de
scribed above is, on each input x, bounded not by 1/4 but rather by 1/21"'1.
(It is not hard to show-simply by taking polynomially many trials and re
jecting or accepting as the majority do-that each BPP language does have
such low-error machines.) For all sufficiently large x (and, after all, for all
other x we can in theory just use table lookup), the probability the answer
is wrong due to this 1j21xl error probability is less in practise than the prob
ability that an earthquake levels the building or that the physical parts of
the computer suddenly fail. Thus, many people accept low-error probabilistic
complexity classes (i.e., ZPP, RP, coRP, and BPP) as intuitively "feasible."
Indeed, under a certain very plausible complexity-theoretic assumption, it
would even follow that P = BPP (IW97]. On the other hand, to present a fair
picture we should mention that the assumption that a computer can fairly
generate random bits is less innocuous than it seems (however, there is in
teresting work on dealing with biased sources , see, e.g., (VV85]). Also, it is
important to stress that BPP is characterized in terms of the probability of
acceptance being bounded away from 1/2, not by the proportion of accept
ing paths being bounded away from 1/2. The latter notion seems to define a
larger class ((HHT97], see also (JMT96,AFF+01]).

290 A. A Rogues' Gallery of Complexity Classes

RP and coRP are classes similar to BPP, but allow only "one-sided"
error (see Fig. A.16). ZPP is the class of languages accepted by zero
error computers whose expected running times are polynomial. Equivalently,
ZPP = RP n coRP (Gil77,Zac82].

Probabilistic classes play a central role in complexity theory and comput
ing. For example, though it is not known whether testing primality can be
done deterministically in polynomial time, Adleman and Huang have shown
that primality is in ZPP (AH92].

A.12 PP, C=P, and SPP: Counting Classes

A language Lis in PP (Sim75,Gil77] if there is a probabilistic polynomial-time
Turing machine M such that, for each x,

x E L {::::::} M(x) accepts with probability at least 1/2.

A language L is in C=P (Sim75,Wag86] if there is a polynomial-time com
putable function f and a NPTM N such that, for each x,

x E L {::::::} #accN(x) = f(x),

where #accN(x) denotes the number of accepting paths of Non input x. A
language Lis in SPP (OH93,FFK94] if there is a polynomial-time computable
function f and a NPTM N such that, for each x,

x ¢ L ===} #accN(x) = f(x)- 1, and

x E L ===} #accN(x) = f(x).

Many counting classes have been defined and shown to be important in the
study of previously defined notions. The classes usually attempt to extract
out the essence of some particular computational task. For example, we may
loosely think of PP as encapsulating the power of majority testing, and of
C=P as encapsulating the power of exact equality testing.

Though BPP is a quite strong candidate for the title of "outer limit of
feasible computation," PP is not. The reason is that PP has no bound on
its error. In fact, for PP machines, the difference between acceptance and
rejection is so slight-one over an exponential function of the input-that we
would need an exponential number of Monte Carlo tests to get any useful
information. However, if one were willing to do an exponential amount of
work, one could just as well exactly solve the PP problem by brute force.

PP, however, does have some nice properties. In particular, there is no
"promise" built into its definition, and thus it is not hard to show that it has
complete sets. The same also holds for C=P. However, in contrast, there is a
"promise" (see the discussion in Sect. A.9) in the definition of SPP.

A.13 FP, NPSV, and NPMV 291

PP, c..._p, and SPP - Counting Classes

Power
PP: Unbounded error probabilism.
C=P: Exact counting.
SPP: Generalized UP.

Definition

{ I there is a probabilistic polynomial-time Turing machine}
PP = L M so that for each x it holds that x E L if and only if .

Pr(M(x) accepts] ~ 1/2

{
there is a nondeterministic polynomial-time Turing rna-}

C P _ L chine N and a (deterministic) polynomial-time com-
= - putable function f so that for each x it holds that x E L ·

if and only if #accN(x) = f(x)

{

there is a nondeterministic polynomial-time Turing rna-}
chine N and a (deterministic) polynomial-time com-

SPP = L putable function f so that for each x it holds that (a) if .
x E L then #accN(x) = f(x), and (b) if x '1. L then
#accN(x) = f(x) - 1

Fig. A.18 PP, C=P, and SPP-part I

A.13 FP, NPSV, and NPMV: Deterministic and
Nondeterministic Functions

We say that a function is in FP if it is computed by some deterministic
polynomial-time Turing machine. Functions in FP must be single-valued,
but they may potentially be partial.

The classes NPSV and NPMV capture the power of nondetermin
istic function computation. In particular, consider any nondeterministic
polynomial-time Turing machine N. On any input x, we will consider N
to have a (possibly empty) set of outputs. Namely, on input x, each stringy
that appears on the worktape of N along at least one computation path that
halts and accepts is considered to belong to the output set. A function f is
said to belong to NPMV if there exists some nondeterministic polynomial
time Turing machine N such that on each input x the outputs off are exactly
the outputs of N. As a notation, we use set-f(x) to denote {a I a is an output
of f(x)}. For example, on inputs x where the partial function f(x) is unde
fined, we have set-f(x) = 0. Note that functions in NPMV may be partial or
may be total, and may be single-valued or may be multivalued. Note that the
multiplicities of appearances of outputs do not concern us here; if, on input
x, machine N outputs 101 on one path and outputs 0011 on seventeen paths,
its set of outputs is simply {101, 0011}.

NPSV denotes the set of all NPMV functions f that are single-valued,
i.e., for each input x, JJset-f(x)JJ::; 1.

292 A. A Rogues' Gallery of Complexity Classes

PP, C-Y, and SPP- Counting Classes

Alternate Definition
A language L is in PP if there exists a polynomial q and a polynomial-time
predicate R such that, for each x,

X E L <===>- JJ{y IJyJ = q(Jxl) 1\ R(x, y)}JJ ;::: 2q(lzl)-l.

A language L is in C=P if there exists a polynomial q, a polynomial-time
function j, and a polynomial-time predicate R such that, for each x,

x E L <===>- IJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = f(x).

A different definition, which again yields the same class, allows us to fix the
function f to be a of a very simple form. In particular, R such that, for each
C=P has an alternate definition in which the "acceptance" cardinality is set to
be exactly half of the total number of possibilities: A language L is in C=P if
there exists a polynomial q and a polynomial-time predicate R such that, for
each x,

X E L <===>- JJ{y IJyJ = q(Jxl) 1\ R(x, y)}JJ = 2q(lzl)-l.

A language L is in SPP if there exists a polynomial q, a polynomial-time
function j, and a polynomial-time predicate R such that, for each x,

1. x E L ~ JJ{y IIYI = q(Jxl) 1\ R(x,y)}JI = f(x), and

2. x If. L ~ JJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = f(x) -1.

A different definition, which again yields the same class, allows us to fix the
function f to be a of a very simple form. A language L is in SPP if there exists
a polynomial q, a polynomial p, and a polynomial-time predicate R such that,
for each x,

1. X E L ~ JJ{y IJyJ = q(Jxl) 1\ R(x,y)}JJ = 2P(Izl) + 1, and

2. x If. L ~ Jl{y jJyJ = q(Jxl) 1\ R(x,y)}JJ = 2P(Izl>.

Fig. A.19 PP, C=P, and SPP-part II

We need some natural way to speak of reducing the number of outputs
that a function has. Refinement captures this notion.

Definition A.4 We say that a multivalued function f is a refinement of
multivalued function g if

1. (Vx) [set-f(x) = 0 {=> set-g(x) = 0], and
2. (Vx) [set-f(x) ~ set-g(x)].

Intuitively, a refinement of a function is the function except on each input
some (but not all) outputs may be missing. Note that an NPSV refinement
of g is g with, on each input, all but one output removed. The question of
whether all NPMV functions have NPSV refinements is central in Chap. 3.

We note that whether all NPMV functions have NPSV refinements seems
to be a different issue than whether UP = NP. That is, it is not currently

PP, C-Y, and SPP - Counting Classes

Background

A.13 FP, NPSV, and NPMV 293

PP was introduced in the work of Simon [Sim75] and Gill [Gil77]. C=P was
introduced (though not assigned a name) by Simon [Sim75], who also proved
that C=P ~ PP.

Complete Languages
Simon [Sim75] proved that MajSat is PP-complete, where MajSat = {f I f
is satisfied by more than half of the possible variable assignments}. C=P has
canonical complete sets, but is not currently known to have any particularly
natural complete sets. Toda [Tod94] and Ogiwara [Ogi92] have studied, respec
tively, canonical complete problems for pPP and pC=P. SPP is a "promise"-like
class and thus seems to lack complete sets. Mundhenk, Goldsmith, Lusena, and
Allender [MGLAOO] have shown that ppNP has natural complete sets.

Selected Facts and Theorems
1. P C UP C SPP c ESP C PP.
2. US-~ C=P ~ PP ~ p#P ~ PSPACE.
3. Both C=P and coC=P are closed downward under positive Turing reduc-

tions. [Ogi94b]
4. Rft(C=P) = P-uniformNC1(C=P) = P-uniformAC1(C=P). [Ogi95a]
5. pPP = p#P. (BBS86]
6. NP#P = NPc=P. [Tor91]
7. ppPH ~ BPPC=P ~ pPP. (see Chap. 4)
8. 8~ ~ PP. [BHW91]
9. There is an oracle A such that pNPA ll: ppA. [Bei94]

10. PP is closed downward under truth-table reductions. (see Chap. 9)
11. sppSPP = sppFewP = PP. [FFK94]
12. c=psPP = C=pFewP = C=P. [FFK94,KSTT92]
13. ppsPP = ppFewP = PP. [FFK94,KSTT92]
14. There exists an oracleA such that sppA strictly contains PHA yet PHA

does not collapse. [For99]

Fig. A.20 PP, C=P, and SPP-part III

known that either implies the other. The barrier to proving "UP = NP if all
NPMV functions have NPSV refinements" is that NPSV functions, though
possessing at most one output, may potentially output that one output on
many accepting paths; thus, the computation is in no way UP-like. Regarding
the other direction, though

UP= NP =? all NPMV functions have FPUP refinements,

there seems to be no obvious way to use UP = NP to obtain NPSV refine
ments of NPMV functions.

294 A. A Rogues' Gallery of Complexity Classes

FP, NPSV, and NPMV- Deterministic and Nondeterministic Functions

Power
Function versions of P and NP.

Definition
FP denotes the class of (single-valued, possibly partial) functions computed
by deterministic polynomial-time Turing machines. Given a nondeterministic
polynomial-time Thring machine, we may view it as computing a (possibly
partial, possibly multivalued) function as follows. Each rejecting path is viewed
as outputting no value. Each accepting path is viewed as outputting whatever
value it has written on its worktape. The machine, on input x, maps from
x to the set of all values that are an output of some accepting computation
path. The set of all such functions is denoted NPMV. The class of all NPMV
functions that on no input take on more than one value is denoted NPSV.
set-f (x) denotes {a I a is an output of f (x)}. We say that a multivalued
function f is a refinement of multivalued function g if

1. (Vx) [set-f(x) = 0 ~ set-g(x) = 0], and
2. (Vx) [set-J(x) ~ set-g(x)].

Background
NPSV and NPMV were introduced by Book, Long, and Selman [BLS84,BLS85].

Sample Functions
Let /sAT represent the function such that set-/sAT(F) is empty ifF is unsat
isfiable, and is {a I a is a satisfying assignment of F} if F is satisfiable. /sAT
is in NPMV.

Selected Facts and Theorems
1. FP ~ NPSV £;; NPMV.
2. P = NP ~ FP = NPSV. (see [Sel94])
3. For every k ~ 1, P~.:';t = P~.:';~v and P~!'T = P~!'/v. [FHOS97]
4. If every NPMV function has an NPSV refinement, then PH = zppNP.

(see Chap. 3)

Fig. A.21 FP, NPSV, and NPMV

A.14 P-Sel: Semi-feasible Computation

{
there is a polynomial-time 2-ary function f such that }

P-sel = L for each x andy it holds that (a) f(x,y) E {x,y}, and .
(b) {x,y} n L -j. 0 =} f(x,y) E L

P denotes the class of sets that have polynomial-time membership al
gorithms. P-sel, the class of P-selective sets, denotes the class of sets that
have polynomial-time semi-membership algorithms. A semi-membership al
gorithm for a set is a function-called a selector function-that, given two
inputs, chooses one that is "logically more likely" (or, to be more accurate,
"logically no less likely") to be in the set in the sense that if exactly one of
the two inputs is in the set then the algorithm chooses that input.

A.14 P-Sel: Semi-feasible Computation 295

P-sel - Semi-feasible Computation

Power
Semi-feasible computation.

Definition

{ lthere is a polynomial-time 2-ary function f such that}
P-sel = L for each x andy it holds that (a) f(x,y) E {x,y} and .

(b) {x,y} n L i= 0 ==> f(x,y) E L

Background
The P-selective sets were introduced by Selman [Sel79,Sel82b,Sel82a] as a
polynomial-time analog of the semi-recursive sets from recursive function
theory [Joc68]. The NPSV-selective sets were first studied by Hemaspaandra,
Naik, Ogihara, and Selman [HNOS96b].

Sample Language
For any real number 0 ::; a< 1, the left cut of a is a P-selective set, where the
left cut of a number in the range [0, 1) is the set {b1b2ba · · · bk j k ~ 0 1\ a >
O.b1b2ba · · · bk} and O.b1b2ba · · · bk denotes the binary faction denoted by the
given bits.

Fig. A.22 P-sel-part I

In the 1960s, Jockusch [Joc68] first studied semi-membership algorithms,
by studying the class of languages-the semi-recursive sets-having recursive
selector functions.

Around 1980, Selman [Sel79,Sel82a,Sel82b] introduced the P-selective
sets-the class of sets having polynomial-time selector functions. Selman
and other researchers obtained many important foundational results [Sel79,
Sel82a,Sel82b,Ko83]. There followed a half-decade in which relatively lit
tle attention was paid to the P-selective sets. Then, around 1990, there
was an abrupt and intense renewal of interest in in the P-selective sets.
In a flurry of progress (surveyed by Denny-Brown, Han, Hemaspaandra,
and Torenvliet [DHHT94]), longstanding open problems were resolved and
new variants were introduced and explored. Of particular interest to this
book are the NPSV-selective sets of Hemaspaandra, Naik, Ogihara, and Sel
man [HNOS96b].

Definition A.5 A set L is NPSV-selective if there is a function f E NPSV
such that

1. (Vx,y) [set-f(x,y) ~ {x,y}], and
2. (Vx,y) [{x,y} n L =f. 0 ==} (set-f(x,y) = {x} v set-f(x,y) = {y})].

The motivations for studying selectivity are varied. One motivation is as
a relaxation of P. Given that membership in P is open for a wide range of im
portant sets, it is natural to define generalizations of P and see whether these
generalizations capture such important sets. A great variety of such classes

296 A. A Rogues' Gallery of Complexity Classes

P-sel - Semi-feasible Computation

Selected Facts and Theorems
1. P ~ P-sel ~ RECURSIVE.
2. The P-selective sets are closed under complementation.
3. The P-selective sets are closed downward under :::;~08-reductions.

(BTvEB93]
4. The P-selective sets are closed under exactly 2k + 2 of the k-ary boolean

functions properties, namely, those that are either completely degenerate
or almost-completely degenerate. In particular, the P-selective sets are
closed under neither union nor intersection. [HJ95b]

5. NP ~ P-sel ==> P = NP. Indeed, NP ~ Rttt(P-sel) ==> P = NP.
(Sel79,AA96,BKS95,0gi95b]

6. a) If all sets in UP are :::;fcreducible to P-selective sets then P = UP.
b) If all sets in NP are :::;ft-reducible to P-selective sets then P = FewP

and RP = NP.
c) If all sets in pNP are :::;ft-reducible to P-selective sets then P = NP.

(Tod91b]
7. If there exists a P-selective set that is truth-table-hard for NP then, for

all k > 0, SATE DTIME(2n/logkn]. (NS99]
8. P-sel ~ P /poly (indeed, even P-sel ~ P /quadratic). (see Chap. 3)
9. P-sel ~ NP /linear n coNP /linear. (see Chap. 3)

10. P-sel ~ NP jn. (see Chap. 3)
11. If NP ~ NPSV -sel then the polynomial hierarchy collapses.

(see Chap. 3)
12. NPSV-sel n NP ~ (NP n coNP)fpoly. (see Chap. 3)
13. NPSV-sel ~ NP/poly n coNPjpoly. (HNOS96b]
14. P-sel s;; Rt-r(P-sel) = Rt-tt(P-sel) = Ef-r{P-sel) = Ef-tt(P-sel) s;;

R~-tt(P-sel) s;; · · · s;; R~-tt(P-sel) s;; Rfk+l)-tt(P-sel) s;; · · ·. (HH096]
15. P-sel s;; Ef-r(P-sel) s;; E~-T(P-sel) s;; s;; E~-r(P-sel) s;;

E(k+l)-T(P-sel) s;; · · ·. (HH096]
16. Any Turing self-reducible P-selective set is in P. (BT96b]
17. If P = PP then for every non-empty P-selective set A there exists a stan-

dard left-cut L(r) such that A=~ L(r). (HNOS96a]
18. If A is a P-selective set, then NPNPA ~ NPAEilSAT. In particular,

NPNpP-sel n NP = NPNP. (KS85,ABGOO]
19. Ei-(P-sel) ~ EXP /linear. (BL97]

Fig. A.23 P-sel-part II

have been defined: the P-selective sets, the P-close sets [Sch86a], the near
testable sets [GHJY91], the nearly near-testable sets [HH91b], the almost
polynomial-time sets [MP79], etc. However, the P-selective sets stand out
from the crowd in their centrality in complexity theory. The NPSV-selective
sets are, somewhat curiously, best motivated simply as a tool. In particu
lar, they offer the key bridge to proving that unique solutions collapse the
polynomial hierarchy (Chap. 3).

A.16 SpanP, OptP: Output-Cardinality and Optimization Function Classes 297

The NPSV -selective sets are not the only generalization of the P-selective
sets. Many other generalizations or variations have been developed and stud
ied [HHN+95,0gi95b,HZZ96, Wan95,HJRW97 ,Zim98,ABGOO,Nic00].

Finally, it is very useful to be able to assume that selector functions are
oblivious to the order of their arguments. Let f'(·, ·) be a selector function
for L. Note that that f(x,y) = f'(min{x,y},max{x,y}) is also a selector
function for L.

Proposition A.6

1. If L is a P-selective set, then L is P-selective via some selector function
f E P such that ('v'x,y) [f(x,y) = f(y,x)].

2. If L is a NPSV-selective set, then L is NPSV-selective via some selector
function f E NPSV such that ('v'x,y) [set-f(x,y) = set-f(y,x)].

A.15 ffiP, ModkP: Modulo-Based Computation

Mod p = {L 1(3 NPTM N) ('v'x) [x E L
k #accN(x) ¢. 0 (mod k)]

EBP = Mod2P.

EBP, introduced independently by Papadimitriou and Zachos [PZ83] and
Goldschlager and Parberry [GP86], captures the power of parity. Cai and
Hemachandra [CH90] and Beigel, Gill, and Hertrampf [Her90,Bei91 b,BG92]
generalized the class to modulos other than two. There are oracles relative
to which EBP does not even contain NP, as shown by Toran [Tor9l,Tor88].
Nonetheless, Toda [Tod9lc] proved that BPP6W contains the entire poly
nomial hierarchy, and Tarui [Tar93J shows that R · PP contains the entire
polynomial hierarchy (and even PP H).

A.16 SpanP, OptP: Output-Cardinality and
Optimization Function Classes

The counting class #P captures the notion of the number of accepting paths
of NP machines. This class plays a very central role in complexity theory.
However, it is not the only function class that plays a central role.

The function class OptP, introduced by Krentel ([Kre88], see
also [BJY91]), seeks to capture the notion of maximizing over the set of
output values of nondeterministic machines. Otir model is as follows. We
by convention say that any path that does not explicitly output a non
negative integer has implicitly output the integer 0. A function f is an
OptP function if there is some such machine, N, for which, on each x,
f(x) = max{i E Nl some path of N(x) has i as its output}.

298 A. A Rogues' Gallery of Complexity Classes

EeP, Modr.P - Modulo-Based Computation

Power
Modulo-based computation.

Definition

ModkP = {L 1(3 NPTM N) ('v'x) [x E L <===? #accN(x) ¢. 0 (mod k)]}.

EBP = Mod2P.

Alternate Definition

ModkP = L mial q such that, for all x, x E L <===? II{Y I IYI ~ · {
there is a polynomial-time predicate Panda polyno-}

q(lxl) A P(x, y)}ll ¢. 0 (mod k)

Background
EBP was introduced by Papadimitriou and Zachos [PZ83] and Goldschlager and
Parberry [GP86]. ModkP was introduced by Cai and Hemachandra ([CH90],
see also [Her90,BG92]).

Complete Languages
EBSAT = {f I f has an even number of satisfying assignments} is complete for
EBP. Analogous complete sets exist for ModkP.

Selected Facts and Theorems
1. UP s;;; SPP s;;; EBP n C=P.
2. ffipSPP = ffipGlP = ffiPFewP = ffiP. [PZ83,KSTT92,FFK94]
3. For any k that is a prime power, ModkP = coModkP. [BG92]
4. For any integer k > 1, ModkP = Mod,.(k)P, where 1r(k) denotes the prod

uct of all primes that are divisors of k, e.g., 11"(12) = 2 · 3 = 6. In particular,
for any k that is a prime power and i ~ 1, Modk;P = ModkP.

([Her90], see also [BG92])
5. For any k, ModkP is closed under union. [Her90]
6. ffipPH s;;; BPPGlP. (see Chap. 4)
7. There exists an oracle A relative to which pA = NPA = PHA =1= ffiPA =

EXPA. [BM99]
8. For each k ~ 2, the existence of sparse ~rtt-hard sets for ModkP implies

P = ModkP. [OL93]
9. For each k ~ 2, ModkP s;;; Rrtt(P-sel) ==> P = ModkP. [AA96,0gi95b]

10. There exists an oracle A relative to which EBP S?; ppPH.
(see the text and Bibliographic Notes of Chap. 8)

Open Problem
• NP s;;; EBP ==> PH s;;; EBP?

Fig. A.24 EBP and ModkP

A.l7 IP and MIP: Interactive Proof Classes 299

So, #P focuses on the number of accepting paths of NP machines and
OptP focuses on the largest output value of an NP machine. The class SpanP
seeks to capture the functions giving the richness of the output value set. That
is, a function f is in SpanP if there is some NP Turing Machine N such that,
on each x, f(x) is the cardinality of the set of strings output on the accepting
paths of N. (By looking at only the accepting paths, we allow the possibility
that on some inputs f may take on the value 0.) SpanP was introduced by
Kobler, Schoning, and Toran ([KST89], see also [Kob89,Sch90]). SpanP is a
quite flexible class; it is easy to see that SpanP contains both #P and OptP.

A.17 IP and MIP: Interactive Proof Classes

A verifier is a polynomial time-bounded probabilistic Turing machine V with
a special state called query state and k special read/write tapes called com
munication tapes, where k ~ 1. Through the k communication tapes, the
verifier interacts with k adversaries P1, ... , Pk called provers, which have
unlimited computational power and can use randomness but cannot commu
nicate among others. The interaction with provers is invoked when V enters
query state. At that moment, for each i, 1 ::; i ::; k, the string held on the ith
communication tape is sent to Pi. In the next move, for each i, 1 ::; i ::; k,
Pi supplies an answer, which depends on (1) the input to V, (2) the query,
(3) the questions and answers passed through the tape so far, and (4) Pi's
probability distribution.

Definition A. 7 Let k ~ 1. A language L has a k-prover interactive proof
system if there exist a verifier with k communication tapes and k provers
P1. ... , Pk such that for every x, the following two conditions (1) and (2),
respectively called the correctness condition and the soundness condition, are
met:

1. if x E L, then V on x with P1, ... , Pk accepts with probability greater
than~ and

2. if x (/. L, then for any provers P{, ... , P{., V on x with P{, ... , P{. rejects
with probability greater than ~.

IP (respectively, MIP) is the class of all languages L that have one-prover
interactive proof systems (respectively, k-prover interactive proof systems for
some k}.

We will sometimes omit the word "one-prover" but, by convention, it will be
implicit.

300 A. A Rogues' Gallery of Complexity Classes

IP and MIP (Interactive Proof Systems)

Power
Probabilistic verification.

Definition

{

there is a verifier V and a prover P such that for every x,}
Ip = L

it holds that (a} if x E L, then the probability that Von x
accepts with prover Pis greater than ~ and (b) if x E L, .
then for any prover P', the probability that V on x accepts
with prover P' is less than ~

Mlp = !L
there exist some k 2': 1, a k-communication-tape verifier)
V, and provers H , . . . , Pk such that for every x, it holds
that (a) if x E L, then the probability that Von x accepts
provers H, ... ,Pk is greater than ~,and (b) if x E L, ·
then for any provers P{, ... , Pt, the probability that V on
x accepts with P{, ... , P~ is less than ~

Background
IP was studied independently by Babai [Bab85] and by Goldwasser, Micali,
and Rackoff [GMR89], with different models and terminology (with Babai in
particular defining the class AM, Arthur-Merlin). The difference between these
two models is the treatment of the coin tosses of the verifier, which are sent
to the prover in Babai's model and kept secret in Goldwasser, Micali, and
Rackoff's model. Goldwasser and Sipser showed that these two models are
equivalent [GS89]. MIP was introduced by Ben-Or, Goldwasser, Kilian, and
Wigderson [BOGKW88].

Selected Facts and Theorems
1. NP ~ IP. [GMR89]
2. pPP ~ IP. (see Chap. 6)
3. IP = PSPACE. (see Chap. 6)
4. MIP = NEXP. (see Chap. 6)
5. With probability one relative to a random oracle, IP and PSPACE differ.

[CCG+94]

Fig. A.25 IP and MIP

A.18 PBP, SF, SSF: Branching Programs and
Bottleneck Computation

A width-k branching program over variables x 1 , ... , Xn is a sequence P =
{ (ij, 1-L~, 1-LJ) }j!:1 such that for each j, 1 ::; j ::; m, it holds that

1. 1 ::; ij ::; n, and
2. 1-L~ and 1-L} are mappings of {1, ... , k} to itself.

The triples (ij, 1-L~, 1-LJ) are called instructions. Given a bitstring x E En,
whose n bits we will refer to as Xt, x 2 , •.• , Xn (i.e., x is the concatenation
X1X2 • · • Xn), the product of P with respect to x, denoted by P[x], is

A.18 PBP, SF, SSF: Branching Programs and Bottleneck Computation 301

PBP, SF, and SSF-Branching Programs, Bottleneck Turing Machines

Power
Distributing computations into smaller tasks.

Definition

k-PBP = {L 'L is ~cepted by width-k polynomial-size}.
branchmg programs

SFk = {L iL is ~cepted by a width-k bottleneck Turing} .
machmes

SSF = {L 'Lis acce~ted by a.width-k symmetric bottle-}.
k neck Thrmg machmes

p b bT t" SSF _ {L 'Lis accepted by a width-k probabilistic sym-}
ro a 1 IS IC k - metric bottleneck Turing machines ·

Selected Facts and Theorems
1. Nonuniform-NC1 = 5-PBP = Uk>2 k-PBP. (see Chap. 7)
2. Nonuniform-NC1 is the class ~f languages accepted by a family of

polynomial-size NUDFA programs on some monoid.
(see the text and Bibliographic Notes of Chap. 7)

3. Nonuniform-AC0 is the class of languages accepted by a family of
polynomial-size NUDFA programs on some aperiodic monoid.

(see the text and Bibliographic Notes of Chap. 7)
4. PSPACE = SFs = Uk>2 SFk. (see Chap. 7)
5. PH~ SF4. - ([Ogi94a], see also [Her97,Her00])

pMod3 pEilP
6. SF4 ~ BP. E!)pModaPEB

([Ogi94a], see also [Her97,Her00])
7. For k ;:::: 2, languages in SSFk are many-one reducible to languafes in

coModktP by functions polynomial-time computable with at most k par-
allel queries to languages in NP. (see Chap. 7)

8. ProbabilisticSSF2 = NPPP. (see Chap. 7)

Fig. A.26 PBP, SF, and SSF

where the product is evaluated from the right to the left. That is, a triple
(ij, J.L~, J.Lj) in P in effect says that J.L~ has to be multiplied into the product if

the ijth bit of x is a 0, and J.Lj has to be multiplied into the product otherwise.
Program P accepts x if P[x] is a mapping that maps 1 to something else; i.e.,
P[x](1) -::f= 1. A language Lis accepted by polynomial-size width-k branching
programs if there exists a family {Pn}n>l of width-k branching programs
such that (1) there exists a polynomial p such that for every n, the length
of Pn is at most p(n) and (2) for every x, x belongs to L if and only if
f'lxl accepts x. The class of languages accepted by polynomial-size width-k
branching programs is denoted by k-PBP.

302 A. A Rogues' Gallery of Complexity Classes

For k ~ 2, a width-k bottleneck Turing machine is a polynomial time
bounded deterministic Turing machine M with an auxiliary input called the
counter and a special device called the safe-storage, where the counter holds
a binary integer of length p(!xl), for some fixed polynomial p not dependent
on x, and the safe-storage is a read/write cell that holds a number from
the set {1, ... ,k}. For an input x, an auxiliary input y, and a valued E

{1, ... , k }, let V(x, y, d) denote the value of the safe-storage when M finishes
its computation. Collection V (x, v, d), 1 $ d $ k, can then be viewed as a
mapping of {1, ... , k} to itself, so, we will use f(x, y) to denote the mapping.
A language L is accepted by M if for every x, it holds that (here we are
showing an expansion that assumes that p(!xl) ~ 2, but the general case is
similarly clear) :

xEL~
f(x, 1P(Ixll) o f(x, 1P(Ixll-1o) o f(x, 1P(Ixll-2o1) o f(x, 1P(Ixll-2 oo) o
... o f(x, OP(Ixll-210) o f(x, OP(Ixl)-l1) o f(x, OP(Ixll) maps 1 to 1,

where the product is from right to left. SFk is the class of languages accepted
by bottleneck Turing machines of width k.

A bottleneck Turing machine M is symmetric if, for every x and every
permutation 1r over EP(Ixl), it holds that:

(f(x, 1P(Ixll) o ... o f(x, OP(Ixll))(1) = 1 ~
(f(x, 7r(1P(Ixll)) o ... o f(x, 7r(OP(Ixll)))(1) = 1.

SSFk is the class of all languages accepted by a symmetric bottleneck Turing
machine of width k.

A probabilistic width-k symmetric bottleneck Turing machine is defined
by endowing M the power of flipping coins to determine what to store in the
storage-value, which turns function f into a probability distribution over the
set of all mappings of {1, ... , k} to itself. A language L is accepted by M if
for every x and every permutation 1r over EP(Ixl), it holds that:

x E L ~ Pr[(f(x,7r(1P(Ixl))) o · · · o f(x,7r(OP(Ixl))))(1) = 1] = ~-
2

ProbabilisticSSFk is the class of all languages accepted by probabilistic width
k symmetric bottleneck Turing machines.

Branching programs were introduced by Lee [Lee59]. For every k ~ 2,
k-PBP can be viewed as a class of those languages many-one reducible to
languages accepted by k-state automata via nonuniform (the output depends
only on the input length) functions each of whose output bits is one of: an in
put bit, the negation of an input bit, the constant 0, or the constant 1 (such
reductions in general are studied by Skyum and Valiant [SV85]). Barring
ton [Bar89J showed that for every k ~ 5, polynomial-size width-k branching
programs capture nonuniform NC1 and for k = 2, 3, 4, k-PBP are subclasses
of languages accepted by polynomial-size constant-depth circuits with mod
ulo 2 gates and modulo 3 gates.

A.18 PBP, SF, SSF: Branching Programs and Bottleneck Computation 303

Bottleneck Turing machines were introduced by Cai and Furst [CF91],
who showed that SF5 = PSPACE. The power of SFk and its subclasses with
k = 2, 3, 4 were studied by Ogihara [Ogi94a] and Hertrampf ([Her97], see
also [HerOO]). Ogihara [Ogi94a], among other results, exactly classified SF2
as equaling the class E90ptP, which was originally defined by Hemachandra
and Hoene [HH91b] to capture the notion of efficient implicit membership
testing. Hertrampf ([Her97], see also [HerOO]) expressed, using the notion of
query-order-based classes ([HHW99], see also [HHH97]), exact classifications
of the power of SF a and SF 4·

Symmetric bottleneck Turing machines as well as probabilistic versions
of them are introduced and studied by Hemaspaandra and Ogihara [H097],
and have been further investigated by Hertrampf ([Her99], see also [HerOO]).

B. A Rogues' Gallery of Reductions

If one can solve problem A using a black box that solves problem B, one can
reasonably say that problem A is "not much harder than" problem B, the
degree of the "not much" being linked to how powerful and extensive the use
of B is. Thus, reductions provide a means of classifying the relative hardness
of sets. If A reduces to B and B reduces to A, then we can reasonably say
that A and B are of "about the same" hardness. Of course, the closeness of
the relationship between A and B will again depend on how powerful the
reduction is. The more computationally weak the reduction is, the stronger
the claim we can make about the similarity of hardness of A and B. Over the
years, a rich collection of reductions has been developed to aid in classifying
the relative hardness of sets. In this chapter, we define the key reductions,
mention some standard notational shorthands, and then present some com
ments about reductions and their relative powers. We also discuss a centrally
important reduction, Cook's reduction, which is the reduction that proves
that SAT is NP-complete.

B.l Reduction Definitions: <~, <~, ...
:5~ (Many-one reductions)

A~~B ¢::::::} (3! E FP)(Vx)[x E A ¢::::::} f(x) E B].
:5~ (Turing reductions)

A~~PB ¢::::::} A E P8 (see Sect. A.3).
:5ft (Truth-table reductions)

A ~ft B ¢::::::} (3g E FP)(3L E P)(Vx)[(3i)(3z1, z2, ... , zt)[g(x)
z1#z2# · · · #zt#] 1\ (x E A ¢::::::} x#xB(zi)xB(z2) · · · XB(zt) E L)].

:5~tt (Disjunctive truth-table reductions)
A~~ttB ¢::::::} (3g E FP)(Vx)[(3i)(3zl, z2, ... , zt)[g(x) =
z1#z2# · · · #zt#] 1\ (x E A ¢::::::} z1 E B V z2 E B V · · · V Zt E B)]. (By
convention, when the machine asks no questions the input is rejected.)

:5~tt (Conjunctive truth-table reductions)
A~~ttB ¢::::::} (3g E FP)(Vx)[(3i)(3z1, z2, ... , Zt)[g(x)
z1 #z2# · · · #zt#] 1\ (x E A ¢::::::} z1 E B 1\ z2 E B 1\ · · · 1\ Zt E B)].
(By convention, when the machine asks no questions the input is
accepted.)

306 B. A Rogues' Gallery of Reductions

~: (Disjunctive 'lUring reductions)
A$~B {:::=:} A$~B via some deterministic polynomial-time machine M
that on each input accepts if and only at least one oracle query is made
and at least one query that M makes is in B. (Note in particular that
when the machine asks no questions to its oracle, the input is rejected.)

~~ (Conjunctive 'lUring reductions)
A$~B {:::=:} A$~B via some deterministic polynomial-time machine
that on each input accepts if and only if all queries it makes to its oracle
are in B. (Note in particular that when the machine asks no questions
to its oracle, the input is accepted.)

<P (Positive 'lUring reductions)
-pOB

A$~08B {:::=:} A$~B via some deterministic 'lUring machine M that for
some polynomial q runs for all oracles in time q(n) (where n is the input
length) and that satisfies the additional property that:

~focpos (Locally positive 'lUring reductions)
A:5focposB {:::=:} A$~B via some deterministic polynomial-time machine
M that has the following properties:
1. (VC: C 2 B)[L(M0) 2 L(M8)], and
2. (VC: C ~ B)[L(M0) ~ L(MB)].

~~(n)-tt (f(n)-truth-table reductions)

A:5j(n)-ttB {:::=:}

(::lg E FP)(::JL E P)(Vx)[(::l£: i :5 J(lxi))(::Jzl, z2, ... , zt)[g(x)
z1 #z2# · · · #ze#]A (x E A {:::=:} x#xB(zl)XB(z2) · · · XB(ze) E L)].

~:tt (Bounded truth-table reductions)
A:5~ttB {:::=:} (::Jk)[A :51-tt B].

~~(n)-T (f(n)-'Th.ring reductions)
A:5j(n)-TB {:::=:} A$~B via some deterministic polynomial-time ma
chine that on each input x makes at most f(lxi) oracle queries.

~::;. (Many-one logspace reductions)
A$!;,B {:::=:} (::lf : function f can be computed by a logspace machine)
(Vx)[x E A {:::=:} f(x) E B].

~~np (Many-one coNP reductions)
A$'::,np B {:::=:} A = B = 0 v (::lf E NPMV) (Vx)[x E A {:::=:} 0 =f.
set-f(x) ~ B].

~i- (Generalized 'lUring reductions)
A$fB {:::=:} A E C8 . Notes: This is defined only for classes C for which
relativization has been defined. Clearly, :5~ = $~. By tradition, the no
tation s:rn denotes :5~p n coNP, i.e., A:5rn B {:::=:} A E NP8 n coNP8 .

Note on Combining Mechanisms and Bounds Interpretation types
(disjunctive, conjunctive, positive, etc.) and bounds on the number
of queries are often combined in the natural way. For example,

B.3 Facts about Reductions 307

A :5~(n)-ctt B <===> (3g E FP)(Vx)[(3£: l :5 f(jxl))(3zl. z2, ... , Zt)[g(x)
z1 #z2# · · · #zt#] 1\ (x E A <===> z1 E B 1\ z2 E B 1\ · · · 1\ Zt E B)].

B.2 Shorthands: R and E

Definition B.l For any text strings a and b for which :5~ is a reduction
type that has been defined:

1. For any set C, R:(C) = {L I L :5~ C}.
2. For any class C, R:(c) = {L I (3C E C)[£ :5~ C]}.

Definition B.2 For any text strings a and b for which :5~ is a reduction
type that has been defined:

1. For any set C, E:(C) = {L I L :5~ C 1\ C :5~ £}.
2. For any class C, E:(c) = {L I (3C E C)[£ :5~ C 1\ C :5~ £]}.

B.3 Facts about Reductions

Proposition B.3 For any sets A and B neither of which is 0 or E*, the
following hold.

=? A~: •• B =?

1. A<L B ===} A <P B =* A ~~tt B =* A <P B ===} A <P B ===} A <sn
-m -m =* A ~~tt B =* -tt -T -T

B,
2. (A :5~ B VA :5d B) ===} A :5~os B ===} A:::;focposB ===} A :5~ B, and
3. A :5~tt B ===} A :5':::np B.
4. If B is sparse and A:::;tttB then A:::;~ttB.

All the above implications-except that A:5tttB ===} A:::;~ttB if B is
sparse-are immediately clear from the definitions.

It is not hard to see that :5~ is equivalent to :5~tt• and that :5~ is equivalent
to :::;~tt"

Many complexity classes respect reductions. For example, though
Rttt(NP) = NP <===> NP = coNP, nonetheless NP is closed downward
under :5~os reductions, i.e.,

NP = R~os(NP).

Similarly, ~PP(BPP) = BPP and R.Tn(NP n coNP) = NP n coNP.
Some reductions are powerful enough to bridge the differences be

tween seemingly-or absolutely-different classes. For example, SPARSE;;?
TALLY, but it can be shown that R~tt(SPARSE) = R~tt(TALLY). As an
other example, E S: EXP, but clearly (via padding) R~(E) = R~(EXP) =
EXP. Finally, though we suspect that NP i= coNP, clearly Rtr(NP) =
Rtr(coNP).

308 B. A Rogues' Gallery of Reductions

B.4 Circuit-Based Reductions: NCk and ACk

ACk
For k ~ 0, a language L is ACk reducible to a language A if there
exists a family of polynomial-size O(logk n) depth circuits with oracle
gates, which that this family used with oracle A accepts L, where an
oracle gate with m inputs contributes 1 to the depth. Furthermore, L is
logspace-uniform (P-uniform) ACk reducible to A if there is a logspace
(polynomial-time) algorithm to compute the description of the circuit for
En given 1 n.

NCk
For k ~ 1, a language Lis NCk reducible to a language A if there exists
a family of polynomial-size, O(logk n) depth, bounded fan-in (all 1\ and
V gates have in-degree two) circuits with oracle gates, such that this
family used with oracle A accepts L, where an oracle gate with m inputs
contributes flog m l to the depth. Furthermore, L is logspace-uniform
(P-uniform) NCk reducible to A if there is a logspace (polynomial-time)
algorithm to compute the description of the circuit for En given 1 n.

B.5 Bibliographic Notes

Ladner, Lynch, and Selman's seminal paper is the best source on polynomial
time reductions [LLS75]. Ladner and Lynch [LL 76] is the best source on
logspace reductions. Positive Turing reductions were introduced by Sel
man [Sel82b], and locally positive Turing reductions were introduced by
Hemachandra and Jain [HJ91]. Many-one coNP reductions were introduced
by Beigel, Chang, and Ogiwara [BC093]. Strong nondeterministic Turing
reductions were introduced by Selman ([Sel78], see also [Lon82]). Allender
et al. [AHOW92] proved that if B is sparse then A~~ttB => A ~~tt B.
Cook's reduction is due (not surprisingly) to Cook [Coo71], though we state
it here (see Fig. A.3) in a known stronger form. Buhrman, Hemaspaandra,
and Longpre [BHL95] proved that SPARSE ~ R~~(TALLY), from which
R~tt(SPARSE) = R~tt(TALLY) clearly follows. R~ (BPP) = BPP is due
to Ko and Zachos [Ko82,Zac82]. The AC0 reductions were introduced by
Chandra, Stockmeyer, and Vishkin [CSV84] as reductions among functions.
Cook [Coo85] introduced the NC1 many-one reductions as reductions of
among functions. Language versions of the NCk reducibility as well as the
ACk reducibility were introduced by Wilson [Wil85,Wil90]. In general, for
every k ~ 0, Nck+l reductions are as powerful as ACk-reductions. Ogi
hara [Ogi95a] showed for certain classes such as NP and C=P that, for each
k ~ 0, the P-uniform ACk reducibility closure and the P-uniform NCk+ 1

reducibility closure coincide.

References

[AA96J

[ABGOOJ

[AB084]

[AB099]

[Adl78]

[AFK89J

[AH92]

[AH94]

[AHH+93J

[AHOW92J

M. Agrawal and V. Arvind. Quasi-linear truth-table reductions to P
selective sets. Theoretical Computer Science, 158(1-2):361-370, 1996.
A. Amir, R. Beigel, and W. Gasarch. Some connections between
bounded query classes and non-uniform complexity. Technical Re
port TR00-024, Electronic Colloquium on Computational Complexity,
http:/ /www.eccc.uni-trier.de/eccc/, May 2000.
M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth
computations. In Proceedings of the 16th ACM Symposium on Theory
of Computing, pages 471-474. ACM Press, April 1984.
E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank
and feasible systems of linear equations. Computational Complexity,
8(2) :99-126, 1999.
G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti
Spaccamela, and M. Protasi. Complexity and Approximation: Combi
natorial Optimization Problems and their Approximability Properties.
Springer-Verlag, 1999.
L. Adleman. Two theorems on random polynomial time. In Pro
ceedings of the 19th IEEE Symposium on Foundations of Computer
Science, pages 75-83. IEEE Computer Society, October 1978.
J. Aspnes, D. Fischer, M. Fischer, M. Kao, and A. Kumar. Towards
understanding the predictability of stock markets from the perspec
tive of computational complexity. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 745-754, Jan
uary 2001.
M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from
an oracle. Journal of Computer and System Sciences, 39(1):21-50,
1989.
L. Adleman and M. Huang. Primality Testing and Abelian Varieties
over Finite Fields. Springer-Verlag Lecture Notes in Mathematics
#1512, 1992.
E. Allender and U. Hertrampf. Depth reduction for circuits of un
bounded fan-in. Information and Computation, 112(2):217-238, 1994.
V. Arvind, Y. Han, L. Hemachandra, J. Kobler, A. Lozano, M. Mund
henk, M. Ogiwara, U. Schoning, R. Silvestri, and T. Thierauf. Reduc
tions to sets of low information content. InK. Ambos-Spies, S. Homer,
and U. Schoning, editors, Complexity Theory, pages 1-45. Cambridge
University Press, 1993.
E. Allender, L. Hemachandra, M. Ogiwara, and 0. Watanabe. Re
lating equivalence and reducibility to sparse sets. SIAM Journal on
Computing, 21(3):521-539, 1992.

310 References

[AHU74]

[AIK84]

(Ajt83]

[AK01]

[AKS83]

[AL97]

[All86]

[All88]

[All89a]

[All89b]

[All89c]

[All90]

[All91]

[ALM+98]

[Ang80]

[A096]

[APR83]

[AR88]

[Aro94]

[ARZ99]

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.
A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems
require O(nk) time. Journal of the ACM, 31(2):361-376, 1984.
M. Ajtai. E} -formulae on finite structures. Annals of Pure and Applied
Logic, 24(1):1-48, 1983.
V. Arvind and J. Kobler. On pseudorandomness and resource-bounded
measure. Theoretical Computer Science, 255(1-2):205-221, 2001.
M. Ajtai, J. Koml6s, and E. Szemeredi. Sorting in clog n parallel steps.
Combinatorica, 3(1):1-19, 1983.
S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum,
editor, Approximation algorithms for NP-hard problems, pages 399-
456. PWS Publishing Company, 1997.
E. Allender. The complexity of sparse sets in P. In Proceedings of the
1st Structure in Complexity Theory Conference, pages 1-11. Springer
Verlag Lecture Notes in Computer Science #223, June 1986.
E. Allender. Isomorphisms and 1-L reductions. Journal of Computer
and System Sciences, 36(6):336-350, 1988.
E. Allender. A note on the power of threshold circuits. In Proceedings
of the 30th IEEE Symposium on Foundations of Computer Science,
pages 580-584. IEEE Computer Society Press, October/November
1989.
E. Allender. P-uniform circuit complexity. Journal of the ACM,
36(4):912-928, 1989.
E. Allender. Some consequences of the existence of pseudorandom
generators. Journal of Computer and System Sciences, 39(1):101-124,
1989.
E. Allender. Oracles versus proof techniques that do not relativize.
In Proceedings of the 1990 SIGAL International Symposium on Algo
rithms, pages 39-52. Springer-Verlag Lecture Notes in Computer Sci
ence #450, August 1990.
E. Allender. Limitations of the upward separation technique. Mathe
matical Systems Theory, 24(1):53-67, 1991.
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and the hardness of approximation problems. Journal of
the ACM, 45(3):501-555, 1998.
D. Angluin. On counting problems and the polynomial-time hierarchy.
Theoretical Computer Science, 12(2):161-173, 1980.
E. Allender and M. Ogihara. Relationships among PL, #L, and the de
terminant. RAIRO Theoretical Informatics and Applications, 30(1):1-
21, 1996.
L. Adleman, C. Pomerance, and R. Rumely. On distinguishing
prime numbers from composite numbers. Annals of Mathematics,
117{1):173-206, 1983.
E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on
Computing, 17(6):1193-1202, 1988.
S. Arora. Probabilistic Checking of Proofs and Hardness of Approx
imation Problems. PhD thesis, University of California at Berkeley,
1994.
E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and
counting: Uniform and nonuniform upper bounds. Journal of Com
puter and System Sciences, 59(2):164-181, 1999.

[AS98J

[ASVOOJ

[AW90J

[Bab85]

[Bab87]

[Bab90]

[Bar85]

[Bar89]

[BBF98]

[BBS86]

[BCD+89]

[BCGT99J

[BCKT94J

[BC093J

[BCP83]

[BCS92]

[BCS95]

References 311

S. Arora and S. Safra. Probabilistic checking of proofs: A new charac
terization of NP. Journal of the ACM, 45{1):70-122, 1998.
A. Ambainis, L. Schulman, and U. Vazirani. Computing with highly
mixed states. In Proceedings of the 32nd A CM Symposium on Theory
of Computing, pages 697-704. ACM Press, May 2000.
E. Allender and C. Wilson. Downward translations of equality.
Theoretical Computer Science, 75(3):335-346, 1990.
L. Babai. Trading group theory for randomness. In Proceedings of the
17th ACM Symposium on Theory of Computing, pages 421-429. ACM
Press, May 1985.
L. Babai. A random oracle separates PSPACE from the polynomial
hierarchy. Information Processing Letters, 26(1):51-53, 1987.
L. Babai. E-mail and the unexpected power of interaction. In Pro
ceedings of the 5th Structure in Complexity Theory Conference, pages
30-44. IEEE Computer Society Press, July 1990.
D. Barrington. Width-3 permutation branching programs. Techni
cal Memorandum TM-293, Laboratory for Computer Science, Mas
sachusetts Institute of Technology, Cambridge, MA, 1985.
D. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1 . Journal of Computer and
System Sciences, 38(1):150-164, 1989.
R. Beigel, H. Buhrman, and L. Fortnow. NP might not be as easy as
detecting unique solutions. In Proceedings of the 30th A CM Symposium
on Theory of Computing, pages 203-208. ACM Press, May 1998.
J. Balcazar, R. Book, and U. Schoning. The polynomial-time hierarchy
and sparse oracles. Journal of the ACM, 33(3):603-617, 1986.
A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two ap·
plications of inductive counting for complementation problems. SIAM
Journal on Computing, 18{3):559-578, 1989. Erratum appears in the
same journal, 18{6):1283.
N. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon. Oracles
and queries that are sufficient for exact learning. Journal of Computer
and System Sciences, 52{3):421-433, 1996.
R. Beals, R. Chang, W. Gasarch, and J. Toran. On finding the number
of graph automorphisms. Chicago Journal of Theoretical Computer
Science, volume 1999, article 1, 1999.
N. Bshouty, R. Cleve, S. Kannan, and C. Tamon. Oracles and queries
that are sufficient for exact learning. In Proceedings of the 7th ACM
Conference on Computational Learning Theory, pages 130-139. ACM
Press, July 1994.
R. Beigel, R. Chang, and M. Ogiwara. A relationship between differ
ence hierarchies and relativized polynomial hierarchies. Mathematical
Systems Theory, 26{3):293-310, 1993.
A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well
endowed rings and space-bounded probabilistic machines. Information
and Control, 58{1-3):113-136, 1983.
D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to de
fine complexity classes. Theoretical Computer Science, 104{2):263-283,
1992.
D. Bovet, P. Crescenzi, and R. Silvestri. Complexity classes and sparse
oracles. Journal of Computer and System Sciences, 50{3):382-390,
1995.

312 References

(BD76]

(BDFP86]

(BDG95]

[BDHM92]

(Bea94]

[Bei89]

(Bei91a]

(Bei91b]

(Bei94]

[Bei97]

(Bel96]

(Ber76]

(Ber77]

(Ber78]

(BF90]

[BF91]

[BF99]

[BFOO]

(BFH78]

A. Borodin and A. Demers. Some comments on functional self-reduci
bility and the NP hierarchy. Technical Report TR 76-284, Department
of Computer Science, Cornell University, Ithaca, NY, July 1976.
A. Borodin, D. Dolev, F. Fich, and W. Paul. Bounds for width two
branching programs. SIAM Journal on Computing, 15(2):549-560,
1986.
J. Balcazar, J. Dlaz, and J. Gabarr6. Structural Complexity I. EATCS
Texts in Theoretical Computer Science. Springer-Verlag, 2nd edition,
1995.
G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and
importance of logspace-MOD classes. Mathematical Systems Theory,
25(3):223-237, 1992.
P. Beame. A switching lemma primer. Technical Report UW-CSE-95-
07-01, Department of Computer Science and Engineering, Univsity of
Washington, 1994.
R. Beigel. On the relativized power of additional accepting paths.
In Proceedings of the 4th Structure in Complexity Theory Conference,
pages 216-224. IEEE Computer Society Press, June 1989.
R. Beigel. Bounded queries to SAT and the boolean hierarchy.
Theoretical Computer Science, 84(2}:199-223, 1991.
R. Beigel. Relativized counting classes: Relations among thresholds,
parity, and mods. Journal of Computer and System Sciences, 42(1}:76-
96, 1991.
R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computa
tional Complexity, 4(4}:339-349, 1994.
R. Beigel. Closure properties of GapP and #P. In Proceedings of the
5th Israeli Symposium on Theory of Computing and Systems, pages
144-146. IEEE Computer Society Press, June 1997.
M. Bellare. Proof checking and approximation: Towards tight re
sults. SIGACT News, 27(1}:2-13, 1996. Extended version available
at: http:/ fwww-cse.ucsd.edu/users/mihir/pcp.html.
L. Berman. On the structure of complete sets. In Proceedings of the
17th IEEE Symposium on Foundations of Computer Science, pages
76-80. IEEE Computer Society, October 1976.
L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis,
Cornell University, Ithaca, NY, 1977.
P. Berman. Relationship between density and deterministic complexity
of NP-complete languages. In Proceedings of the 5th International
Colloquium on Automata, Languages, and Programming, pages 63-71.
Springer-Verlag Lecture Notes in Computer Science #62, July 1978.
D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries.
In Proceedings of the 7th Annual Symposium on Theoretical Aspects
of Computer Science, pages 37-48. Springer-Verlag Lecture Notes in
Computer Science #415, February 1990.
L. Babai and L. Fortnow. Arithmetization: a new method in structural
complexity theory. Computational Complexity, 1(1}:41-66, 1991.
H. Buhrman and L. Fortnow. Two queries. Journal of Computer and
System Sciences, 59(2}:182-194, 1999.
R. Beigel and B. Fu. Circuits over PP and PL. Journal of Computer
and System Sciences, 60(2}:422-441, 2000.
G. Brassard, S. Fortune, and J. Hopcroft. A note on cryptography and
NP n coNP- P. Technical Report TR-338, Department of Computer
Science, Cornell University, Ithaca, NY, April 1978.

[BFL91]

[BFLS91]

[BFNW93]

[BG81]

[BG82]

[BG92]

[BG98]

[BGS75]

[BGS91]

[BH77]

[BHHR99]

[BHL95]

[BHW91]

[BHZ87]

[BIP98]

[BIS90]

[BJLR91]

[BJY91]

[BK95]

[BKS95]

References 313

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity,
1(1):3-40, 1991.
L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computa
tions in polylogarithmic time. In Proceedings of the 23nd ACM Sym
posium on Theory of Computing, pages 21-31. ACM Press, May 1991.
L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subex
ponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3(4):307-318, 1993.
C. Bennett and J. Gill. Relative to a random oracle A, pA of. NPA of.
coNPA with probability 1. SIAM Journal on Computing, 10(1):96-113,
1981.
A. Blass and Y. Gurevich. On the unique satisfiability problem. In
formation and Control, 55(1-3):80-88, 1982.
R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, and
fewness. Theoretical Computer Science, 103(1):3-23, 1992.
R. Beigel and J. Goldsmith. Downward separation fails catastrophi
cally for limited nondeterminism classes. SIAM Journal on Computing,
27(5):1420-1429, 1998.
T. Baker, J. Gill, and R. Solovay. Relativizations of the P= ?NP ques
tion. SIAM Journal on Computing, 4(4):431-442, 1975.
A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of com
puting the number of strings of given length in context-free languages.
Theoretical Computer Science, 86(2):325-342, 1991.
L. Berman and J. Hartmanis. On isomorphisms and density of NP
and other complete sets. SIAM Journal on Computing, 6(2):305-322,
1977.
A. Beygelzimer, L. Hemaspaandra, C. Homan, and J. Rothe. One-way
functions in worst-case cryptography: Algebraic and security proper
ties are on the house. SIGACT News, 30(4):25-40, 1999.
H. Buhrman, E. Hemaspaandra, and L. Longpre. SPARSE reduces
conjunctively to TALLY. SIAM Journal on Computing, 24(4):673-
681, 1995.
R. Beigel, L. Hemachandra, and G. Wechsung. Probabilistic polyno
mial time is closed under parity reductions. Information Processing
Letters, 37(2):91-94, 1991.
R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short inter
active proofs? Information Processing Letters, 25(2):127-132, 1987.
P. Beame, R. lmpagliazzo, and T. Pitassi. Improved depth lower
bounds for small distance connectivity. Computational Complexity,
7(4):325-345, 1998.
D. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1 . Journal of Computer and System Sciences, 41(3):274-306, 1990.
G. Buntrock, B. Jenner, K. Lange, and P. Rossmanith. Unambiguous
and fewness for logarithmic space. In Proceedings of the 8th Conference
on Fundamentals of Computation Theory, pages 168-179. Springer
Verlag Lecture Notes in Computer Science #529, September 1991.
D. Bruschi, D. Joseph, and P. Young. A structural overview of NP
optimization problems. Algorithms Review, 2(1):1-26, 1991.
M. Blum and S. Kannan. Designing programs that check their work.
Journal of the ACM, 42(1):269-291, 1995.
R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Informa
tion and Computation, 120(2):304-314, 1995.

314 References

[BL97]

[BLR93J

[BLS84]

[BLS85]

[BM99]

[BOC92]

H. Burtschick and W. Lindner. On sets Thring reducible toP-selective
sets. Theory of Computing Systems, 30(2):135-143, 1997.
M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of Computer and System
Sciences, 47(3):549-595, December 1993.
R. Book, T. Long, and A. Selman. Quantitative relativizations of
complexity classes. SIAM Journal on Computing, 13(3):461-487, 1984.
R. Book, T. Long, and A. Selman. Qualitative relativizations of com
plexity classes. Journal of Computer and System Sciences, 30(3):395-
413, 1985.
R. Beigel and A. Maciel. Circuit lower bounds collapse relativized
complexity classes. In Proceedings of the 14th Annual IEEE Conference
on Computational Complexity, pages 222-226. IEEE Computer Society
Press, May 1999.
M. Ben-Or and R. Cleve. Computing algebraic formulas using a con
stant number of registers. SIAM Journal on Computing, 21(1):54-58,
1992.

[BOGKW88J M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover
interactive proof: How to remove intractability assumptions. In Pro
ceedings of the 20th ACM Symposium on Theory of Computing, pages
113-131. ACM Press, May 1988.

[Boo72] R. Book. On languages accepted in polynomial time. SIAM Journal
on Computing, 1(4):281-287, 1972.

[Boo74a] R. Book. Comparing complexity classes. Journal of Computer and
System Sciences, 3(9):213-229, 1974.

[Boo74b] R. Book. Tally languages and complexity classes. Information and
Control, 26(2):186-193, 1974.

[Boo94] R. Book. On collapsing the polynomial-time hierarchy. Information
Processing Letters, 52(5):235-237, 1994.

[Bor94] B. Borchert. Predicate Classes, Promise Classes, and the Acceptance
Power of Regular Languages. PhD thesis, Mathematisches lnstitut,
Universitat Heidelberg, Heidelberg, Germany, 1994.

[Bra79] G. Brassard. A note on the complexity of cryptography. IEEE Trans
actions on Information Theory, 25(2):232-233, 1979.

[BRS91] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back.
In Proceedings of the 6th Structure in Complexity Theory Conference,
pages 286-291. IEEE Computer Society Press, June/ July 1991.

[BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersec
tion. Journal of Computer and System Sciences, 50(2):191-202, 1995.

[Bru92] D. Bruschi. Strong separations of the polynomial hierarchy with ora
cles: Constructive separations by immune and simple sets. Theoretical
Computer Science, 102(2):215-252, 1992.

[BS93] P. Blackburn and E. Spaan. A modal persepctive on the computational
complexity of attribute value grammar. Journal of Logic, Language,
and Information, 2(2):129-169, 1993.

[BS95] R. Beigel and H. Straubing. The power of local self-reductions. In
Proceedings of the 1Oth Structure in Complexity Theory Conference,
pages 277-285. IEEE Computer Society Press, June 1995.

[BSOOJ B. Borchert and F. Stephan. Looking for an analogue of Rice's
Theorem in circuit complexity theory. Mathematical Logic Quarterly,
46(4):489-504, 2000.

[BST90] D. Barrington, H. Straubing, and D. Therien. Non-uniform automata
over groups. Information and Computation, 89(2):109-132, 1990.

[BST93]

[BT88]

[BT94]

[BT96a]

[BT96b]

[BTvEB93]

[BU98]

[Cai89]

[Cai01]

[Can96]

[CCG+94]

[CCHOOl]

[CCL94]

[CF91]

[CFL85]

[CH89]

References 315

H. Buhrman, E. Spaan, and L. Torenvliet. Bounded reductions. In
K. Ambos-Spies, S. Homer, and U. Schoning, editors, Complexity
Theory, pages 83-99. Cambridge University Press, 1993.
D. Barrington and D. Therien. Finite monoids and the fine structure
of NC1 . Journal of the ACM, 35{4):941-952, 1988.
R. Beigel and J. Tarui. On ACC. Computational Complexity, 4{4):350-
366, 1994.
H. Buhrman and T. Thierauf. The complexity of generating and
checking proofs of membership. In Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Science, pages 75-86.
Springer-Verlag Lecture Notes in Computer Science #1046, February
1996.
H. Buhrman and L. Torenvliet. P-selective self-reducible sets: A new
characterization of P. Journal of Computer and System Sciences,
53{2):210-217, 1996.
H. Buhrman, L. Torenvliet, and P. van Emde Boas. Twenty questions
to a P-selector. Information Processing Letters, 48{4):201-204, 1993.
C. Berg and S. Ulfberg. A lower bound for perceptrons and an oracle
separation of the ppPH hierarchy. Journal of Computer and System
Sciences, 56{3):263-271, 1998.
J. Cai. With probability one, a random oracle separates PSPACE
from the polynomial-time hierarchy. Journal of Computer and System
Sciences, 38(1):68-85, 1989.
J. Cai. S~ ~ zppNP. In Proceedings of the 42nd IEEE Symposium
on Foundations of Computer Science. IEEE Computer Society Press,
October 2001. To appear.
R. Canetti. More on BPP and the polynomial-time hierarchy. Infor
mation Processing Letters, 57{5):237-241, 1996.
R. Chang, B. Chor, 0. Goldreich, J. Hartmanis, J. Hastad, and D. Ran
jan. The Random Oracle Hypothesis is false. Journal of Computer and
System Sciences, 49(1):24-39, 1994.
J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Some
Karp-Lipton-type theorems based on S2. Technical Report TR-759,
Department of Computer Science, University of Rochester, Rochester,
NY, September 2001.
J. Cai, A. Condon, and R. Lipton. PSPACE is provable by two provers
in one round. Journal of Computer and System Sciences, 48(1):183-
193, 1994.
J. Cai and M. Furst. PSPACE survives constant-width bottlenecks.
International Journal of Foundations of Computer Science, 2{1):67-
76, 1991.
A. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits
and associative functions. Journal of Computer and System Sciences,
30(2) :222-235, 1985.
J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy I: Structural
properties. SIAM Journal on Computing, 17{6):1232-1252, 1988.
J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy II: Applications.
SIAM Journal on Computing, 18{1):95-111, 1989.
J. Cai and L. Hernachandra. Enumerative counting is hard. Informa
tion and Computation, 82{1):34-44, 1989.

316 References

(CH90]

(CH91]

(Chu36]

(Chu41]

(CHW99]

(CK]

(CKS81]

(CLRS01]

(CMTV98]

(CNS95]

(CNS96]

(C097]

(Cob64]

(Coo71]

(Coo73]

(Coo85]

(CRS95]

(CS99]

(CSV84]

(Dam91]

(Dav58]

J. Cai and L. Hemachandra. On the power of parity polynomial time.
Mathematical Systems Theory, 23(2):95-106, 1990.
J. Cai and L. Hemachandra. A note on enumerative counting. Infor
mation Processing Letters, 38(4):215-219, 1991.
A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345-363, 1936.
A. Church. The Calculi of Lambda- Conversion. Annals of Mathematics
Studies #6. Princeton University Press, 1941.
J. Cai, L. Hemaspaandra, and G. Wechsung. Robust reductions.
Theory of Computing Systems, 32(6):625-647, 1999.
P. Crescenzi and V. Kann. A compendium of NP optimization prob
lems. http:/ /www.nada.kth.se;-viggo/problemlist/compendium.html.
A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of
ACM, 26(1), 1981.
T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press/McGraw Hill, second edition, 2001.
H. Caussinus, P. McKenzie, D. Therien, and H. Vollmer. Nondeter
ministic NC1 computation. Journal of Computer and System Sciences,
57(2) :200-212, 1998.
J. Cai, A. Naik, and D. Sivakumar. On the existence of hard sparse
sets under weak reductions. Technical Report 95-31, Department of
Computer Science, State University of New York at Buffalo, Buffalo,
NY, July 1995.
J. Cai, A. Naik, and D. Sivakumar. On the existence of hard sparse sets
under weak reductions. In Proceedings of the 13th Annual Symposium
on Theoretical Aspects of Computer Science, pages 307-318. Springer
Verlag Lecture Notes in Computer Science #1046, February 1996.
J. Cai and M. Ogihara. Sparse sets versus complexity classes. In
L. Hemaspaandra and A. Selman, editors, Complexity Theory Retro
spective II, pages 53-80. Springer-Verlag, 1997.
A. Cobham. The intrinsic computational difficulty of functions. In
Proceedings of the 1964 International Congress for Logic Methodology
and Philosophy of Science, pages 24-30. North Holland, 1964.
S. Cook. The complexity of theorem-proving procedures. In Pro
ceedings of the 3rd ACM Symposium on Theory of Computing, pages
151-158. ACM Press, May 1971.
S. Cook. A hierarchy for nondeterministic time complexity. Journal
of Computer and System Sciences, 7(4):343-353, 1973.
S. Cook. A taxonomy of problems with fast parallel algorithms. In
formation and Control, 64(1-3):2-22, 1985.
S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique
element isolation, with applications to perfect matching and related
problems. SIAM Journal on Computing, 24(5):1036-1050, 1995.
J. Cai and D. Sivakumar. Sparse hard sets for P: Resolution of a
conjecture of Hartmanis. Journal of Computer and System Sciences,
58(2) :280-296, 1999.
A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibil
ity. SIAM Journal on Computing, 13(2):423-439, 1984.
C. Damm. DET = L#L? lnformatik-Preprint 8, Fachbereich lnfor
matik der Humboldt-Universitat zu Berlin, 1991.
M. Davis. Computability and Unsolvability. Dover, 1958.

[DHHT94]

[DHKOO]

[DL78]

[DT90]

[Edm65]

[EFF82]

[EFF85]

[EH85]

[Fel68]

[FFK94]

[FFK96]

[FFL96]

[FGJ+78]

[FHL80]

[FHOS97]

[FHT97]

[FK92]

References 317

D. Denny-Brown, Y. Han, L. Hemaspaandra, and L. Torenvliet.
Semi-membership algorithms: Some recent advances. SIGACT News,
25(3):12-23, 1994.
A. Durand, M. Hermann, and P. Kolaitis. Subtractive reductions and
complete problems for counting complexity classes. In Proceedings
of the 25th International Symposium on Mathematical Foundations of
Computer Science, pages 323-332. Springer-Verlag Lecture Notes in
Computer Science #1899, August/September 2000.
R. DeMilio and R. Lipton. A probabilistic remark on algebraic pro
gram testing. Information Processing Letters, 7(4):193-195, 1978.
J. Dlaz and J. Toran. Classes of bounded nondeterminism. Mathe
matical Systems Theory, 23(1):21-32, 1990.
J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe
matics, 17(3):449-467, 1965.
P. Erdos, P. Frankl, and Z. Fiiredi. Families of finite sets in which no
set is covered by the union of two others. Journal of Combinatorial
Theory, Series A, 33(2):158-166, 1982.
P. Erd&, P. Frankl, and Z. Fiiredi. Families of finite sets in which no
set is covered by the union of r others. Ismel Journal of Mathematics,
51(1-2):79-89, 1985.
E. Emerson and J. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. Journal of Computer and
System Sciences, 30(1):1-24, 1985.
W. Feller. An Introduction to Probability Theory and Its Applications.
J. Wiley and Sons, 1968.
S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1):116-148, 1994.
S. Fenner, L. Fortnow, and S. Kurtz. The Isomorphism Conjecture
holds relative to an oracle. SIAM Journal on Computing, 25(1):193-
206, 1996.
S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure prop
erty. Information and Computation, 130(1):1-17, 1996.
A. Fraenkel, M. Garey, D. Johnson, T. Schaefer, and Y. Yesha. The
complexity of checkers on an NxN board-Preliminary report. In
Proceedings of the 19th IEEE Symposium on Foundations of Computer
Science, pages 55-64. IEEE Computer Society, October 1978.
U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interac
tive proofs and the hardness of approximating cliques. Journal of the
ACM, 43(2):268-292, 1996.
M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for
permutation groups. In Proceedings of the 21st IEEE Symposium on
Foundations of Computer Science, pages 36-41. IEEE Computer So
ciety, October 1980.
S. Fenner, S. Homer, M. Ogiwara, and A. Selman. Oracles that com
pute vaiues. SIAM Journal on Computing, 26(4):1043-1065, 1997.
S. Fischer, L. Hemaspaandra, and L. Torenvliet. Witness-isomorphic
reductions and local search. In A. Sorbi, editor, Complexity, Logic,
and Recursion Theory, pages 207-223. Marcel Dekker, Inc., 1997.
M. Fellows and N. Koblitz. Self-witnessing polynomial-time complex
ity and prime factorization. In Proceedings of the 7th Structure in
Complexity Theory Conference, pages 107-110. IEEE Computer Soci
ety Press, June 1992.

318 References

[FL79]

[FL92]

[For79]

[For94]

[For99]

[FR74]

(FR96]

(FRS94]

(FSS84]

(Gav95]

(GB91]

(Gef94]

(GH96]

(GHOO]

(GHJY91]

(GHK92]

(GHR95]

(Gi177]

(GJ79]

(GK99]

(GKR+95]

M. Fischer and R. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194-211,
1979.
U. Feige and L. Lovasz. Two-prover one-round proof systems: Their
power and their problems. In Proceedings of the 24th ACM Symposium
on Theory of Computing, pages 733-744. ACM Press, May 1992.
S. Fortune. A note on sparse complete sets. SIAM Journal on Com
puting, 8(3):431-433, 1979.
L. Fortnow. The role of relativization in complexity theory. Bulletin
of the EATCS, 52:229-244, 1994.
L. Fortnow. Relativized worlds with an infinite hierarchy. Information
Processing Letters, 69(6):309-313, 1999.
M. Fischer and M. Rabin. Super-exponential complexity of Presburger
arithmetic. In R. Karp, editor, Complexity of Computation, SIAM
AMS Proceedings 7: Proceedings of a Symposium in Applied Mathe
matics of the American Mathematical Society and the Society for In
dustrial and Applied Mathematics. American Mathematical Society,
1974.
L. Fortnow and N. Reingold. PP is closed under truth-table reductions.
Information and Computation, 124(1):1-6, 1996.
L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover
interactive protocols. Theoretical Computer Science, 134(2):545-557,
1994.
M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial
time hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984.
R. Gavalda. Bounding the complexity of advice functions. Journal of
Computer and System Sciences, 50(3):468-475, 1995.
R. Gavalda and J. Balcazar. Strong and robustly strong polyno
mial time reducibilities to sparse sets. Theoretical Computer Science,
88(1):1-14, 1991.
V. Geffert. A hierarchy that does not collapse: Alternations in low level
space. RAIRO Theoretical Informatics and Applications, 28(5):465-
512, 1994.
J. Goldsmith and S. Homer. Scalability and the isomorphism problem.
Information Processing Letters, 57(3):137-143, 1996.
C. GlaBer and L. Hemaspaandra. A moment of perfect clarity II: Con
sequences of sparse sets hard for NP with respect to weak reductions.
S/GACT News, 31(4):39-51, 2000.
J. Goldsmith, L. Hemachandra, D. Joseph, and P. Young. Near
testable sets. SIAM Journal on Computing, 20(3):506-523, 1991.
J. Goldsmith, L. Hemachandra, and K. Kunen. Polynomial-time com
pression. Computational Complexity, 2(1):18-39, 1992.
R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to Parallel Computa
tion: ?-Completeness Theory. Oxford University Press, 1995.
J. Gill. Computational complexity of probabilistic Turing machines.
SIAM Journal on Computing, 6(4):675-695, 1977.
M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
S. Goldwasser and J. Kilian. Primality testing using elliptic curves.
Journal of the ACM, 46(4):450-472, 1999.
F. Green, J. Kobler, K. Regan, T. Schwentick, and J. Toran. The
power of the middle bit of a #P function. Journal of Computer and
System Sciences, 50(4):456-467, 1995.

[GlaOOJ

[GLST98]

[GMR89)

[GMW91]

[GNW90]

[God31J

[Gol01]

[GOROOJ

[Got95)

[GP86]

[Gre91]

[Gru99]
[GS88]

[GS89]

[GS91]

[Gup92]

[Gup93]

[Gup95]

References 319

C. Glafier. Consequences of the existence of sparse sets hard for NP
under a subclass of truth-table reductions. Technical Report TR 245,
lnstitut fiir Informatik, Universitii.t Wiirzburg, Wiirzburg, Germany,
January 2000.
P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson.
Self-testing/correcting for polynomials and for approximate functions.
In Proceedings of the 23nd ACM Symposium on Theory of Computing,
pages 31-42. ACM Press, May 1991.
V. Guruswami, D. Lewin, M. Sudan, and L. Trevisan. A tight charac
terization of NP with 3-query PCPs. In Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science, pages 8-17. IEEE
Computer Society Press, November 1998.
S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(2):186-
208, 1989.
0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(3):691-729, 1991.
T. Gundermann, N. Nasser, and G. Wechsung. A survey on count
ing classes. In Proceedings of the 5th Structure in Complexity Theory
Conference, pages 140-153. IEEE Computer Society Press, July 1990.
K. Godel. Uber formal unentscheidbare Sii.tze der Principia Mathe
matica und verwandter Systeme I. Monatshefte for Mathematik und
Physik, 38:173-198, 1931.
0. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.
J. Goldsmith, M. Ogihara, and J. Rothe. Tally NP sets and easy census
functions. Information and Computation, 158(1):29-52, 2000.
G. Gottlob. NP trees and Carnap's modal logic. Journal of the ACM,
42(2):421-457, 1995.
L. Goldschlager and I. Parberry. On the construction of parallel com
puters from various bases of boolean functions. Theoretical Computer
Science, 43(1) :43-58, 1986.
F. Green. An oracle separating EBP from ppPH. Information Processing
Letters, 37(3):149-153, 1991.
J. Gruska. Quantum Computing. McGraw Hill, 1999.
J. Grollmann and A. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309-335, 1988.
S. Goldwasser and M. Sipser. Private coins versus public coins in in
teractive proof systems. InS. Micali, editor, Randomness and Compu
tation, pages 73-90. Advances in Computing Research #5, JAI Press
Inc., 1989.
A. Goldberg and M. Sipser. Compression and ranking. SIAM Journal
on Computing, 20(3):524-536, 1991.
S. Gupta. On the closure of certain function classes under integer
division by polynomially bounded functions. Information Processing
Letters, 44(2):205-210, 1992.
S. Gupta. On bounded probability operators and C-Y. Information
Processing Letters, 48(2):93-98, 1993.
S. Gupta. Closure properties and witness reduction. Journal of Com
puter and System Sciences, 50(3):412-432, 1995.

320 References

[Gur83]

[GW93]

[GW96]

[GZ97]

[Har78]

[Har83]

[Har85]

[Har89]

[Har91]
[Has87J

[Has89J

[HCRR90]

[Hem89]

[Hem94]

[Her90]

[Her97]

[Her99]

[HerOO]

Y. Gurevich. Algebras of feasible functions. In Proceedings of the
24th IEEE Symposium on Foundations of Computer Science, pages
210-214. IEEE Computer Society Press, November 1983.
R. Gavalda and 0. Watanabe. On the computational complexity of
small descriptions. SIAM Journal on Computing, 22(6):1257-1274,
1993.
A. Gal and A. Wigderson. Boolean complexity classes versus their
arithmetic analogs. Random Structures and Algorithms, 9(1-2):99-
111, 1996.
0. Goldreich and D. Zuckerman. Another proof that BPP ~ PH
(and more). Technical Report TR97-045, Electronic Colloquium on
Computational Complexity, http:/ fwww.eccc.uni-trier.de/ecccf, Oc
tober 1997.
J. Hartmanis. Feasible Computations and Provable Complexity Proper
ties. CBMS-NSF Regional Conference Series in Applied Mathematics
#30. SIAM, 1978.
J. Hartmanis. On sparse sets in NP-P. Information Processing Let
ters, 16(2):55-60, 1983.
J. Hartmanis. Solvable problems with conflicting relativizations. Bul
letin of the EATCS, 27:40-49, 1985.
J. Hartmanis. Godel, von Neumann, and the P=?NP problem. Bulletin
of the EATCS, 38:101-107, 1989.
J. Hartmanis. Notes on IP = PSPACE. Manuscript, 1991.
J. Hastad. Computational Limitations of Small-Depth Circuits. MIT
Press, 1987.
J. Hastad. Almost optimal lower bounds for small depth circuits.
In S. Micali, editor, Randomness and Computation, pages 143-170.
Advances in Computing Research #5, JAI Press Inc., 1989.
J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Rel
ativization: A revisionistic retrospective. Bulletin of the EATCS,
47:144-153, 1992.
J. Hartmanis, R. Chang, D. Ranjan, and P. Rohatgi. Structural com
plexity theory: Recent surprises. In Proceedings of the 2nd Scandi
navian Workshop on Algorithm Theory, pages 1-12. Springer-Verlag
Lecture Notes in Computer Science #447, July 1990.
L. Hemachandra. The strong exponential hierarchy collapses. Journal
of Computer and System Sciences, 39(3):299-322, 1989.
L. Hemaspaandra. The not-ready-for-prime-time conjectures.
SIGACT News, 24(2):5-10, 1994.
U. Hertrampf. Relations among MOD-classes. Theoretical Computer
Science, 74(3):325-328, 1990.
U. Hertrampf. Acceptance by transformation monoids (with an ap
plication to local self-reductions). In Proceedings of the 12th Annual
IEEE Conference on Computational Complexity, pages 213-224. IEEE
Computer Society Press, June 1997.
U. Hertrampf. Generalized regular counting classes. In Proceedings
of the 24th International Symposium on Mathematical Foundations of
Computer Science, pages 419-429. Springer-Verlag Lecture Notes in
Computer Science #1672, August 1999.
U. Hertrampf. Algebraic acceptance mechanisms for polynomial-time
machines. SIGACT News, 31(2):22-33, 2000.

References 321

[HH74] J. Hartmanis and H. Hunt. The LBA problem and its importance
in the theory of computing. In R. Karp, editor, Complexity of Com
putation, SIAM-AMS Proceedings 7: Proceedings of a Symposium in
Applied Mathematics of the American Mathematical Society and the
Society for Industrial and Applied Mathematics, pages 1-26. American
Mathematical Society, 1974.

[HH88a] J. Hartmanis and L. Hemachandra. Complexity classes without ma
chines: On complete languages for UP. Theoretical Computer Science,
58(1-3):129-142, 1988.

[HH88b] J. Hartmanis and L. Hemachandra. On sparse oracles separating feasi
ble complexity classes. Information Processing Letters, 28(6):291-295,
1988.

[HH90] J. Hartmanis and L. Hemachandra. Robust machines accept easy sets.
Theoretical Computer Science, 74(2):217-226, 1990.

[HH91a] J. Hartmanis and L. Hemachandra. One-way functions and the non
isomorphism of NP-complete sets. Theoretical Computer Science,
81(1):155-163, 1991.

[HH91b] L. Hemachandra and A. Hoene. On sets with efficient implicit mem
bership tests. SIAM Journal on Computing, 20(6):1148-1156, 1991.

[HH96] Y. Han and L. Hemaspaandra. Pseudorandom generators and the
frequency of simplicity. Journal of Cryptology, 9(4):251-261, 1996.

[HHH97] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. An introduction
to query order. Bulletin of the EATCS, 63:93-107, 1997.

[HHH98] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. Downward col
lapse from a weaker hypothesis. In Proceedings of the 6th Italian
Conference on Theoretical Computer Science, pages 253-264. World
Scientific, November 1998.

[HHH99a] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. A downward
collapse within the polynomial hierarchy. SIAM Journal on Comput
ing, 28(2):383-393, 1999.

[HHH99b] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. Extending
downward collapse from 1-versus-2 queries to j-versus-j + 1 queries.
In Proceedings of the 16th Annual Symposium on Theoretical Aspects
of Computer Science, pages 270-280. Springer-Verlag Lecture Notes in
Computer Science #1563, March 1999.

[HHN+95] L. Hemaspaandra, A. Hoene, A. Naik, M. Ogiwara, A. Selman,
T. Thierauf, and J. Wang. Nondeterministically selective sets. Inter
national Journal of Foundations of Computer Science, 6(4):403-416,
1995.

[HH096] L. Hemaspaandra, A. Hoene, and M. Ogihara. Reducibility classes of
P-selective sets. Theoretical Computer Science, 155(2):447-457, 1996.
Erratum appears in the same journal, 234(1-2):323.

[HHR97] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of
Dodgson elections: Lewis Carroll's 1876 voting system is complete for
parallel access to NP. Journal of the ACM, 44(6):806-825, 1997.

[HHSY91] L. Hemachandra, A. Hoene, D. Siefkes, and P. Young. On sets poly
nomially enumerable by iteration. Theoretical Computer Science,
80(2):203-226, 1991.

[HHT97] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation
and cryptographic security. SIAM Journal on Computing, 26(1):59-78,
1997.

[HHW99] L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM
Journal on Computing, 28(2):637--651, 1999.

322 References

(HI85)

[HILL99)

[HIS85)

[HJ91)

[HJ95a)

[HJ95b)

[HJRW97)

[HJV93)

[HKR93)

[HL94)

[HLS+93)

[HM80)

[HNOS96a)

[HNOS96b)

[HNP98)

(H093)

[H097)

[Hof82)

J. Hartmanis and N. Immerman. On complete problems for
NP n coNP. In Proceedings of the 12th International Colloquium on
Automata, Languages, and Progmmming, pages 250-259. Springer
Verlag Lecture Notes in Computer Science #194, July 1985.
J. Hastad, R. lmpaglia.zzo, L. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing,
28(4):1364-1396, 1999.
J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P:
EXPTIME versus NEXPTIME. Information and Control, 65(2-
3):159-181, 1985.
L. Hemachandra and S. Jain. On the limitations of locally robust
positive reductions. International Journal of Foundations of Computer
Science, 2(3):237-255, 1991.
L. Hemaspaandra and S. Jha. Defying upward and downward separa
tion. Information and Computation, 121(1):1-13, 1995.
L. Hemaspaandra and Z. Jiang. P-selectivity: Intersections and indices.
Theoretical Computer Science, 145(1-2):371-380, 1995.
L. Hemaspaandra, Z. Jiang, J. Rothe, and 0. Watanabe. Polynomial
time multi-selectivity. Journal of Universal Computer Science,
3(3):197-229, 1997.
L. Hemaspaandra, S. Jain, and N. Vereshchagin. Banishing robust
Turing completeness. International Journal of Foundations of Com
puter Science, 4(3):245-265, 1993.
S. Homer, S. Kurtz, and J. Royer. On 1-truth-table-hard languages.
Theoretical Computer Science, 115(2):383-389, 1993.
S. Homer and L. Longpre. On reductions of NP sets to sparse sets.
Journal of Computer and System Sciences, 48(2):324-336, 1994.
U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. Wag
ner. On the power of polynomial time bit-reductions. In Proceedings
of the 8th Structure in Complexity Theory Conference, pages 20Q-207.
IEEE Computer Society Press, May 1993.
J. Hartmanis and S. Mahaney. An essay about research on sparse NP
complete sets. In Proceedings of the 9th Symposium on Mathemat
ical Foundations of Computer Science, pages 40-57. Springer-Verlag
Lecture Notes in Computer Science #88, September 1980.
E. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. P-selective
sets and reducing search to decision vs. self-reducibility. Journal of
Computer and System Sciences, 53(2):194-209, 1996.
L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing
solutions uniquely collapses the polynomial hierarchy. SIAM Journal
on Computing, 25(4):697-708, 1996.
L. Hemaspaandra, C. Nasipak, and K. Parkins. A note on linear
nondeterminism, linear-sized, Karp-Lipton advice for the P-selective
sets. Journal of Universal Computer Science, 4(8):670-674, 1998.
L. Hemachandra and M. Ogiwara. Is #P closed under subtraction? In
G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: Essays and Tutorials, pages 523-536. World Scien
tific, 1993.
L. Hemaspaandra and M. Ogihara. Universally serializable computa
tion. Journal of Computer and System Sciences, 55(3):547-560, 1997.
C. Hoffmann. Group- Theoretic Algorithms and Gmph Isomorphism.
Lecture Notes in Computer Science #136. Springer-Verlag, 1982.

[HomOO)

[Hop81)

[HOW92)

[HOWOO)

[HPR01)

[HR90)

[HR97)

[HR98)

[HR99)

[HROO)

[HRVOO)

[HRZ95)

[HS65)

[HT)

[HT96)

[HTOO)

[HU79)

References 323

C. Homan. Low ambiguity in strong, total, associative, one-way func
tions. Technical Report TR-734, Department of Computer Science,
University· of Rochester, Rochester, NY, August 2000.
J. Hopcroft. Recent directions in algorithmic research. In Proceed
ings 5th GI Conference on Theoretical Computer Science, pages 123-
134. Springer-Verlag Lecture Notes in Computer Science #104, March
1981.
L. Hemachandra, M. Ogiwara, and 0. Watanabe. How hard are sparse
sets? In Proceedings of the 7th Structure in Complexity Theory Con
ference, pages 222-238. IEEE Computer Society Press, June 1992.
L. Hemaspaandra, M. Ogihara, and G. Wechsung. Reducing the num
ber of solutions of NP functions. In Proceedings of the 25th Interna
tional Symposium on Mathematical Foundations of Computer Science,
pages 394-404. Springer-Verlag Lecture Notes in Computer Science
#1893, August/September 2000.
L. Hemaspaandra, K. Pasanen, and J. Rothe. If P =/= NP then
some strongly noninvertible functions are invertible. In Proceedings of
the 13th International Symposium on Fundamentals of Computation
Theory. Springer-Verlag Lecture Notes in Computer Science, August
2001. To appear.
L. Hemachandra and S. Rudich. On the complexity of ranking. Journal
of Computer and System Sciences, 41{2):251-271, 1990.
L. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean
hierarchies and sparse Turing-complete sets. SIAM Journal on Com
puting, 26(3):634-653, 1997.
E. Hemaspaandra and J. Rothe. Recognizing when greed can approxi
mate maximum independent sets is complete for parallel access to NP.
Information Processing Letters, 65(3):151-156, 1998.
L. Hemaspaandra and J. Rothe. Creating strong, total, commutative,
associative one-way functions from any one-way function in complex
ity theory. Journal of Computer and System Sciences, 58(3):648-659,
1999.
L. Hemaspaandra and J. Rothe. A second step towards complexity
theoretic analogs of Rice's Theorem. Theoretical Computer Science,
244(1-2}:205-217, 2000.
U. Hertrampf, S. Reith, and H. Vollmer. A note on closure properties
of logspace MOD classes. Information Processing Letters, 75(3):91-93,
2000.
L. Hemaspaandra, A. Ramachandran, and M. Zimand. Worlds to die
for. SIGACT News, 26(4):5-15, 1995.
J. Hartmanis and R. Stearns. On the computational complexity
of algorithms. Transactions of the American Mathematical Society,
117(5):285-306, 1965.
L. Hemaspaandra and M. Thakur. Rice's theorem for polynomial
ambiguity computation. In preparation.
L. Hemaspaandra and L. Torenvliet. Optimal advice. Theoretical
Computer Science, 154(2):367-377, 1996.
T. Hoang and T. Thierauf. The complexity of verifying the charac
teristic polynomial and testing similarity. In Proceedings of the 15th
Annual IEEE Conference on Computational Complexity, pages 87-95.
IEEE Computer Society Press, July 2000.
J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan
guages, and Computation. Addison-Wesley, 1979.

324 References

[Huy84]

[Huy90]

[HVW95]

[HW79]

[HW01]

[HY84]

[HZ93]

[HZZ96]

[IK94]

[IM89]

[Imm88]

[IT89]

[IW97]

[JL76]

[JMT96]

[Joc68]

[Jun85]

[JY85]

D. Huynh. Deciding the inequivalence of context-free grammars with
1- letter terminal alphabet is E~-complete. Theoretical Computer Sci
ence, 33(2-3):305-326, 1984.
D. Huynh. The complexity of ranking simple languages. Mathematical
Systems Theory, 23(1):1-20, 1990.
U. Hertrampf, H. Vollmer, and K. Wagner. On the power of number
theoretic operations with respect to counting. In Proceedings of the
10th Structure in Complexity Theory Conference, pages 299-314. IEEE
Computer Society Press, June 1995.
G. Hardy and E. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 5th edition, 1979.
J. Hastad and A. Wigderson. Simple analysis of graph tests for linear
ity and PCP. In Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, pages 244-254. IEEE Computer Society
Press, June 2001.
J. Hartmanis andY. Yesha. Computation times of NP sets of different
densities. Theoretical Computer Science, 34(1-2) :17-32, 1984.
L. Hemaspaandra and M. Zimand. Strong forms of balanced immunity.
Technical Report TR-480, Department of Computer Science, Univer
sity of Rochester, Rochester, NY, December 1993. Revised, May 1994.
L. Hemaspaandra, M. Zaki, and M. Zimand. Polynomial-time semi
rankable sets. In Journal of Computing and Information, 2(1), Spe
cial Issue: Proceedings of the 8th International Conference on Com
puting and Information, pages 50-67, 1996. CD-ROM ISSN 1201-
8511/V2/#1.
S. Iwata and T. Kasai. The Othello game on an nxn board is PSPACE
complete. Theoretical Computer Science, 123(2):329-340, 1994.
N. Immerman and S. Mahaney. Relativizing relativized computations.
Theoretical Computer Science, 68(3):267-276, 1989.
N. Immerman. Nondeterministic space is closed under complementa
tion. SIAM Journal on Computing, 17(5):935-938, 1988.
R. lmpagliazzo and G. Tardos. Decision versus search problems in
super-polynomial time. In Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, pages 222-227. IEEE Computer
Society Press, October/November 1989.
R. lmpagliazzo and A. Wigderson. P = BPP if E requires exponen
tial circuits: Derandomizing the XOR lemma. In Proceedings of the
29th ACM Symposium on Theory of Computing, pages 220-229. ACM
Press, May 1997.
N. Jones and W. Lasser. Complete problems for deterministic polyno
mial time. Theoretical Computer Science, 3(1):105-118, 1976.
B. Jenner, P. McKenzie, and D. Therien. Logspace and logtime leaf
languages. Information and Computation, 129(1) :21-33, 1996.
C. Jockusch. Semirecursive sets and positive reducibility. Tmnsactions
of the AMS, 131(2):420-436, 1968.
H. Jung. On probabilistic time and space. In Proceedings of the 12th
International Colloquium on Automata, Languages, and Progmmming,
pages 281-291. Springer-Verlag Lecture Notes in Computer Science
#194, July 1985.
D. Joseph and P. Young. Some remarks on witness functions for non
polynomial and non-complete sets in NP. Theoretical Computer Sci
ence, 39(2-3):225-237, 1985.

[Kad89J

[KAI79J

[Kam91]

[Kar72]

[KF80]

[KL80]

[KLD86]

[Kle52]

[KMR88J

[KMR95]

[Ko82]

[Ko83]

[Ko85]

[Ko89J

[Kob89J

[Kob94J

[Kob95J

[KosOOJ

[Koz92]

[Kre88]

References 325

J. Kadin. pNP[logn} and sparse Turing-complete sets for NP. Journal
of Computer and System Sciences, 39(3):282-298, 1989.
T. Kasai, A. Adachi, and S. Iwata. Classes of pebble games and com
plete problems. SIAM Journal on Computing, 8(4):574-587, 1979.
J. Kamper. Non-uniform proof systems: A new framework to describe
non-uniform and probabilistic complexity classes. Theoretical Com
puter Science, 85(2):305-331, 1991.
R. Karp. Reducibilities among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations,
pages 85-103, 1972.
C. Kintala and P. Fisher. Refining nondeterminism in relativized
polynomial-time bounded computations. SIAM Journal on Comput
ing, 9(1):46-53, 1980.
R. Karp and R. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proceedings of the 12th ACM Sym
posium on Theory of Computing, pages 302-309. ACM Press, April
1980. An extended version has also appeared as: Turing machines
that take advice, L'Enseignement Mathematique, 2nd series, 28, 1982,
pages 191-209.
K. Ko, T. Long, and D. Du. On one-way functions and polynomial-time
isomorphisms. Theoretical Computer Science, 47(3):263-276, 1986.
S. Kleene. Introduction to Metamathematics. D. van Nostrand Com
pany, Inc., 1952.
S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. Journal of
Computer and System Sciences, 37(2):247-268, 1988.
S. Kurtz, S. Mahaney, and J. Royer. The Isomorphism Conjecture
fails relative to a random oracle. Journal of the ACM, 42(2):401-420,
1995.
K. Ko. Some observations on the probabilistic algorithms and NP-hard
problems. Information Processing Letters, 14(1):39-43, 1982.
K. Ko. On self-reducibility and weak P-selectivity. Journal of Com
puter and System Sciences, 26(2):209-221, 1983.
K. Ko. On some natural complete operators. Theoretical Computer
Science, 37(1):1-30, 1985.
K. Ko. Relativized polynomial time hierarchies having exactly k levels.
SIAM Journal on Computing, 18(2):392-408, 1989.
J. Kobler. Strukturelle Komplexitiit von Anzahlproblemen. PhD thesis,
University of Stuttgart, Stuttgart, Germany, 1989.
J. Kobler. Locating P /poly optimally in the extended low hierarchy.
Theoretical Computer Science, 134(2):263-285, 1994.
J. Kobler. On the structure of low sets. In Proceedings of the 10th
Structure in Complexity Theory Conference, pages 246-261. IEEE
Computer Society Press, June 1995.
S. Kosub. On NP-partitions over posets with an application to reduc
ing the set of solutions of NP problems. In Proceedings of the 25th
International Symposium on Mathematical Foundations of Computer
Science, pages 467-476. Springer-Verlag Lecture Notes in Computer
Science #1893, August/September 2000.
D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag,
1992.
M. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):49Q-509, 1988.

326 References

[KS85]

[KS97]

[KST89]

[KSTT92]

[KVVY93]

[KW98]

[Lad75a]

[Lad75b]

[Lan53]

[Lan87]
[Lee59]

[Lev75]

[LFKN92]

[Lip91]

[LL76]

[LLS75]

[Lon78]

[Lon82]

[LR96]

[LR97]

[LS80]

[LS86]

K. Ko and U. Schoning. On circuit-size complexity and the low hier
archy in NP. SIAM Journal on Computing, 14(1):41-51, 1985.
J. Kobler and U. Schoning. High sets for NP. In D. Zu and K. Ko,
editors, Advances in Algorithms, Languages, and Complexity, pages
139-156. Kluwer Academic Publishers, 1997.
J. Kobler, U. Schoning, and J. Toran. On counting and approximation.
Acta Informatica, 26(4):363-379, 1989.
J. Kobler, U. Schoning, S. Toda, and J. Toran. Turing machines with
few accepting computations and low sets for PP. Journal of Computer
and System Sciences, 44(2):272-286, 1992.
R. Kannan, H. Venkateswaran, V. Vinay, and A. Yao. A circuit-based
proof of Toda's Theorem. Information and Computation, 104(2):271-
276, 1993.
J. Kobler and 0. Watanabe. New collapse consequences of NP having
small circuits. SIAM Journal on Computing, 28(1):311-324, 1998.
R. Ladner. The circuit value problem is log space complete for P.
SIGACT News, 7(1):18-20, 1975.
R. Ladner. On the structure of polynomial time reducibility. Journal
of the ACM, 22(1):155-171, 1975.
H. Landau. On dominance relations and the structure of animal soci
eties, Ill: The condition for score structure. Bulletin of Mathematical
Biophysics, 15(2):143-148, 1953.
S. Lang. Linear Algebra. Springer-Verlag, 3rd edition, 1987.
C. Lee. Representation of switching circuits by binary-decsion pro
grams. Bell Systems Technical Journal, 38(4):985-1000, 1959.
L. Levin. Universal sequential search problems. Problems of Informa
tion Transmission, 9(3):265-266, 1975. March 1975 translation into
English of Russian article originally published in 1973.
C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859-868, 1992.
R. Lipton. New directions in testing. In J. Feigenbaum and M. Mer
ritt, editors, Distributed Computing and Cryptography, pages 191-202.
DIMACS series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1991.
R. Ladner and N. Lynch. Relativization of questions about log space
computability. Mathematical Systems Theory, 10(1):19-32, 1976.
R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial
time reducibilities. Theoretical Computer Science, 1(2):103-124, 1975.
T. Long. On Some Polynomial Time Reducibilities. PhD thesis, Pur
due University, Lafayette, IN, 1978.
T. Long. Strong nondeterministic polynomial-time reducibilities.
Theoretical Computer Science, 21(1):1-25, 1982.
M. Liskiewicz and R. Reischuk. The sublogarithmic alternating space
world. SIAM Journal on Computing, 25(4):828-861, 1996.
M. Liskiewicz and R. Reischuk. Computing with sublogarithmic space.
In L. Hemaspaandra and A. Selman, editors, Complexity Theory Ret
rospective II, pages 197-224. Springer-Verlag, 1997.
D. Lichtenstein and M. Sipser. GO is polynomial-space hard. Journal
of the ACM, 27(2):393-401, April1980.
T. Long and A. Selman. Relativizing complexity classes with sparse
oracles. Journal of the ACM, 33(3):618-627, 1986.

[LS97]

[LSH65]

[Lub96]

[Lup61]

[Mah82]

[Mah86]

[Mah89]

[Mas76]

[MGLAOO]

[MP79]

[MP88]
[MS72]

[MVV87]

[MY85]

[New64]

[NicOO]

[Nis94]
[NRRS98]

[NRS95]

[NS99]

References 327

D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols
for NEXP-time. Journal of Computer and System Sciences, 54(2):215-
220, 1997.
P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for recog
nition of context-free and context-sensitive languages. In Proceedings
of the 6th IEEE Symposium on Switching Circuit Theory and Logical
Design, pages 191-202, 1965.
M. Luby. Pseudorandomness and Cryptographic Applications. Prince
ton University Press, 1996.
0. Lupanov. Implementing the algebra of logic functions in terms of
constant-depth formulas in the basis+, *• -. Soviet Physics Doklady,
6(2):474-479, 1961.
S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences,
25(2):130-143, 1982.
S. Mahaney. Sparse sets and reducibilities. In R. Book, editor, Studies
in Complexity Theory, pages 63-118. John Wiley and Sons, 1986.
S. Mahaney. The Isomorphism Conjecture and sparse sets. In J. Hart
manis, editor, Computational Complexity Theory, pages 18-46. Amer
ican Mathematical Society, 1989. Proceedings of Symposia in Applied
Mathematics #38.
W. Masek. A fast algorithm for the string editing problem and deci
sion graph complexity. Master's thesis, Department of Electrical Engi
neering and Computer Science, Massachusetts Institute of Technology,
May 1976.
M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity
of finite-horizon Markov decision process problems. Journal of the
ACM, 47(4):681-720, July 2000.
A. Meyer and M. Paterson. With what frequency are apparently in
tractable problems difficult? Technical Report MIT/LCS/TM-126,
Laboratory for Computer Science, MIT, Cambridge, MA, 1979.
M. Minsky and S. Papert. Perceptrons. MIT Press, 1988.
A. Meyer and L. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings of
the 13th IEEE Symposium on Switching and Automata Theory, pages
125-129, October 1972.
K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105-113, 1987.
S. Mahaney and P. Young. Reductions among polynomial isomorphism
types. Theoretical Computer Science, 39(2-3):207-224, 1985.
D. Newman. Rational approximation to lxl. Michigan Mathematics
Journal, 11(1):11-14, 1964.
A. Nickelsen. Polynomial- Time Partial Information Classes. PhD
thesis, Technische Universitii.t Berlin, Berlin, Germany, 2000.
N. Nisan. RL ~ SC. Computational Complexity, 4(1):1-11, 1994.
A. Naik, J. Rogers, J. Royer, and A. Selman. A hierarchy based on
output multiplicity. Theoretical Computer Science, 207(1):131-157,
1998.
A. Naik, K. Regan, and D. Sivakumar. On quasilinear-time complexity
theory. Theoretical Computer Science, 148(2):325-349, 1995.
A. Naik and A. Selman. Adaptive versus nonadaptive queries to NP
and P-selective sets. Computational Complexity, 8(2):169-187, 1999.

328 References

[NW94]

[Ogi92]

[Ogi94a]

[Ogi94b]

[Ogi95a]

[Ogi95b]

[Ogi96a]

[Ogi96b]

[Ogi98]

[OH93]

[OL93]

[OTTW96]

[OW91]

[Pap84]

[Pap94]
[PBI93]

[Pip79]

[Pos46]

[Pra75]

[Pra79]

[PS94]

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of
Computer and System Sciences, 49(2):149-167, 1994.
M. Ogiwara. A characterization of pC=P. IEICE Transactions
on Communications, Electronics, Information, and Systems, E75-
D(1):44-49, 1992.
M. Ogihara. On serializable languages. International Journal of Foun
dations of Computer Science, 5(3-4):303-318, 1994.
M. Ogiwara. Generalized theorems on the relationships among re
ducibility notions to certain complexity classes. Mathematical Systems
Theory, 27(3):189-200, 1994.
M. Ogihara. Equivalence of NCk and Ack-l closures of NP and other
classes. Information and Computation, 120(1):55-58, 1995.
M. Ogihara. Polynomial-time membership comparable sets. SIAM
Journal on Computing, 24(5):1068-1081, 1995.
M. Ogihara. Functions computable with limited access to NP. Infor
mation Processing Letters, 58(1):35-38, 1996.
M. Ogihara. Sparse hard sets for P yield space-efficient algorithms.
Chicago Journal of Theoretical Computer Science, volume 1996, article
2, 1996.
M. Ogihara. The PL hierarchy collapses. SIAM Journal on Computing,
27(5):1430-1437, 1998.
M. Ogiwara and L. Hemachandra. A complexity theory for feasible clo
sure properties. Journal of Computer and System Sciences, 46(3):295-
325, 1993.
M. Ogiwara and A. Lozano. On sparse hard sets for counting classes.
Theoretical Computer Science, 112(2):255-275, 1993.
M. Ogiwara, T. Thierauf, S. Toda, and 0. Watanabe. On closure
properties of #Pin the context of PFo#P. Journal of Computer and
System Sciences, 53(2):171-179, 1996.
M. Ogiwara and 0. Watanabe. On polynomial-time bounded truth
table reducibility of NP sets to sparse sets. SIAM Journal on Com
puting, 20(3):471-483, June 1991.
C. Papadimitriou. On the complexity of unique solutions. Journal of
the ACM, 31(2):392-400, 1984.
C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
T. Pitassi, P. Beame, and R. lmpagliazzo. Exponential lower bounds
for the Pigeonhole Principle. Computational Complexity, 3(2):97-140,
1993.
N. Pippenger. On simultaneous resource bounds. In Proceedings of
the 20th IEEE Symposium on Foundations of Computer Science, pages
307-311. IEEE Computer Society, October 1979.
E. Post. A variant of a recursively unsolvable problem. Bulletin of the
AMS, 52(4):264-268, 1946.
V. Pratt. Every prime has a succinct certificate. SIAM Journal on
Computing, 4(3):214-220, 1975.
V. Pratt. Models of program logics. In Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, pages 115-
122. IEEE Computer Society, October 1979.
S. Paturi and M. Saks. Approximating threshold circuits by rational
functions. Information and Computation, 112(2):257-272, 1994.

[PZ83)

[RA99)

[Rab76)

[Rac82)

[Reg85)
[Reg01)
[Rog67)

[Rog97)

[RRW94)

[RS81)

[RS93)

[RS96)

[RS97)

[RS98)

[RST84)

[Rub88)

[Rus85)

[Ruz80)

[Ruz81)

[Sav70)

[Sav72)

[Sch80)

References 329

C. Papadimitriou and S. Zachos. Two remarks on the power of count
ing. In Proceedings 6th GI Conference on Theoretical Computer Sci
ence, pages 269-276. Springer-Verlag Lecture Notes in Computer Sci
ence #145, January 1983.
K. Reinhardt and E. Allender. Making nondeterminism unambiguous.
SIAM Journal on Computing, 29(4):1118-1131, 1999.
M. Rabin. Probabilistic algorithms. In J. Traub, editor, Algorithms
and Complexity, pages 21-39. Academic Press, 1976.
C. Rackoff. Relativized questions involving probabilistic algorithms.
Journal of the ACM, 29(1):261-268, 1982.
K. Regan. Enumeration problems. Manuscript, 1982; revised, 1985.
K. Regan, July 2001. Personal communication.
H. Rogers, Jr. The Theory of Recursive Functions and Effective Com
putability. McGraw-Hill, 1967.
J. Rogers. The Isomorphism Conjecture holds and one-way functions
exist relative to an oracle. Journal of Computer and System Sciences,
54(3):412-423, 1997.
R. Rao, J. Rothe, and 0. Watanabe. Upward separation for FewP and
related classes. Information Processing Letters, 52(4):175-180, 1994.
Corrigendum appears in the same journal, 74(1-2):89.
C. Rackoff and J. Seiferas. Limitations on separating nondeterministic
complexity classes. SIAM Journal on Computing, 10(4):742-745, 1981.
M. Rabi and A. Sherman. Associative one-way functions: A new
paradigm for secret-key agreement and digital signatures. Technical
Report CS-TR-3183/UMIACS-TR-93-124, Department of Computer
Science, University of Maryland, College Park, Maryland, 1993.
R. Rubinfeld and M. Sudan. Robust characterization of polynomials.
SIAM Journal on Computing, 25(2):252-271, 1996.
M. Rabi and A. Sherman. An observation on associative one-way func
tions in complexity theory. Information Processing Letters, 64(5):239-
244, 1997.
A. Russell and R. Sundaram. Symmetric alternation captures BPP.
Computational Complexity, 7(2):152-162, 1998.
W. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and
probabilistic computations. Journal of Computer and System Sciences,
28(2):216-230, 1984.
R. Rubinstein. Structuml Complexity Classes of Sparse Sets: In
tractability, Data Compression and Printability. PhD thesis, North
eastern University, Boston, MA, August 1988.
D. Russo. Structural Properties of Complexity Classes. PhD thesis,
University of California at Santa Barbara, Santa Barbara, CA, 1985.
W. Ruzzo. Tree-size bounded alternation. Journal of Computer and
System Sciences, 21(2):218-235, 1980.
W. Ruzzo. On uniform circuit complexity. Journal of Computer and
System Sciences, 22(3):365-383, 1981.
W. Savitch. Relationships between nondeterministic and determin
istic tape complexities. Journal of Computer and System Sciences,
4(2):177-192, 1970.
J. Savage. Computational work and time on finite machines. Journal
of the ACM, 19(4):660-674, 1972.
J. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27(4):701-717, 1980.

330 References

[Sch83J

[Sch86a]

[Sch86b]

[Sch88J

[Sch89]

[Sch90]

[Sch99]

[SchOO]

[SchOla]

[Sch01b]

[Scu62]

[Sel74]

[Sel78]

[Sel79]

[Sel82a]

[Sel82b]

[Sel92]

[Sel94]

[SFM78]

[Sha92]
[She86]

[SHL65]

[Sim75]

U. Schoning. A low and a high hierarchy within NP. Journal of
Computer and System Sciences, 27(1):14-28, 1983.
U. Schoning. Complete sets and closeness to complexity classes. Math
ematical Systems Theory, 19(1):29-42, 1986.
U. Schoning. Complexity and Structure. Springer Verlag Lecture Notes
in Computer Science #~11, 1986.
U. Schoning. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 37(3):312-323, 1988.
U. Schoning. Probabilistic complexity classes and lowness. Journal of
Computer and System Sciences, 39(1):84-100, 1989.
U. Schoning. The power of counting. In A. Selman, editor, Complexity
Theory Retrospective, pages 204-223. Springer-Verlag, 1990.
M. Schaefer. Deciding the VC-dimension is E~-complete. Journal of
Computer and System Sciences, 58{1):177-182, 1999.
M. Schaefer. Deciding the VC-dimension is E~-complete II. Techni
cal Report TR00-006, School of CTI, DePaul University, Chicago, IL,
2000.
M. Schaefer. Completeness in the polyonmial-time hierarchy. Technical
Report TROl-009, School of CTI, DePaul University, Chicago, IL, July
2001.
M. Schaefer. Graph Ramsey theory and the polynomial hierarchy.
Journal of Computer and System Sciences, 62(2):290-322, 2001.
V. Scully. The Earth, the Temple, and the Gods. Yale University Press,
1962.
A. Selman. On the structure of NP. Notices of the AMS, 21(5):A-498,
1974. Erratum in the same journal, 21(6):310.
A. Selman. Polynomial time enumeration reducibility. SIAM Journal
on Computing, 7(4):440-457, 1978.
A. Selman. P-selective sets, tally languages, and the behavior of
polynomial time reducibilities on NP. Mathematical Systems Theory,
13(1):55-65, 1979.
A. Selman. Analogues of semirecursive sets and effective reducibilities
to the study of NP complexity. Information and Control, 52(1) :36-51,
1982.
A. Selman. Reductions on NP and P-selective sets. Theoretical Com
puter Science, 19(3):287-304, 1982.
A. Selman. A survey of one-way functions in complexity theory. Math
ematical Systems Theory, 25(3):203-221, 1992.
A. Selman. A taxonomy of complexity classes of functions. Journal of
Computer and System Sciences, 48(2):357-381, 1994.
J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic
time complexity classes. Journal of the ACM, 25(1):146-167, 1978.
A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.
A. Sherman. Cryptology and VLSI (a Two-Part Dissertation). PhD
thesis, Massachusettes Institute of Technology, Cambridge, MA, 1986.
A vail able as Technical Report MIT /LCS /TR-381.
R. Stearns, J. Hartmanis, and P. Lewis. Hierarchies of memory limited
computations. In Proceedings of the 6th IEEE Symposium on Switching
Circuit Theory and Logical Design, pages 179-190, 1965.
J. Simon. On Some Central Problems in Computational Complexity.
PhD thesis, Cornell University, Ithaca, N.Y., January 1975. Available
as Cornell Department of Computer Science Technical Report TR75-
224.

(Sim77a]

(Sim77b]

(Sip82]

(Sip83J

(Sip92J

(SivOOJ
(SL94]

(SS83J

(ST98]

(STOOJ

(Sto76]

(Sto85]

(Sud78]

(Sud92]

(SV85J

(Sze88]

(Tar93J

(The81]

[T092]

References 331

I. Simon. On Some Subrecursive Reducibilities. PhD thesis, Stanford
University, Palo Alto, CA, April1977. Available as Stanford University
Computer Science Department Technical Report STAN-CS-77-608.
J. Simon. On the difference between one and many. In Proceedings of
the 4th International Colloquium on Automata, Languages, and Pro
gramming, pages 480-491. Springer-Verlag Lecture Notes in Computer
Science #52, July 1977.
M. Sipser. On relativization and the existence of complete sets. In Pro
ceedings of the 9th International Colloquium on Automata, Languages,
and Programming, pages 523-531. Springer-Verlag Lecture Notes in
Computer Science #140, July 1982.
M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th
ACM Symposium on Theory of Computing, pages 61-69. ACM Press,
April1983.
M. Sipser. The history and status of the P versus NP question. In
Proceedings of the 24th ACM Symposium on Theory of Computing,
pages 603-618. ACM Press, May 1992.
D. Sivakumar, May 6, 2000. Personal communication.
M. Sheu and T. Long. The extended low hierarchy is an infinite hier
archy. SIAM Journal on Computing, 23(3):488-509, 1994.
J. Schwartz and M. Sharir. On the piano movers' problem III: Coor
dinating the motion of several independent bodies: The special case of
circular bodies moving amidst polygonal barriers. International Jour
nal of Robotics Research, 2(3):46-75, 1983.
M. Santha and S. Tan. Verifying the determinant. Computational
Complexity, 7(2):128-151, 1998.
A. Samorodnitsky and L. Trevisan. A PCP characterization ofNP with
optimal amortized query complexity. In Proceedings of the 32nd ACM
Symposium on Theory of Computing, pages 191-199. ACM Press, May
2000.
L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3{1):1-22, 1976.
L. Stockmeyer. On approximation algorithms for #P. SIAM Journal
on Computing, 14(4):849-861, 1985.
I. Sudborough. On the tape complexity of deterministic context-free
languages. Journal of the ACM, 25(3):405-414, 1978.
M. Sudan. Efficient Checking of Polynomials and Proofs and the Hard
ness of Approximation Problems. PhD thesis, University of California
at Berkeley, 1992. Also appears as an ACM Distinguished Thesis, Lec
ture Notes in Computer Science, Volume 1001, Springer-Verlag, 1996.
S. Skyum and L. Valiant. A complexity theory based on boolean
algebra. Journal of the ACM, 32{2):484-502, 1985.
R. Szelepcsenyi. The method of forced enumeration for nondetermin
istic automata. Acta Informatica, 26(3J:279-284, 1988.
J. Tarui. Randomized polynomials, AC functions, and the polynomial
hierarchy. Theoretical Computer Science, 113(1):167-183, 1993.
D. Therien. Classification of finite monoids: The language approach.
Theoretical Computer Science, 14(2):195-208, 1981.
S. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316-
328, 1992.

332 References

(Tod91a] S. Toda. Counting problems computationally equivalent to computing
the determinant. Technical Report CSIM 91-07, Department of Com
puter Science, University of Electro-Communications, Tokyo, Japan,
May 1991.

(Tod91b] S. Toda. On polynomial-time truth-table reducibilities of intractable
sets to P-selective sets. Mathematical Systems Theory, 24(2):69-82,
1991.

[Tod91c] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865-877, 1991.

(Tod94] S. Toda. Simple characterizations of P(#P) and complete problems.
Journal of Computer and System Sciences, 49(1):1-17, 1994.

[Tor88] J. Toran. Structural Properties of the Counting Hierarchies. PhD
thesis, Universitat Politecnica de Catalunya, Barcelona, Spain, 1988.

(Tor91] J. Toran. Complexity classes defined by counting quantifiers. Journal
of the ACM, 38(3):753-774, 1991.

(Tur36] A. Turing. On computable numbers, with an application to the Ent
scheidungsproblem. Proceedings of the London Mathematical Society,
series 2(42):230-265, 1936. Correction appears in the same journal as
series 2(43):544-546.

(Ukk83] E. Ukkonen. Two results on polynomial time truth-table reductions
to sparse sets. SIAM Journal on Computing, 12(3):580-587, 1983.

(Uma98] C. Umans. The minimum equivalent DNF problem and shortest im
plicants. In Proceedings of the 39th IEEE Symposium on Foundations
of Computer Science, pages 556-563. IEEE Computer Society Press,
November 1998. To appear in Journal of Computer and System Sci
ences.

(Val76] L. Valiant. The relative complexity of checking and evaluating. Infor
mation Processing Letters, 5(1):20-23, 1976.

(Val79a] L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189-201, 1979.

(Val79b] L. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410-421, 1979.

(Val92] L. Valiant. Why is boolean complexity theory difficult? In M. Pater
son, editor, Boolean Function Complexity, pages 84-94. London Math
ematical Society, Lecture Note Series 169, Cambridge University Press,
1992.

(vBGR93] B. von Braunmiihl, R. Gengler, and R. Rettinger. The alternation hier
archy for sublogarithmic space is infinite. Computational Complexity,
3(3):207-230, 1993.

(vBGR94] B. von Braunmiihl, R. Gengler, and R. Rettinger. The alternation hier
archy for machines with sublogarithmic space is infinite. In Proceedings
of the 11th Annual Symposium on Theoretical Aspects of Computer
Science, pages 85-96. Springer-Verlag Lecture Notes in Computer Sci
ence #775, February 1994.

(vdW70] B. van der Waerden. Algebra. Frederick Ungar Publishing Company,
1970. Translated by F. Blum and H. Schulenberger.

(Ven91] H. Venkateswaran. Properties that characterize LOGCFL. Journal of
Computer and System Sciences, 43(2):380-404, 1991.

(Ver94] N. Vereshchagin. Relativizable and nonrelativizable theorems in the
polynomial theory of algorithms. Russian Academy of Sciences
Jzvestiya-Mathematics, 42(2):261-298, 1994.

(Vin91] V. Vinay. Counting auxiliary pushdown automata and semi
unbounded arithmetic circuits. In Proceedings of the 6th Structure in

[vM96]

[vM97]
[vM097]

[VV85]

[VV86]

[Wag86]

[Wag87]

[Wag90]

[Wag93]

[Wan95]

[Wat88]

[Wes96]
[Wig94]

[Wil85]

[Wil90]

[Wra76]

[WT93]

[Yao85]

[Yao90]

[Yap83]

References 333

Complexity Theory Conference, pages 270-284. IEEE Computer Soci
ety Press, June/ July 1991.
D. van Melkebeek. Reducing P to a sparse set using a constant num
ber of queries collapses P to L. In Proceedings of the 11th Annual
IEEE Conference on Computational Complexity, pages 88-96. IEEE
Computer Society Press, May 1996.
D. van Melkebeek, 1997. Personal communication.
D. van Melkebeek and M. Ogihara. Sparse hard sets for P. In D. Du
and K. Ko, editors, Advances in Algorithms, Languages, and Complex
ity, pages 191-208. Kluwer Academic Publishers, 1997.
U. Vazirani and V. Vazirani. Random polynomial time is equal to
slightly-random polynomial time. In Proceedings of the 26th IEEE
Symposium on Foundations of Computer Science, pages 417-428.
IEEE Computer Society Press, October 1985.
L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47(3):85-93, 1986.
K. Wagner. The complexity of combinatorial problems with succinct
input representations. Acta Informatica, 23(3):325-356, 1986.
K. Wagner. More complicated questions about maxima and minima,
and some closures of NP. Theoretical Computer Science, 51(1-2):53-
80, 1987.
K. Wagner. Bounded query classes. SIAM Journal on Computing,
19(5):833-846, 1990.
K. Wagner. The alternation hierarchy for sublogarithmic space: An
exciting race to STACS '93 (editorial note). In Proceedings of the
10th Annual Symposium on Theoretical Aspects of Computer Sci
ence, pages 25-27. Springer-Verlag Lecture Notes in Computer Science
#665, February 1993.
J. Wang. Some results on selectivity and self-reducibility. Information
Processing Letters, 55(2):81-87, 1995.
0. Watanabe. On hardness of one-way functions. Information Pro
cessing Letters, 27(3):151-157, 1988.
D. West. Introduction to Graph Theory. Prentice Hall, 1996.
A. Wigderson. NL/poly ~ EeL/poly. In Proceedings of the 9th Struc
ture in Complexity Theory Conference, pages 59-62. IEEE Computer
Society Press, June/ July 1994.
C. Wilson. Relativized circuit complexity. Journal of Computer and
System Sciences, 31(2):169-181, 1985.
C. Wilson. On the decomposability of NC and AC. SIAM Journal on
Computing, 19(2):384-396, 1990.
C. Wrathall. Complete sets and the polynomial-time hierarchy.
Theoretical Computer Science, 3(1):23-33, 1976.
0. Watanabe and S. Toda. Structural analysis of the complexity of
inverse functions. Mathematical Systems Theory, 26(2):203-214, 1993.
A. Yao. Separating the polynomial-time hierarchy by oracles. In Pro
ceedings of the 26th IEEE Symposium on Foundations of Computer
Science, pages 1-10. IEEE Computer Society Press, October 1985.
A. Yao. On ACC and threshold circuits. In Proceedings of the 31st
IEEE Symposium on Foundations of Computer Science, pages 619-
627. IEEE Computer Society Press, October 1990.
C. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26(3):287-300, 1983.

334

(Yes83]

(You92]

(Zac82]

(Zac88]

(Zan91]

[ZF87]

[ZH86]

(Zim98]

[Zip79]

References

Y. Yesha. On certain polynomial-time truth-table reducibilities of
complete sets to sparse sets. SIAM Journal on Computing, 12(3):411-
425, 1983.
P. Young. How reductions to sparse sets collapse the polynomial-time
hierarchy: A primer. SIGACT News, 23, 1992. Part I (#3, pages
107-117), Part II (#4, pages 83-94), and Corrigendum to Part I (#4,
page 94).
S. Zachos. Robustness of probabilistic complexity classes under defi
nitional perturbations. InfoNnation and Computation, 54(3):143-154,
1982.
S. Zachos. Probabilistic quantifiers and games. Journal of Computer
and System Sciences, 36(3):433-451, 1988.
V. Zank6. #P-completeness via many-one reductions. International
Journal of Foundations of Computer Science, 2(1):76-82, 1991.
S. Zachos and M. Furer. Probabilistic quantifiers vs. distrustful adver
saries. In Proceedings of the 7th Conference on Foundations of Soft
ware Technology and Theoretical Computer Science, pages 443-455.
Springer-Verlag Lecture Notes in Computer Science #287, December
1987.
S. Zachos and H. Heller. A decisive characterization of BPP. Infor
mation and Control, 69(1-3):125-135, 1986.
M. Zimand. On the size of classes with weak membership properties.
Theoretical Computer Science, 209(1-2):225-235, 1998.
R. Zippel. Probabilistic algorithms for sparse polynomials. In Pro
ceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 216-226. Springer-Verlag Lecture Notes in Com
puter Science #72, 1979.

Index

.6.~ 29, 72, 194,271-273, 286, see
hierarchy, polynomial, see set,
.6.~-complete

II~ 20, 25, 28, 271-273, see hierarchy,
polynomial

II~·c 213, 214
E~ 19-21,25,28,73,108,271-273,

see hierarchy, polynomial, see set,
E~-complete

E~·c 213-216, 228
e~ 18-20,27,29,268,271-273,293,

see hierarchy, polynomial, see set,
e~-complete

- closure properties see closure, of
e~ ...

<c 306
~r 83,265,306,307, see reduction,

logspace many-one
~randomized 70, 72, 268, see reduction,

randomized
~~np 241,306, see reduction,

coNP-many-one
<NP n coNP 306
-T
~~A 60, 284, 285
~~ 1, 18-20, 22, 60, 182, 268, 269, 305,

306, see reduction, polynomial-time
Turing
closure of C=P downward under see
closure, of C=P downward under ~~

- closure of coC=P downward under
see closure, of coC=P downward
under~~
closure of EBP downward under see
closure, of EBP downward under ~~

~kt 1,8-11,26,268,296,298,306-
308, see reduction, polynomial-time
bounded-truth-table
closure of P downward under see
closure, of P downward under ~~tt
closure of PP downward under see
closure, of PP downward under ~~tt

~~ 306, see reduction, polynomial
time conjunctive Turing

~~tt 26, 187, 260, 305, see reduc
tion, polynomial-time conjunctive
truth-table

- closure of C=P downward under
see closure, of C=P downward under
~~tt

- closure of coNP downward under
see closure, of coNP downward under
~~tt

~~ 306, see reduction, polynomial
time disjunctive Turing

~~tt 26, 29, 268, 305, 307, see reduc
tion, polynomial-time disjunctive
truth-table

- closure of C=P downward under
see closure, of C=P downward under
~~tt

- closure of coNP downward under
see closure, of coNP downward under
~~tt

~j(n}-T 306
~j(n}-tt 306
~~-tt 10, 11,245, 275,306, see ~~tt>

see reduction, polynomial-time
bounded-truth-table

~focpos 306, 307, see reduction,
polynomial-time locally positive
Turing

~~ 1--6, 8, 9, 26, 60, 187, 194, 245,
267-269, 275, 305, see reduction,
polynomial-time many-one

- closure of PP downward under see
closure, of PP downward under ~~

- closure of SFs downward under see
closure, of SFs downward under ~~

- closure of the context free languages
downward under see closure, of the
context free languages downward
under~~

336 Index

~~os 296, 306, 307, see reduction,
polynomial-time positive Turing

- closure of C=P downward under
see closure, of C=P downward under
~~OS

- closure of coC=P downward under
see closure, of coC=P downward
under ~~os

- closure of NP downward under see
closure, of NP downward under ~~os

- closure of P-sel downward under
see closure, of P-sel downward under
~~OS

~ft 248,251, 260, 296,305, see reduc
tion, polynomial-time truth-table

- closure of PP downward under see
closure, of PP downward under ~ft

~~t(k] 249,251, see reduction,
polynomial-time constant-round
truth-table

~T,... 306, see reduction, strong
nondeterministic

EBE 28
EBL 82, 87, 89, 277,280, see class,

modulo-based, logspace-analogs
EBL/poly 82, 89, see advice
EBOptP 181, 183, 192,303
EBP 28, 72, 73,76-82,97, 101,181-183,

185,186,194,213,232,259,273,276,
277,287,289,293,297,298,301

- closure properties see closure, of
EBP ...

- exponential-time analog of see
analog, exponential-time, of EBP,
see analog, exponential-time, of UP,
FewP, EBP, ZPP, RP, or BPP

EBP /poly 78, 82, see advice
EBSAT 298, see computation,

modulo-based
#L 87, 253, 279, see set, #L-complete
#P 76, 78-81,87,88, 91-108, 110,

112-115,119,121,163,164,237,238,
240,265,273,276,286,287,289,293,
297, 299, see class, counting, see
function, #P, see set, #P-complete

- closure properties see closure, of
#P ...

#P function see function, #P
#P 1 287
#SAT 286
#accN(x) 76, 77,79-81, 121, 186, 187,

236-238,251-253,256-258,278,286,
290,291,297,298

#gapN(x) 186,236,238,239,253,254,
256, 258, 259, see function, GapP, see
function, gap, see GapP ·

#rejN(x) 186, 187, 236-238, 258, see
path, rejecting computation

2-ary function see function, ... 2-ary ...
2-disjunctively self-reducible set see

set, 2-disjunctively self-reducible
3-CNF formula see formula, 3-CNF

Abadi, M. 64, 164
AC, ACk 88, 193, 194,261,279-281,

293,301,308, see class, circuit
ACC 193, 194, see class, circuit
acceptance
- cardinality see cardinality,

acceptance
- categorical 283
- mechanism see mechanism,

acceptance
- probability see probability,

acceptance
- type see reduction, of the car

dinality of acceptance types,
see type, acceptance, see type,
finite-cardinality acceptance

access
- k-round parallel 249
- parallel, to NP 18, 64, 89, 301
- sublinear-parallel, to NP 64
ACCp 88, see class, circuit
Adachi, A. 264,265
addition
- closure of #P under see closure, of

#P under addition
adjacency matrix see matrix,

adjacency
Adleman, L. 87, 277, 289, 290
adversary problem see problem,

adversary
advice 45, 48, 84, 86, 87, 277,

see C /poly, see coNP /linear,
see coNP /poly, see E/linear,
see EXP /linear, see interpreter, see
NLjpoly, see NP /linear, see NP /poly,
see {NP n coNP)/poly, see Pjlinear,
see P /poly, see P /quadratic,
see EBL/poly, see EBP/poly, see
PP /linear, see set, small advice, see
UL/poly

- for the semi-feasible sets 47-56
- hard to compute 277
- linear-sized 49, 51, 52
- optimal 48, 52

- quadratic length-bounded 48
- subquadratic length-bounded 49
advice interpreter see interpreter,

advice
Agrawal, M. 296, 298
agreement
- secret-key 36, 43
Aho, A. 266
Ajtai, M. 232, 280
algorithm
- census-based 18
- deterministic exponential-time 24
- enumeration 119
- greedy 272
- high-degree polynomial-time 264
- interval-pruning vii
- low-degree polynomial-time 266
- membership 294
- nondeterministic 1, 76, see NP, see
E~

- NP 62, see NP, see E~
- polynomial-time 3, 5, 6, 22, 23, 25,

41,80,139,146,165,266
query simulation vii

- randomized 67
- sampling 131, 132, 135, 136,

145-147, 149
- self-reducibility 1
- semi-membership 294, 295
- E~ 20, 21, see E~
- that assumes a theorem's hypothesis

1,2
- e~ 19, 20, see e~
- tree-pruning vii, 8
- UL 85, 86, see UL
algorithms
- design and analysis of 265,266
- their central role in complexity

theory vii, 1
Allender, E. viii, 28, 29, 43, 88, 89,

231,260,261,265,270,278,279,281,
283-285,293,308

almost polynomial-time set see set,
almost polynomial-time

alphabet 7
alternating quantifiers see quantifiers,

alternating
alternating Turing machine see

machine, alternating
alternation
- symmetric 27
AM 300
Ambainis, A. ix, 194

Index 337

Amir, A. 63, 163, 286, 296,297
analog
- exponential-time, of E!lP 28
- exponential-time, of the polynomial

hierarchy 28, 29
- exponential-time, of UP, FewP, E!lP,

ZPP, RP, or BPP 28
AND circuits see circuits, AND
AND gate see gate, AND
AND-OR circuits see circuits,

AND-OR
Angluin, D. 87
Antioch
- Holy Hand Grenade of 67
aperiodic monoid see monoid,

aperiodic
approach
- census 18
- self-reducibility-based tree-pruning

2
- theorems via algorithms under

hypotheses 1
approximation see factor, of approxi-

mation, see nonapproximability
- enumerative 119, 163
- NP-hardness of 166
- of perm 119, see permanent, of a

matrix
- of maximum clique 165, 166, see

clique
- of #P functions 286
- of the proper subtraction of two #P

formulas 108
- of the sign function 235,242
- of threshold circuits by parity circuits

260
argument
- self-reducibility-based 4
arithmetic characterization see

characterization, arithmetic
arithmetic expression see expression,

arithmetic
arithmetic formula see formula,

arithmetic
arithmetization 111, 112, 126, 140, 163
Arora, S. 165,166,267,269
Arthur-Merlin see AM
Arvind, V. ix, 27, 277, 289, 296, 298
Aspnes, J. 289
assignment
- exactly one satisfying 69
- lexicographically largest satisfying

163

338 Index

- lexicographically smallest satisfying
57

- partial 199
- random, partial input 197
- satisfying 4, 7, 56-59, 139, 163, 268,

269,283,294
- unique satisfying 45, 56, 57, 284
assignments
- even number of satisfying 298
- number of satisfying 286
associative operation see operation,

associative
associativity see function, ... associa

tive ... , see function, associativity
of

- of concatenation 38
- of multiplication 38
-weak 44
attribute-value description see

description, attribute-value
Ausiello, G. 166, 267
automata see machine
- k-state 302
- nondeterministic auxiliary pushdown

281
- nonuniform deterministic finite 193,

see NUDFA
- pushdown 281
automorphism see graph, automor

phism counting in
- counting in graph 289
average-case cryptography see

cryptography, average-case

Babai, L. 28, 163-165,232,273, 300
Baker, T. 231,268-270, 272,273
Balcazar, J. 27, 43, 64, 87,273, 286,

287,293
Barrington, D. 192-194, 281,302
Beals, R. 261, 278, 279, 289
Beame, P. 233
Beaver, D. 163
behavior
- normal 28, 29
Beigel, R. ix, 29, 43, 63, 89, 106-108,

163,194,260,269,284,286,293,
296-298,308

Bellare, M. 166
Ben-Or, M. 164, 194,300
Bennett, C. 87, 232, 268, 269
Bent, R. viii
Berg, C. 232
Berman, L. 26, 27, 43, 269, 275-277,

282

Berman, P. 26,27
Berman-Hartmanis Isomorphism

Conjecture see Conjecture,
Berman-Hartmanis Isomorphism

Bertoni, A. 286
Beygelzimer, A. viii, 44
Bibliographic Notes see Notes,

Bibliographic
bidirectional connectivity see

connectivity, bidirectional
bijection 168
- between natural numbers and strings

91,92
between strings and pairs of strings
33

binary tree
- full see tree, full binary
bits
- a probabilistic circuit's random 219
- generation of random 289
- quadratic number of random 88
- quasilinear number of random 88
- random, of a probabilistic circuit

220,221
blackboard
- polynomial-sized 27 4
Blackburn, P. 274
Blass, A. 283
Blaylock, N. ix
Blum, M. 164
Book, R. 27, 64, 65, 87, 273-275, 286,

287,293,294
boolean formula see formula, boolean
boolean formula minimization problem

see problem, boolean formula
minimization

boolean function see function,
... boolean ...

boolean hierarchy see hierarchy,
boolean

boolean operation see operation,
boolean

Boppana, R. 269
Borchert, B. 285
Borodin, A. 193, 269, 279, 280
bottleneck machine see machine,

... bottleneck
bound
- lower 43, 44, 194, 197, 207, 223, 232,

233,248,264
- quadratic 264
- superpolynomial-size lower 264
bounded

- depth of recursion 17
- polynomial-time 145, 182, 187, 192
bounded-depth circuits see circuits,

bounded-depth
bounded-fan-in circuits see circuits,

bounded-fan-in
bounded-width branching program

see program, bounded-width
branching

boundedness
logarithmic-space 85, 86, 254, 255,
258, 259, see L, see NL, see UL
polynomial-space 125, see PSPACE

- polynomial-time 7, 12, 80, 81, 115,
118,119,121,122,135,187,238,
239,246, 250,255,259, see machine,
nondeterministic polynomial-time,
see NP, seeP

Boutell, M. vm
Bovet, D. ix, 268,285
BP operator see operator, BP
BPP 28, 72-75, 77, 78, 81, 87, 273,276,

277,288-290,293,297,298,307,308,
see circuits, small for BPP
exponential-time analog of see
analog, exponential-time, of UP,
FewP, EBP, ZPP, RP, or BPP

BPP hierarchy see hierarchy, BPP
branching program see program,

branching
branching time logic see logic,

branching time
Brassard, J. 43
Brauer, W. ix
Braunmuhl, B. von see

von Braunmiihl, B.
Bruschi, D. 232,297
brute-force search see search,

brute-force
Bshouty, N. 27
Buhrman, H. 28, 64, 273, 284, 296, 308
Buhrman-Hemaspaandra-Longpre

Encoding see Encoding, Buhrman
Hemaspaandra-Longpre

Buntrock, G. 87, 277, 278
Burtschick, H. 64,296

C/poly 75, see advice
C=L 261, 278,279, see set, C=L

complete, see set, complete for the
~It-reducibility closure of C=L

C=L hierarchy see hierarchy, C=L
C=L oracle hierarchy see hierarchy,

oracle, of C=L

Index 339

C=P 87, 88, 102, 103, 186, 187, 191,
192,235,240,241,260,261,287,
290-293, 298, 308, see class, counting,
see set, C=P-complete

- closure properties see closure, of
C=P ...

Cai, J. ix, 26, 27, 29, 64, 106, 107, 163,
164,192,194,232,265,273-275,286,
297,298,303

call
- recursive
Canetti, R.

14-18,124,125
27

cardinality
-acceptance 102,292
- rejection 102
cardinality reduction see reduction,

of numbers of solutions, see reduc
tion, of numbers of witnesses, see
reduction, of the cardinality of a
set of vectors, see reduction, of the
cardinality of acceptance types, see
reduction, of the number of accepting
paths, see reduction, of the number
of solutions, see reduction, witness

Carroll, L. 272
Cass, D. ix
cat and mouse game see game, cat

and mouse
categorical acceptance see acceptance,

categorical
categorical machine see machine,

categorical
cauldrons
- of recursion theory vii
Caussinus. H. 194, 260
census see approach, census
census function see function, census
census value see value, census
census-based algorithm see algorithm,

census-based
certificate
- deterministically verifiable 109
- of acceptance or membership 8, 9,

34,62,109
- of primality 131, 132, 142
- polynomial-time verifiable 131
- succinct 109, 110
Chakaravarthy, V. 64
Chandra, A. 193,272,279,281,308
Chang, R. 231,260,270,289,300,308
characteristic function see function,

characteristic
characterization

340 Index

- arithmetic 126
- robust, of low-degree polynomials

111, 112, see polynomial, low-degree
- robust, of NC 281
Chari, S. 89, 231, 270
Chebyshev's Inequality see Inequality,

Chebyshev's
Chebyshev's Theorem see Theorem,

Chebyshev's
Chebyshev, P. 135, 163
Chen, S. viii
Cheng, Y. vm
Chinese Remainder Theorem see

Theorem, Chinese Remainder
Chor, B. 300
Church A. 264
circuit see graph, representing

boolean circuit, see graph, repre
senting unbounded-fan-in circuit, see
subcircuit

- depth reduction see reduction, of
the depth of a circuit

circuit family see family, circuit
circuits 175, 197, 200, 276, 279, see

class, circuit, see disjointness, of
circuits

- AND 203, 225
- AND-OR 88,201,206-208,211,

224,227,232
- bounded-depth 211
- bounded-fan-in 167,169--171,174,

177
- computing the exclusive-or of three

bits via 220
- constant-depth 207, 212, 213, 218,

223-225,228,232
I 0(1) •

constant-depth 2 og n-s1ze 218
- constant-depth polynomial-size 88,

89,201,202,207,223,231,302
- constant-depth polynomial-size

unbounded-fan-in 280
- constant-depth subexponential-size

213
- constant-depth superpolynomial-size

223,224,232,280
- depth-0 170
- depth-1 199,204
- depth-2 202,232

I 0(1) . - depth-2 2 og n-s1ze 89
- depth-2 210gO(l) n-size polylogarith-

mic bottom-fan-in 88, 89

- depth-2 210g 0 (1) n-size probabilistic
88

I 0(1)
- depth-3 2 og n-size polylogarith-

mic bottom-fan-in 88
I 0(1)

- depth-4 2 og n-size polylogarith-
mic bottom-fan-in 88

- depth-k 197
- depth-k bounded-fan-in 174
- depth-k linear-size 232
- depth-CJ{k log k) bounded-fan-in

170
- deterministic 89, 220, 221, 231
- family of 201
- for SAT, size of 87
- for sets in DSPACE[n], size of 87
- in the shape of a tree 227
- logarithmic-depth polynomial-size

bounded-fan-in 171
- logspace-uniform 279, 280
- NC1 176
- OR 205, 210, 225
- OR-AND 201, 204, 206, 207, 211,

212,224,227
- P-uniform 279
- parity 260
- polylog-depth constant-size 308
- polylog-depth polynomial-size 280,

308
- polynomial-depth 1 76
- polynomial-size 233
- probabilistic 219, 220, 231
- small 276, 277
- small, for BPP 277
- small, for NP 277
- small, for the semi-feasible sets 45,

47
- stratified 198
- superpolynomial-size 222
- threshold 260
- transforming tree into 169
- unbounded fan-in 198
class
- advice see advice
- Arthur-Merlin 300
- being "almost" closed under an

operation 108
- bounded-ambiguity 43, see FewP,

see UL, see UP
- circuit 88, 279, see AC, ACk, see

ACCp, see ACC, see circuits, see NC,
NCk, see nonuniform-NC1 , see SAC,
SACk, see SC

- counting 64, 82,290--293,297, see
C=L, see C=P, see PL, see PP, see
#L, see #P, see SPP

- "exactly-half"-based 192, see C=L,
see C=P

- exponential-time 23, 28, 29, 274,
275, see EXP, see E, see NEXP, see
NE

- GapP-based characterization of 240
- interactive proof 299, see IP, see

MIP, see system, interactive proof
- logspace 82, 277-279, see C=L, see

L, see NL, see EBL, see PL
- low-error probabilistic, as intuitively

feasible 289
- majority-based 192, see PL, see PP
- modulo-based 297, see coModkP,

see FTMkP, see ModkP, see
ModZkP, see EBE, see EBL, see EBP

- modulo-based, logspace analogs
277, see EBL

- one-way function 31, see UP
- optimization-based 297, see OptP
- output-cardinality-based 297, see

SpanP
- polynomial-time 28, 274, see P
- probabilistic 277, 290, see BPP, see

PL, see PP, see RP, see ZPP
- "promise"-like 293, see BPP, see

coUP, see FewP, see RL, see RP, see
UL, see UP, see ZPP

- query-order-based 303
- uniform complexity 168, see advice
- whose name sears the tongues of

mere mortals vii
- whose very name contains hundreds

of characters vii
clause 112, 139
Cleve, R. 27, 194
clique 165, 166
closure
- of a class under a reducibility,

potential 235
- of a class under an operation,

potential 235
- of C=P downward under positive

truth-table reductions 260
- of C=P downward under ~~tt 187,

240,260
- of C=P downward under ~~tt 240
- of C=P downward under ~~os 260,

293

Index 341

- of C=P downward under coNP
many-one reductions 241

- of coC=P downward under ~~os
260,293

- of coNP downward under coNP-
many-one reductions 241

- of coNP downward under ~~tt 240
- of coNP downward under ~~tt 240
- of :F (a class) under u (an operation)

92
- of :F (a class) under integer division

98
- of LOGCFL under complementation

280
- of ModkP under union 298
- of natural polynomials under

multiplication 247
- of NP downward under ~~os 268,

307
- of NP under intersection 268
- of NP under union 268
- of OptP under proper subtraction,

potential lack of 104, 105
- of P downward under ~l:tt 96
- of P under union 36
- of EBP downward under ~~ 182
- of PL downward under P-uniform

NC1 reductions 260
- of PP downward under constant

round truth-table reductions 249,
251

- of PP downward under ~l:tt 245
- of PP downward under ~~ 239,

245
- of PP downward under ~~, potential

lack of 252,259
- of PP downward under ~ft 235,

245,293
- of PP downward under P-uniform

NC1 reductions 260
- of PP downward under polynomial

time parity reductions 260
- of PP under complementation 97,

239,245,260
- of PP under disjoint union 245
- of PP under intersection 235,242,

244,245
- of PP under union 245
- of probabilistic-NC1 under intersec-

tion 260
- of P-sel downward under ~~os 296
- of P-sel under almost-completely

degenerate boolean functions 296

342 Index

- of P-sel under complementation 52,
296

- of P-sel under completely degenerate
boolean functions 296

- of P-sel under intersection, lack of
296

- of P-sel under union, lack of 296
- of SACk under complementation

280
- of SFs downward under ~~ 177
- of #P under addition 76, 87, 92,

100, 101, 106, 287
- of #P under finite sums of multiples

of binomial coefficients whose upper
element is the input and whose lower
element is a constant 107

- of #P under integer division by 2,
potential lack of 100, 101,287

- of #P under integer division,
potential lack of 98, 99, 101, 287

- of #P under maximum, potential
lack of 100--103,287

- of #P under minimum, potential
lack of 100-103, 287

- of #P under multiplication 92, 93,
101, 106, 287

- of #P under operators in relativized
worlds 107

- of #P under proper decrement,
potential lack of 100, 105, 106, 287

- of #P under proper subtraction,
potential lack of 91, 93, 95, 96, 98,
99,104,107,287

- of SpanP under proper subtraction,
potential lack of 105

- of the context free languages
downward under ~~ 279

- of e~ under complementation 20
- of UP under intersection 284
Cobham, A. 264, 265
coC=P 260,293
- closure properties see closure, of

coC=P ...
coefficients
- binomial 93
- multinomial 93
cofinite set see set, cofinite
coin
- fair 74, 131
- unbiased 288
collision
- in image of one-way function 31

- potential relationship between
intensity of and collapses 31

combinatorial game see game,
combinatorial

commutativity see function, ... com-
mutative ...

- of concatenation, lack of 38
- ofmin 41
- of multiplication 38
- of subtraction, lack of 38
commutator 168,172,174,175
coModkP 194, 298, 301
companion
- best v
comparison
- lexicographic see order, lexico

graphic
complementation
- closure of LOGCFL under see

closure, of LOGCFL under comple
mentation

- closure of PP under see closure, of
PP under complementation

- closure of P-sel under see closure,
of P-sel under complementation

- closure of SACk under see closure,
of SACk under complementation

- closure of e~ under see closure, of
e~ under complementation

complete equality see equality,
complete

completeness
- of a protocol 110, 115, 116, 131, 132,

134,135,138,145,147,149
- of a set for a class C see the entry

for that class C
- of a set for some class C see set,

"[that class C]"-complete
complexity
- circuit, of SAT 89
- Kolmogorov 269
- nonuniform 45, 51, see· advice
complexity theory see theory,

complexity
computation
- ambiguity-bounded 281,285, see

FewP,see UP
- bottleneck 181, 300, see ma-

chine, bottleneck, see machine,
bounded-width bottleneck, see
ProbabilisticSSFk, see SFk, see SSFk

- deterministic logspace 278, see L

deterministic polynomial-time 22,
see P

- error-bounded probabilistic 288,
289, see BPP, see coRP, see RP

- exponential-time deterministic 275,
see EXP, see E

- exponential-time nondeterministic
275, see NEXP, see NE
majority-based probabilistic
symmetric bottleneck 192

- modulo-based 106,297, 298, see
coModkP, see FTMkP, see ModkP,
see ModZkP, see E9E, see E:BL, see ffiP
nondeterministic logspace 278, see
NL

- nondeterministic polynomial-time
22, see NP

- nondeterministic space-bounded
125, see NL
polynomial-ambiguity 283, see
FewP
polynomial-space 176, see PSPACE
PSPACE oracle 213

- quantum 194,195
- relativized logspace 279
- semi-feasible 294-296, see P-sel
- single-valued nondeterministic

function 57, see NPSV
unambiguous 281,283,285, see UL,
see UP
unambiguous logspace 84, 85, see
UL

- zero-error probabilistic 290, see
ZPP

concatenation see assignments, of
concatenation

condition
- truth-table 10, 11, 13, 14, see

refinement, of a truth-table condition
Condon, A. 164
coNE 275
confidence
- high 109
configuration
- unique accepting 126, 129
- unique middle-point 112
configuration space see problem,

robotics configuration space
conflicting oracle results see results,

conflicting oracle
conflicting relativizations see results,

conflicting oracle
Conjecture

Index 343

Berman-Hartmanis Isomorphism
26,282

- One-Way 282, 285
coNL 82,277,278
connectivity
- bidirectional 177
coNP 5, 6, 28, 52, 59-62, 64, 95-97,

100,104-106,194,240,241,269,
271-273,276,277,287,296,306,
307, see set, coNP-complete, see set,
potential lack of sparse ~~-complete,
for coNP, see set, potential lack of
sparse ~~-hard, for coNP

- closure properties see closure, of
coNP ...

coNP /linear 52, 296
coNP /poly 61, 64,276,296
constant function see function,

constant
constant-depth circuits see circuits,

constant-depth, see circuits
constant-to-one function see function,

constant-to-one
construction
- oracle 197,223
- widely-spaced 53, 223
context-free grammar see grammar,

context-free
context-free languages
- closure properties see closure, of

context-free languages ...
context-free set see set, context-free
Cook's Theorem see Theorem, Cook's
Cook, S. 58, 59, 64, 91, 163, 266-268,

275,279-281,305,308
Cook-Karp-Levin Theorem see

Theorem, Cook's
Cook-Levin Theorem see Theorem,

Cook's
Cormen, T. 266
coRP 288-290
coSSFk 185
Count 84-86
counter
- as auxiliary input 302
counting
- enumerative see approximation,

enumerative
counting hierarchy see hierarchy,

counting
coUP 106, 107, 282, 284
course, use of this book in see

textbook, use of this book as

344 Index

coUS 284
Crescenzi, P. 166, 267, 269, 285
cryptocomplexi ty
- average-case see cryptography,

average-case
- worst-case see cryptography,

worst-case
cryptographic protocol see protocol,

cryptographic
cryptography
- and UP 282,283
- average-case 31, 44
- central role of one-way functions in

31
- not helped by non-honest functions

32
- worst-case 31, 33, 44,282
Culbertson, E. 270
culling method see method, culling
cyclic ring see ring, cyclic

DAAD ix
Damm, C. 87, 277
DARPA ix
Davis, M. 264
Deaett, L. vm
decision graph see graph, decision
decrementation
- proper 101
defeat
- another element in a tournament

see tournament, defeat in
- another element with respect to a

P-selector see tournament, defeat
in

degree
- reducibility 240
- total, of a polynomial 111, 112, 126,

140-144, 147, 148, 150-153, 155, 156,
160, 162

Demers, A. 269
DeMilio, R. 163
Denny-Brown, D. 295
dense set see set, dense
density 218, 219
depth
- of a recursion tree 14
derandomization 87
description
- attribute-value 274

see ID - instantaneous
determinant
- of a matrix 148,149

deterministic circuits see circuits,
deterministic

deterministic machine see machine,
... deterministic ...

diagonal elements see elements,
diagonal

diagonalization 55, 197, 285
Dfaz, J. 29,43
difference
- symmetric 68,235,260
digital signature protocol see

protocol, digital signature
dimension
- of a matrix 114,115,117,122,149
direct product see product, direct
disjoint sets see sets, disjoint
disjoint union see union, disjoint
- closure of PP under see closure, of

PP under disjoint union
disjointness 16, 17, 205
- of intervals 12-14
- of restrictions 200, 209
- of subcircuits 205
disjunctive self-reducibility see

self-reducibility, disjunctive, of SAT
disjunctive self-reducible set see set,

disjunctive self-reducible
distribution 224, 225
- probability 219, 299, 302
- probability, of restrictions 198, 200,

202,204,207,208,210,224,225,232
- uniform 116, 131, 162, see selection,

under uniform distribution
divide and conquer
- as a motto 45
Dolev, D. 193
domain 32, 33, 37, 38, 44, 121, 122,

141,142,152,247
- having size at least two 44
- relation of, between a function and a

refinement of that function 58
- size 84
double-exponential time see time,

deterministic double-exponential
downward closure see closure, see

R~(C), R~(C)
downward path see path, downward
downward separation see separation,

downward
DSPACE 87, 89, 271
DTIME 53, 56, 165, 264, 265, 274, 275,

296
Du, D. 282

Durand, A.
Dymond, P.

108
279,280

E 23-25, 28, 64, 265, 268, 273-275,
307, see set, E-complete

E/linear 64
E~(C), E~(C) 276,296,307
edge 45,46,50-52,62,83-86,177-179,

198,199
Edmonds, J. 264, 265
element
- minimum-weight 71
- range 41,42
elements
- diagonal 82, 159
elimination
- Gaussian 146
Emde Boas, P. van see van Emde

Boas, P.
Emerson, E. 274
Encoding
- Buhrman-Hemaspaandra-Longpre

28
- Hartmanis-Immerman-Sewelson

22,24,25,27,28
enumeration
- of all polynomial-time computable

functions 216
- of machines as a central tool in

proving the existence of complete
sets 285

- of NPTMs 58,268
- of NPTMs that are unambiguous on

all inputs, seeming lack of 285
- of oracle NPTMs clocked in a way

that holds over all oracles 60
- of relativized PH machines 213
- of relativized predicates 221
- of relativized predicates specifying

alternating quantifications 221
enumeration algorithm see algorithm,

enumeration
enumerative approximation see

approximation, enumerative
enumerator 119, 163
- polynomial-time computable 119,

163,287,289
Et-T(P-sel) 296
Et-tt(P-sel) 296
Ei-(P-sel) 296
Ei-(SPARSE) 276
equality
- complete 43

-weak
Erd8s, P.
error

43
28

- one-sided
- two-sided
evaluation

87,165,290
166

Index 345

- query see :5ft, see reduction,
polynomial-time truth-table

evaluator
- query 247, 248
evidence
- relativized 18, 27
exhaustive search see search,

exhaustive
EXP 55, 163, 164,274, 275, 284, 296,

298,307, see set, EXP-complete
EXP /linear 296
expansion
- of a tree 6
expectation 135, 137,203
exponential hierarchy
- strong see hierarchy, strong

exponential
exponential time see time, determin-

istic exponential
expression
- arithmetic 138, 140

factor
- of approximation 165, 166,286
False 1,3-7,14,21
family
- circuit 219, 279
family of circuits see circuits, family

of
Feige, U. 164-166
Feigenbaum, J. 64, 163, 164
Feller, W. 163
Fellows, M. 284
Fenner, S. ix, 108,260,269,282,284,

290,293,294,298
FewP 28, 43, 281, 283-285, 287, 293,

296,298
- exponential-time analog of see

analog, exponential-time, of UP,
FewP, EBP, ZPP, RP, or BPP

Fich, F. 193
filter 88
finite monoid see monoid, finite
finite set see set, finite
first 37, 39,42
Fischer, D. 289
Fischer, M. 264, 274, 275,289
Fischer, P. 29

346 Index

Fischer, S. 287
flexibility
- of query generation in :=;J;. 18
Formula see boolean formula
- Lagrange Interpolation 163
- Newman's 260
formula
- 3-CNF 112, 139
- arithmetic 110
- boolean 3, 29, 58, 69, 265, 267, 268,

272,281,286
- fully quantified boolean 177
- quantified boolean 27 4
- quantifier-free boolean 274, see

QBF
- satisfiable boolean 1, 3-7, 56, 58,

112, 267, 294, see SAT
- unsatisfiable boolean 8, 29
- variable-free 3, 7
- well-formed 21
Forster, J. ix
Fortnow, L. ix, 28, 108, 163-165,231,

260,269,270,273,282,284,290,293,
298

Fortune, S. 26, 43, 193
FP 10, 11,57-59,64, 78, 80, 81, 89,

119,236-239,268,291,293,294,305-
307, see function, polynomial-time
computable

Fraenkel, A. 272
Frankl, P. 28
Frege proof see proof, Frege
Frost, R. 266
/SAT 61,294
FTMkP 106, 107, 287
Fu, B. 260
function
- ... two-argument... see function,

... 2-ary ...
- 2-ary 38,44
- 2-ary one-way 31, 32, 36, 37, 39,43
- 2-ary, definitions of additional

properties for 37
- 2-ary, lower bound on the degree of

many-to-one-ness of 44
- advice 48-50, 52, 67, 82, 84
- almost-completely degenerate

boolean 296
- almost-completely degenerate

boolean, closure of P-sel under
see closure, of P-sel under almost
completely degenerate boolean
functions

- associative 42, 43, see function,
... associative ...

- associative 2-ary 38
- associative, 2-ary one-way 44
- associativity of 38
-boolean 10, 11, 14,174,208,245
- bounded-ambiguity 35
- bounded-ambiguity one-way 35,

284
-census 49
- characteristic 105, 242
- characterizing a ::;ttt-reduction 10
- commutative 41,44
- commutative 2-ary 38
- commutative, associative, 2-ary 43
- commutativity of 38
- completely degenerate boolean 296
- completely degenerate boolean,

closure of P-sel under see closure,
of P-sel under completely degenerate
boolean functions

-constant 96,181,200,208,211,239
- constant-to-one 35
- constant-to-one one-way 31,35
- determinant 279
- deterministic 291,294
- dishonest 37
- edge-weight 83
- gap 235, 236, 258,260, see function,

GapP, see GapP, see GapNC, see
GapP, see #gapN(x)

- GapP see function, gap, see GapP,
see #gapN(x)

- GapP 102, 236, 237, 239-242, 244,
247,248,251,252

-honest 32-34,37,41-43,269,282
- honest 2-ary 37, see function,

honest
- honest, strongly noninvertible 43
- inverse of 32, 34, 35, 37, 42
- invertible 33
- k-to-one 35
- length-decreasing 32
- low-ambiguity, commutative,

· associative one-way 42
-magic 223
- many-one one-way 268
- mod 106, 119, 120, 122, 127, 129,

132,133,141,146,155,158,160-162,
193

- multivalued 56-59,61,89, 292, 294

- nondeterministic 56, 291,294, see
function, NPMV, see NPMV, see
NPSV

- nondeterministic polynomial-time
56, see function, NPMV, see NPMV,
see NPSV

- nondeterministic selector 57
nondeterministic total 64

- noninvertible 32-34
- NPMV 58, 59, 61,63-65, 108,

291-294, see NPMV
NPSV 57, see NPSV

- NPSV-selector 61-63, 297, see
NPSV-sel, see selectivity

- of a matrix 114
- one-argument one-way 32, 36
- one-to-one 33, 34, 42, 43
- one-to-one one-way 31, 34, 35, 43
- one-way 31-33,35,37-39,42,43
- optimization 297, see function,

OptP, see OptP
- OptP see OptP

OptP 103-105, 182, 297
oracle 147, 149, 155
P-selector 47-49, 51, 54, 297, see
P-sel, see selectivity
patrmg 39, 54, see function,
standard pairing
parity 167, 193, 197,200-202,204,
206,207,213,216,218,219,222,224,
231,232,280,297
partial 38, 43, 57, 59, 61, 62, 64, 282,
291,294
partial selector 61
permanent 110,112-116,119,122
polynomial-time computability and
invertibility of pairing 33
polynomial-time computable 5,
32,33,37,38,40,41,47,48,57,79,
99,106,113,176,180,181,185,194,
213-216,228,237,238,241,246,
265,268,269,282,284,290-292,see
FP, see function, polynomial-time
computable ...
polynomial-time computable 2-ary
294,295
polynomial-time computable
one-to-one 265
polynomial-time computable total
241

- polynomial-time invertible 32, 33,
41,246

- polynomial-time invertible 2-ary 37

Index 347

- polynomial-time noninvertible 37
- polynomial-time selector 295
- polynomial-to-one one-way 43
- polynomially bounded 256
- probabilistic 187
- projection 37
- ranking 286
- recursive 56, 123
- recursive selector 295
- s-honest 37, 38, 41
- s-honest 2-ary 38, see function,

s-honest
- selector 53, 57, 59, 61, 62, 294, 297,

see selectivity
- selector, oblivious to the order of its

arguments 297
- selector, symmetric 297
- #P 80, 88, 92,94-97,99-103, 106,

121,286, see #P
- sign 235, 242
- single-valued 57,294
- single-valued NPMV see NPSV
- special pairing 70
- standard pairing 33,39-41
- strong, total, commutative, associate

one-way 36
- strong, total, commutative, as

sociative 2-ary one-way 36,
37

- strong, total, commutative, as
sociative, 2-ary one-way 40,
42

- strongly noninvertible 2-ary 38
- strongly noninvertible, total, commu-

tative, associative, 2-ary, O(n)-one
one-way 44

- strongly noninvertible, total, commu
tative, associative, 2-ary, many-one
one-way 31,38,39,268

- symmetric 231
- total 236-238
- total single-valued 282
- total, associative, 2-ary one-way 44
- total, associative, 2-ary one-way,

upper bounds on the degree of
many-to-one-ness of 43

- total, weakly-associative, 2-ary
one-way, potential lack of 44

- two-argument... see function,
... 2-ary ...

- unambiguous 35
- unambiguous inversion of 35
- unambiguous one-way 35, 284

348 Index

- weight 68, 69, 71, 72, 83,84
- zero, modulo a prime 144
Fiiredi, Z. 28
Fiirer, M. 289
Furst, M. 192,194,232,264,303

Gabarr6, J. 43
Gal, A. 87, 89
gallery
-rogues' 263,305
Gambosi, G. 166, 267
game see problem, game
- cat and mouse 264
- combinatorial 265
- in a tournament 46
- of pursuit and evasion 265
GAP 82, 83, see Problem, Graph

Accessibility
6AP 82-86
GapL 235, 252-254, 257, 258, see

function, gap
GapNC 194, see function, gap
GapP 102, 107, 108, 191, 192,235-242,

244,245,247-249,251-253,258-260,
see function, gap, see function,
GapP, see function, #gapN(x)

Garey, M. 87, 267, 272
Gasarch, W. ix, 63, 163, 286, 289, 296,

297
gate
-AND 88,89,172,177,178,198,201,

217,229,279,308
-input 172,174,198,217,229,230
- MAJORITY 88, 89
- MODULO 88, 302
- OR 88, 89, 172, 173, 176-178, 198,

201,217,220,229,279,308
- oracle 308
-output 172,174,177,198,201,217,

220,229,230
-PARITY 88
- symmetric 89
- threshold 232, 260
- top 198
Gaussian elimination see elimination,

Gaussian
Gavalda, R. 27, 64,276
Geffert, V. ix, 27
GEM 2, 31, 32, 35, 45, 62, 68, 93,110,

168,197,236
Gemmell, P. 164
generator

- polynomial-time pseudorandom
265

- pseudorandom 31, 44
-query 246-248,251,257
- query, length-increasing 246-248,

257
generators
- permutation group membership from

264
Gengler, R. 27
Gill, J. 87, 106, 231, 232, 260, 268-270,

272,273,278,279,288-290,293,297,
298

GlaBer, C. 27
Godel, K. 264
Goldberg, A. 265, 286
Goldreich, 0. ix, 269, 289,300
Goldschlager, L. 297, 298
Goldsmith, J. 29,265,287,293, 296
Goldstein, G. viii
Goldwasser, S. 163-166, 269, 277,300
Goldwurm, M. 286
Gottlob, G. 269
Grail
-Holy 67
grammar
- context-free 265, 272
graph 45
- automorphism counting in 289
- decision 193
- directed, reachability sets in 50
- representing boolean circuit 279
- representing unbounded fan-in circuit

198
- short paths problem in 233
- topologically sorted directed 278
-tournament 45,47,50,52,see

tournament
Graph Accessibility Problem see

Problem, Graph Accessibility
graph isomorphism see Problem,

Graph Isomorphism
Graph Isomorphism Problem see

Problem, Graph Isomorphism
graphs
- isomorphic 289
greedy algorithm see algorithm,

greedy
Green, F. viii, 88,232
Greenlaw, R. 265
Grollmann, J. 43, 282-284
group
- multiplicative 112

- nilpotent 193
- nonsolvable 167, 174
- nonsolvable permutation 167, 168
- order of see order, of a group
- permutation 167, 168
growth
- slower, of polynomials 264
Gruska, J. 194
guess
- of an oracle answer 186
Gundermann, T. 26, 27, 106, 107,260,

274,275
Gupta, S. 88, 106-108,260
Gurevich, Y. 269, 283
Guruswami, V. 166

Halpern, J. 274
Han, Y. 27, 265,277, 289, 295
hardness see NP-hard
- for UP 283
- NP 166
- NP-::;:tt 8, 26
- NP-:$~tt 26
- NP-:$~tt 26
- NP-:$!':, 18
- NP-:$~ 18, 20
- of sets, classifying via reductions

305
- relative, of sets 305
Hardy, G. 163
Hartmanis, J. ix, 22, 24,26-29, 106,

107,163,231,264,269,270,272,
274-277,282-285,300

Hartmanis-lmmerman-Sewelson En-
coding see Encoding, Hartmanis
Immerman-Sewelson

Hartmanis-Immerman-Sewelson
Theorem see Encoding,
Hartmanis-lmmerman-Sewelson

Hastad, J. 44, 166,232,269, 3oo
head
- input-tape 255
- work-tape 255
Heberle, E. ix
Heller, H. 87,289
Hemachandra, L. see Hemaspaandra,

L.
Hemaspaandra, E. ix, 28, 63, 272-274,

296,303,308
Hemaspaandra, L. iv, ix, 1, 26--29,43,

44,63-65,106-108,163,192-194,231,
260,265,268,269,272-277,282-290,
293,295-298,303,308

Index 349

Hempel, H. ix, 28, 273, 303
Hermann, M. 108
Hertrampf, U. viii, 87, 88, 107, 194,

277,297,298,301,303
hierarchy
- alternation-based, small-space 27
- arithmetical 270, 271,277
-boolean 27
- bounded to I:t 28
- BPP 73,75
- C=L 261
- counting 252
- counting, logspace analog of 279
- Kleene 271,277, see hierarchy,

arithmetical
- limited-nondeterminism 29
- NL 82
- oracle, of C=L 279
- oracle, of PL 279
- PL 252, 254, 256, 260
- polynomial 1, 18, 22, 25, 28, 29, 43,

50,56,58,63-65,67, 73, 78,81,82,87,
115,186,197,213,222,223,228,231,
232,268-275,277,296,297,see ~t.
see hierarchy, polynomial, see PH,
see rrt, see I:t, see et

- polynomial, exponential-time analogs
of 22,274

- polynomial-time see enumeration,
of relativized PH machines, see
hierarchy, polynomial

- probabilistic logspace see PLH
- query, to NP 25, 28
- strong exponential 22, 27,275
Hoang, T. 279
Hoene, A. 64,193,269,296,297,303
Hoffmann, C. 264
Hofmann, A. ix
Holy Grail see Grail, Holy
Holzwarth, F. ix
Homan, C. viii, 44
Homer, S. 26, 27,265,275,294
honest function see function, honest
honesty see function, honest
- why a natural condition 32
Hoover, H. 265
Hopcroft, J. 27, 43,264,266
Huang, M. 289, 290
Hunt, H. 274, 275
Huynh, D. 272, 286

ID 255,256
Ilardi, P. ix

350 Index

Immerman, N. 22, 24, 27-29, 269, 274,
275,277,278,281

immunity 28, 232, 284
lmpagliazzo, R. 29, 44, 64, 233, 289
In Polynomial Time We Trust 45
incantations vii
Inequality
- Chebyshev's 135, 137, 163, 203, 204
input gate see gate, input
input tape see tape, input
instantaneous description see ID
instantiation
- random, of variables 110
integer subtraction see subtraction,

integer
interaction 109, 110, 115, 116, 123,

124, 132, 136, 137, 299, see system,
interactive proof

interpolation
- polynomial see Technique,

Polynomial Interpolation
interpreter
- advice 48, 49, 52, 62, see advice
- nondeterministic 51, see advice
- probabilistic see advice
- probabilistic, of advice 49
intersection
- closure of NP under see closure, of

NP under intersection
- closure of PP under see closure, of

PP under intersection
- closure of probabilistic-NC1 under

see closure, of probabilistic-NC1

under intersection
- closure of UP under see closure, of

UP under intersection
interval 12-18, see disjointness, of

intervals, see procedure, interval
pruning, see refinement, of a set of
intervals, see splitting, of intervals

invariant 4, 5
inverse
- matrix 159
- multiplicative 120, 160
IP 111,114,115,122,123,125,131,

163,164,273,288,299,300,see
system, interactive proof

Isolation Lemma see Lemma,
Isolation

isomorphism
- graph see Problem, Graph

Isomorphism
Istrate, G. viii

Iwata, S. 264, 265, 272, 274

Jain, S. 268,283, 285, 288,308
Jenner, B. 278, 289
Jha, S. 28, 29
Jiang, Z. 63, 296, 297
Jockusch, C. 295
Johnson, D. 87,267,272
Jones,·N. 265
Joseph, D. 282, 283, 296, 297
JSPS ix
Jung, H. 260, 278, 279

k-locally self-reducible set see set,
k-locally self-reducible

k-round parallel access see access,
k-round parallel

Kadin, J. 27
Kamper, J. 64
Kann, V. 166, 267
Kannan, R. 88
Kannan, S. 27, 164
Kao, M. 289
Karloff, H. 163, 270
Karp, R. 20, 27, 60, 64, 91, 266, 267,

276,277
Karp-Lipton Theorem see Theorem,

Karp-Lipton
Kasai, T. 264, 265, 272, 274
Kilian, J. 64, 164,277,300
King Arthur see Pendragon, A.
Kintala, C. 29
Kleene hierarchy see hierarchy,

arithmetical
Kleene, S. 43
Ko, K. 43, 63, 87, 232, 273, 282, 289,

295,296,308
Kobayashi, K. ix
Kobler, J. 27, 64, 88, 276,277,284,

289,293,298,299
Koblitz, N. 284
Kolaitis, P. 108
Kolmogorov complexity see complex

ity, Kolmogorov
Kolmogorov-easy string see string,

Kolmogorov-easy
Koml6s, J. 280
Kosub, S. ix, 65, 108
Kazen, D. 266, 272
Krentel, M. 297
Ku, J. vm
Kumar, A. 289
Kummer, M. 296
Kunen, K. 265

l<urtz, S. 108,260,269,275,282-284,
290,293,298

L 82,265,277, 278
Ladner, R. 265,268, 274,279,308
Lagakos, D. vm
Lagrange Interpolation Formula see

Formula, Lagrange Interpolation
Landau, H. 64
Lang, S. 163
Lange, K 278
language see set
- canonical complete see set,

canonical complete
- leaf 268
Lapidot, D. 164
Lasser, W. 265
Lautemann, C. 194
leaf 170,177-180,198,199,217,227,

230
leaf language see language, leaf
Learn, A. vm
Lebesgue measure see measure,

Lebesgue
Lee, C. 193, 302
Leiserson, C. 266
Lemma
- Isolation 68, 70, 83, 87, 89, see

Technique, Isolation
- Switching 207,232,233
length-decreasing function see

function, length-decreasing
Levin, L. 44,64,91,164,165,267,268
Lewin, D. 166
Lewis, P. 27
lexicographic comparison see order,

lexicographic
lexicographic order see order,

lexicographic
lexmin 40, 41
Li, L. 284
Li, T. Vlll

Lichtenstein, D. 274
limited-nondeterminism hierarchy see

hierarchy, limited-nondeterminism
Lindner, W. 64, 296
linear-sized advice see advice,

linear-sized
Lipton, R. ix, 20, 27, 60, 64, 163, 164,

193,276,277
Liskiewicz, M. 27
literals
- conflicting 199

Index 351

logarithmic-space boundedness see
boundedness, logarithmic-space

LOGCFL 279-281
- closure properties see closure, of

LOGCFL ...
logic
- branching time 274
- propositional dynamic 274,275
logspace see C=L, see L, see NL, see

PL, see space, logarithmic, see UL
- randomized 279
logspace machine see machine,

.. .logspace ...
logspace reduction see reduction,

.. .logspace ...
logspace-uniform circuits see circuits,

logspace-uniform
Long, T. 64,65,232,273,282,294,308
Longpre, L. 26-28,308
Lovasz, L. 164-166
low-degree polynomial see polyno-

mial, low-degree
lower bound see bound, lower
lowness
- of sparse sets 273
Lozano, A. 27, 277,298
Luby, M. 44, 164
Luks, E. 264
Lund, C. 163-166,269, 270
Lupanov, 0. 232
Lusena, C. 293
Lynch, N. 279, 308

MA 164,275
Macarie, I. viii
machine
- alternating 271, 272
- alternating logarithmic space 280,

281
- bottleneck 194, 301, 303, see

computation, bottleneck, see
ProbabilisticSSFk, see SFk, see SSFk

- bounded-width bottleneck 176,
181, 185,301,302, see computation,
bottleneck, see ProbabilisticSSFk, see
SFk, see SSFk

- bounded-width probabilistic
symmetric bottleneck 301, see
ProbabilisticSSFk

- bounded-width symmetric bottleneck
185, 186,301,302, see SSFk

- categorical 282, 284, see UP
- deterministic 214

352 Index

deterministic logarithmic space
277, 279, see L

- deterministic polynomial-space
125, 176, see PSPACE

- deterministic polynomial-time 1, 3,
6,24, 112,117,264,280,285,294,302,
306, see P

- deterministic polynomial-time oracle
19,20,57,194,214,246,269

- expected-polynomial-time probabilis-
tic 22, see ZPP

- generic 275
- multi-tape 255
- nondeterministic 94, 121, 138,239,

258,266,297, see NEXT, see NE,
see NP, see tree, computation, of a
nondeterministic polynomial-time
Thring machine

- nondeterministic exponential-time
23, 24, 112, see NEXT, see NE

- nondeterministic logarithmic space
82, 277, 278, see NL

- nondeterministic logarithmic space
oracle 279

- nondeterministic polynomial-time
10,54,57-59,61,62,69, 76, 79,80,
92-106,113,139,182,183,186,238,
239,251,260,266,281,283,285,
286,290, 291, 294, see enumeration,
of NPTMs, see enumeration, of
relativized PH machines, see NP

- nondeterministic polynomial-time
oracle 19, 20, 76, 80, 186, 213, 269

- nondeterministic polynomial-time,
logarithmic space 252, 253
nondeterministic polynomial-time,
logarithmic space oracle 254

- nondeterministic space-bounded
oracle 254

- oblivious oracle NL 254, 256
- oblivious RSTNL 256, 257
- polynomial-space 112, 274, see

PSPACE
- polynomial-time oracle 115

probabilistic 71, see BPP, see coRP,
see PP, see RP, see ZPP
probabilistic bounded-width
symmetric bottleneck 302, see
ProbabilisticSSFk

- probabilistic logarithmic space 278,
see PL

- probabilistic polynomial-time 49,
70, 75, 138, 288, 290, 291, see BPP, see
PP, see RP, see ZPP

- probabilistic polynomial-time oracle
72,75,110,134, 138,142,299

- probabilistic polynomial-time,
logarithmic space 260, see PL

- probabilistic symmetric bot
tleneck 186, 192, 302, 303, see
ProbabilisticSSFk

- probabilistic Thring 74, see BPP,
see PP, see RP, see ZPP

- RSTNL 254, 255
symmetric bottleneck 185, 194, 302,
303, see SSFk

- symmetric bounded-width bottleneck
185, see SSFk

- unambiguous NP 34, see UP
- universal 55
Maciel, A. ix, 298
Mahaney's Theorem see Theorem,

Mahaney's
Mahaney, S. 2,8,26,27,269,282,283
MAJORITY gate see gate, MAJOR-

ITY
MajSat 293
Marchetti-Spaccamela, A. 166, 267
Masek, W. 193
matrix
- adjacency 82
- determinant see determinant, of a

matrix
- dimension see dimension, of a

matrix
- lower triangular 159
- minor see minor, of a matrix
- nonsingular 149, 278
- permanent see permanent, of a

matrix
- Vandermonde 148, 149, 153
matrix inverse see inverse, matrix
matrix multiplication see multiplica-

tion, matrix
maximally disjoint circuit see circuit,

maximally disjoint
maximization 102
maximum 99-103, 181, 183,287
- lexicographic 9, 16
Mayer, I. ix
Maynard
- Brother 67
McKenzie, P. 194,260, 289
measure

- Lebesgue 218
mechanism
- acceptance 2
Meine!, C. 87, 277
Melkebeek, D. van see van Melkebeek,

D.
membership algorithm see algorithm,

membership
Merkle, W. ix
Merlin 300
method
- counting 218
- culling 13, 17
- isolation 89
- tableau 112, 127, 139, 163, see

Theorem, Cook's
Meyer, A. 27, 29,264,270-272,275,

277,296
Micali, S. 269, 300
MIN 201, 208-210
MINIMAL-FORMULAS 272
minimization 102
m1mmum 100-103, 287
- lexicographic 15
minimum weight see weight,

minimum
minimum-weight element see element,

minimum-weight
minimum-weight path see path,

minimum-weight
minimum-weight set see set,

minimum-weight
minor
- of a matrix 112,113,116,117,119,

120
Minsky, M. 232
minterm 200, 201, 208, 209
Min Weight 68, 69,84-86
Min WeightSet 68, 69
MIP 111, 133, 134, 137, 138, 164, 165,

275,299,300, see system, interactive
proof

ModkP 87, 194, 297, 298,301, see
closure, of ModkP ... , see ESP, see set,
ModkP-complete, see set, potential
lack of sparse ~~tt-hard, for ModkP

MODULO gate see gate, MODULO
ModZkP 106
monoid 168, 193, 301
- aperiodic 193,301
- finite 17 4, 193
- solvable 193

Index 353

monoid operation see operation,
monoid

morsel
- bite-sized 24
motto
- of computer science 45
Motwani, R. 165, 166, 269
moves
- randomized, directed by coin tosses

74
Mukherji, P. viii
Mulmuley, K. 87, 89
multilinear polynomial see polyno

mial, multilinear
multilinear testing see testing,

multilinear
multiparty protocol see protocol,

multiparty
multiple
- of a power of 2 79
multiplication see assignments, of

multi plication
- closure of #P under see closure, of

#P under multiplication
multiplication group see group,

multiplication
multiprover protocol see protocol,

multi prover
multiset 160
multivalued function see function,

multi valued
multivariate polynomial see polyno

mial, multivariate
Mundhenk, M. 27, 277, 293

Naik, A. 29, 63-65, 88, 265, 276, 284,
295-297

Nasipak, C. 63
Nasser, N. 260
natural polynomial see closure,

of natural polynomials under
multiplication, see polynomial,
natural

NC, NCk 167,168,171, 174, 176,193,
195,260,261,269,279-281,293,301,
302,308, see characterization, robust,
of NC, see class, circuit

NC1 circuits see circuits, NC1

NE 23-25, 28, 265, 268, 274, 275, see
set, NE-complete

near-testable set see set, near-testable
nearly near-testable set see set, nearly

near-testable

354 Index

Neumann, J. von see von Neumann,
J.

Newman's Formula see Formula,
Newman's

Newman, D. 260
NEXP 110, 112, 133, 134, 137, 138,

145,163-165,274,275,300
NIA ix
Nickelsen, A. 297
nilpotent group see group, nilpotent
Nisan, N. 28, 163, 164, 270, 278, 279
NL 67, 68,82-84,87,89,277,278,

280,281, see set, NL-complete, with
respect to 1-L reductions, see set,
NL-complete

NL hierarchy see hierarchy, NL
NL/poly 68, 82, 84, 278
nonapproximability see approxima-

tion
- of NP optimization problems 166,

267
nonconstructive proof see proof,

nonconstructive
nondeterminism 20, 267, see FewP, see

NEXP, see NE, see NL, see NP, see
UL, see UP

- ambiguous 87
- linear 52
- unambiguous 87
nondeterministic algorithm see

algorithm, nondeterministic
nondeterministic auxiliary push-

down automata see automata,
nondeterministic auxiliary pushdown

nondeterministic machine see
machine, ... nondeterministic ...

noninvertibility
- of non-honest functions 32
- strong 37-39,41,43
noninvertible function see function,

... noninvertible ...
nonleaf see leaf
nonsingular matrix see matrix,

nonsingular
nonsolvable group see group,

nonsolvable
nonuniform complexity see complex

ity, nonuniform
nonuniform deterministic finite

automata see NUDFA
nonuniform-NC1 167,168,171,174
normalization
- of coin tosses 74

Notes
- Bibliographic ix, 26, 38, 43, 63, 64,

87,106,163,192,231,260,308
NP 1-3, 5, 6, 8-11, 18-29,31,33-35,

39,41,43-45,49-65,67-70,72,73,
87,89,91,93-100,102,104-106,
109,131,163-166,185,186,192,
194,197,231,232,263-278,282-287,
289,292-294,296-301,305-308,see
circuits, small for NP, see machine,
nondeterministic polynomial-time,
see SAT, see set, NP-complete
ones that are non-isomorphic, see
set, NP-complete, ones that are
P-isomorphic, see set, NP-complete,
relativizably so, see set, NP
complete, see set, possibility of NP
having sparse Turing-complete, see
set, possibility of NP having sparse
Turing-hard, see set, potential lack
of sparse ::;~tt-hard, for NP, see set,
potential lack of sparse ::;~tt-hard,
for NP, see set, potential lack of
sparse ::;!:.,-complete, for NP, see set,
potential lack of sparse ::;~-complete,
for NP, see set, potential lack of
sparse ::;~-hard, for NP, see set,
potential lack of tally ::;!:.,-complete,
for NP, see set, potential lack of tally
::;!:.,-hard, for NP, see set, sparse, in
NP, see set, sparse, in P, see tree,
computation, of a nondeterministic
polynomial-time Turing machine

- closure properties see closure, of
NP ...

NP-hard 3, 6, 8, 9, 11, 19-22, 26, 27,
29, 60, 268, 296, see hardness, NP ...

NP-hardness see hardness, NP ... , see
NP-hard

NP-hardness of approximation see
approximation, NP-hardness of

NP-printable set see set, NP-printable
NP-selective set see set, NP-selective
NP /linear 49, 51, 52, 63, 296
NP /poly 61, 64, 276, 296
NPFewV 65
(NP n coNP)/poly 59-62,64,276,

296
NPkV 65
NPMV 57-59,61,63-65, 89, 108,

291-294,306, see function, NPMV
NPSV 57-59,61-65,291-295,297, see

refinement, NPSV

NPSV-sel 59, 61, 62, 296, see function,
NPSV -selector

NPTM see machine, nondeterministic
polynomial-time

NSF ix
NTIME 266, 267, 274, 275
NUDFA 193,301
number
- of primes 122

oblivious machine see machine,
oblivious ...

obliviousness
- of selector functions 297
Ogihara, Ellen ix
Ogihara, Emi ix
Ogihara, Erica ix
Ogihara, M. iv, ix, 1, 26, 27, 29, 63-65,

87,106-108,193,194,260,261,265,
269,276-279,287,290,293-298,301,
303,308

Ogihara-Watanabe Theorem see
Theorem, Ogihara-Watanabe

Ogiwara, M. see Ogihara, M.
one-sided error see error, one-sided
One-Way Conjecture see Conjecture,

One-Way
one-way function see function,

... one-way ...
operation 92, 99, 107
- 1-ary 100
- 2-ary 100
- associative 168, 169
- boolean 280
-monoid 169
- multi-argument 107
- one-argument 107
- polynomial-time computable 92,

93,95-99,101,104,105,108,287
operator
- BP 87, 88,301
- R 87, 88,297
optimal advice see advice, optimal
optimization function see function,

optimization
optimization problem see problem,

NP optimization
OptP 103-105,107,108,181-183,297,

299, see function, OptP
- closure properties see closure, of

OptP ...
OR circuits see circuits, OR
OR gate see gate, OR

Index 355

OR-AND circuits see circuits,
OR-AND

oracle 19-21, 28, 29, 57, 64, 72, 75, 81,
87,107,115,121,123,132,134-138,
141,142,144,146,147,149,151,
152,155,163-165,187,192,197,
207,213,214,216,218,222,223,228,
231,246,247,249-252,254-258,
268-270,282,284,285,293,306,308,
see separation, by an oracle, see
world, relativized

- C=P 192
- E9P 76
- PSPACE-complete 197
- #P 80
- NP 1,19,89
- perm 115-117
-PH 194
- PL 256
-random 64,89,219,232,268,269,

273,282,300
- sparse 21
oracle construction see construction,

oracle
oracle function see function, oracle
oracle gate see gate, oracle
oracle machine see machine,

... oracle ...
order
- among the variables 199,200
- lexicographic 5, 7, 9, 12, 14-16,36,

40,42,55-57,80,91,100,101,163,
194,228,238,265

- of a group 112
- of all possible moves 138
- of instructions 181, 185
- of the nodes in a graph 82
- of the non-appendix chapters viii
Othello 272
overhead
- quadratic 55

p 1, 2, 5, 8-12, 18, 19,22-29,33-36,
39-41,43,44,47-49,57,60,63,68, 70,
72-78,8Q-82,87,91,93,95,97-99,
106,107,110,112,114,115,119,139,
163-165,183,187,194,197,231,
232,236,240,252,259,263-277,
282-287,289,293-298,300,305,306,
308, see machine, deterministic
polynomial-time, see set, potential
lack of sparse ~~tt-hard, for P

P-capturable set see set, P-capturable
P-close set see set, P-close

356 Index

P-immune see immunity
P-immunity see immunity
P-isomorphism 26, 31, 269,278, 282
P-sel 47-49,51,52, 56, 63, 64, 276,

294-296, 298, see circuits, small, for
the semi-feasible sets, see function,
P-selector

- closure properties see closure, of
P-sel...

P-selector function see function,
P-selector

P-uniform circuits see circuits,
P-uniform

P-uniformAC1 (C=P) 293
P-uniformACk(C=P) 308
P-uniformNC 1 (C=P) 293
P-uniformNCk(C=P) 308
P /linear 48, 63
P /poly 22, 27, 47, 48, 60, 63, 75, 76, 78,

87,164,263,275-277,289,296
P /quadratic 48, 49, 63, 276, 296
padding see set, paddable, see set,

padded version of, see translation,
via padding

- of strings 49
pair
- matrix-integer 115, 117
pairing function see function, pairing,

see function, standard pairing
Papadimitriou, C. ix, 87, 271,272,

274,275, 297,298
Papathanasiou, T. ix
Papert, S. 232
parallel access to NP see access,

parallel, to NP
parallel queries see queries, parallel
parameterized strategy see strategy,

parameterized
Parberry, I. 297, 298
parity
- of #ace 76, 77
- of a number 239
parity circuits see approximation, of

threshold circuits by parity circuits,
see circuits, parity

parity exponential time see time,
parity exponential

parity function see function, parity
PARITY gate see gate, PARITY
Parkins, K. 63
partial function see function, partial
partition
- of potential queries 216, 222, 229

- of variables 224
Pasanen, K. 43
Paterson, M. 296
path see reduction, of the number of

accepting paths
-downward 174,177,179,198
- minimum-weight 83, 84,86
- nondeterministic 62, see machine,

nondeterministic polynomial
- rejecting computation 59, 99, 101,

105,235, 236,238,294, see #rejN(x)
- unique accepting computation 281,

285
- unique minimum-weight 84
- unique successful computation 86
paths
- shortness of, in a tournament 51
Paturi, R. 260
Paul, W. 193
PBP 167, 168, 171, 174, 193, 300-302
- width of see width, of PBP
pc=P see set, pC=P -complete
PCP Theorem see Theorem, PCP
PCP(J(n),g(n)) 165,269
pebble 167,232
pebbling game see game, pebbling
Pendragon, A. 67, 300
perceptron 232
perm 113-122, see permanent
permanent see perm, see protocol, for

permanent
- of a matrix 112, 113, 115, 118, 119
permanent function see function,

permanent
permutation 113,114, 121,172, 185,

188-190,192,193,302
permutation group see group,

permutation
permutation group membership see

generators, permutation group
membership from

PH 19, 20, 22, 27, 43, 58, 60, 61, 64,
67,68, 73, 78,81,82,87,88,97, 101,
105,115,119,164,194,197,207,213,
218,219,221-223,228,231,232,
259,271-273,276,286,287,289,293,
294,297,298,301, see hierarchy,
polynomial, see set, sparse, in PH

- exponential-time analog of see
analog, exponential-time, of the
polynomial hierarchy

Pinheiro, E. ix
Pippenger, N. 279-281

Pitassi, T. 232, 233
PL 82, 252, 254, 256, 260, 278-280, see

set, canonical complete for PL, see
set, PL-complete

- closure properties see closure, of
PL ...

PL hierarchy see hierarchy, PL
PL oracle hierarchy see hierarchy,

oracle, of PL
PLH 254
pNP(O(logn)] 1, 19, see 8~

polylog-depth circuits see circuits,
polylog-depth constant-size, see
circuits, polylog-depth polynomial
size

polynomial see specification, unique,
of a polynomial by coefficients, see
specification, unique, of a polynomial
by points, see specification, unique,
of a polynomial
increasing 75

- low-degree 111, 112,242, see char
acterization, robust, of low-degree
polynomials
multilinear 141, 164
multivariate 111, 112, 141, 156,235
natural 247,248,251,255-257

-nonzero 111,112,150,151
root of see root, of a polynomial
strictly increasing 11, 75, 184,247

- two-variable 242
univariate 111

polynomial hierarchy see hierarchy,
polynomial

polynomial interpolation see Tech
nique, Polynomial Interpolation

polynomial machine see machine,
... polynomial. ..

polynomial-depth circuits see circuits,
polynomial-depth

polynomial-size circuits see circuits,
polynomial-size

polynomial-space boundedness see
boundedness, polynomial-space

polynomial-time algorithm see
algorithm, polynomial-time

polynomial-time boundedness see
boundedness, polynomial-time

polynomial-time computable enumer
ator see enumerator, polynomial
time computable

Index 357

polynomial-time computable function
see function, polynomial-time
computable

polynomial-time computable operator
see operator, polynomial-time
computable

polynomial-time predicate see
predicate, polynomial-time

polynomial-time reduction see
reduction, ... polynomial-time ...

polynomial-time relation see relation,
polynomial-time

Pomerance, C. 277
position
- input-tape head 255
- work-tape head 255
Post, E. 264
power
- relative, of different complexity

classes 22
pp 49, 50, 67, 68, 78,80-82,87,94-99,

101,105-107,112,119,186,232,
235-237,239-242,244,245,247-252,
259,260,263,273,279,286,287,
290-293, 296-298,300,301, see class,
counting, see set, PP-complete

- closure properties see closure, of
PP ...

PP /linear 49, 50
pPP see set, canonical complete for

pPP

Pr 135,187-189,191,208-210,278,
288,291,302

Pratt, V. 163, 274
predecessor 180,194
predicate
- polynomial-time 95, 102, 103, 267,

271,283,288,292,298
preimage 34, 42
primality see certificate, of primality,

see number, of primes, see set, of all
prime numbers, see set, of primes

- complexity of 99,267,277,284,289,
290

- complexity of certificate checking
131,132,142

Prime Number Theorem see
Theorem, Prime Number

Principle
- Pigeonhole 222, 233
probabilistic circuits see circuits,

probabilistic

358 Index

probabilistic function see function,
probabilistic

probabilistic logspace hierarchy see
PLH

probabilistic machine see machine,
... probabilistic ...

probabilistic oracle protocol see
protocol, probabilistic oracle

-NC1

- closure properties see closure, of
probabilistic-NC1 ...

probabilistic-NC1 260
Probabilistic-PSPACE 273
probabilistically checkable proof see

proof, probabilistically checkable
ProbabilisticSSFk 186, 188, 192,301,

302
probability
-acceptance 116,117,123,124,

134-136,289
- maximum acceptance
probability distribution

tion, probability
Problem
- Graph Accessibility

GAP

116,124
see distribu-

82, 89, see

- Graph Isomorphism 267,269,289
- Unique Optimal Traveling Salesper-

son 272
problem see set
- NP optimization 166, 266, 267
- adversary 274
- boolean formula minimization 272
- canonical complete see set,

canonical complete
- evaluation, of polynomials over

integer matrices 278
-game 274
- game-based 274
- pebbling 264
- PSPACE 124
- robotics configuration space 264
- word 193
procedure
- enumeration 12, 13
- interval-pruning 1, 12-18
- nondeterministic logarithmic space

84, see NL
- polynomial-time 12, 13, see FP, see

p
- polynomial-time search 12
- self-reducibility-based tree-pruning

2

- tree-pruning 1-3,6
product
- direct 193
- of all prime divisors 298
- partial 175
program
- bounded-width branching 167, 168,

193,194,300-302
- bounded-width-branching see PBP
- branching 172, 193, see PBP
- branching, generalizing the notion

174
- over a monoid 193
- straight-line 164, 194
programs see machine, see PBP, see

procedure
- bounded-width permutation-only

branching 194
- bounded-width polynomial-size

branching 168,169,172,173,301
- polynomial-size, permutation-only

branching 193
projection function see function,

projection
promise
- in the definition of SPP 290
- in the definition of UP 285
proof
- census-based 20
- deterministically verifiable 109
- Frege 233
- nonconstructive 198
- probabilistically checkable 267, see

PCP(f(n),g(n))
- relativizable 60
proper decrement see decrement,

proper
proper subtraction see subtraction,

proper
property see closure
- ::;~-hardness, of PP for PH 50, 67
- closure, hardest 93
- closure, of C=L 261
- closure, of #P 94, 98, 99
- closure, of #P involving binomial

and multinomial coefficients 93
- intermediate closure 99
- NP-completeness, of SAT under

::;~-reduction 61
- one-argument, of GapP 108
- one-to-one, of one-way functions

34,44

- polynomial-time computable closure
107

- polynomial-time computable closure,
of OptP 104

propositional dynamic logic see logic,
propositional dynamic

Protasi, M. 166, 267
protocol 110,112,115-119,123,125,

126,129,131,136,147-149,153,165,
see completeness, of a protocol, see
interactive protocol, see soundness,
of a protocol, see system, interactive
proof

- building block for 31, 36,43
- cryptographic 31, 36
- digital signature 43
- for an interactive proof system 109
- for permanent 110, 115, 116
- for PSPACE 132
- for reachability 126
- fully parallelized multiprover

interactive proof 164
- multiparty 36
- multiprover 164
- one-round perfect-zero-knowledge

164
- one-sided-error PCP 166
- probabilistic oracle 134, 135, 138,

142, 164, 165
- probabilistic polynomial-time

protocol 269
- two-prover 135
- two-sided-error PCP 166
prover 109-111, 115, 116, 118, 119,

123-125,131-136,163,165,299,300,
see system, interactive proof

- deterministic 123, 134, 136
- power of 109
pruning
- tree 5, 6
pseudorandom generator see genera

tor
PSPACE 22, 23, 87, 110, 112, 122,

124-126,133,163,164,176,177,181,
194,197,207,213,218,219,222,231,
232,263,270-275,285,287,293,300,
301,303, see protocol, for PSPACE,
see QBF, see set, PSPACE-complete,
see tree, computation, of a deter
ministic polynomial-space Thring
machine

pushdown automata see automata,
pushdown

Index 359

Python, M. 67

QBF 176, 177, 181, 274, see PSPACE
quadratic bound see bound, quadratic
quantified boolean formula see

formula, quantified boolean
quantifier
- block, existential or universal 272
quantifier switching see switching,

quantifier
quantifiers
- alternating 221,271,272, 274
quaternary tree
- full see tree, full quaternary
qubit 194, 195
queries
- parallel 250
query generator see generator, query
query round see round, query
query simulation algorithm see

algorithm, query simulation
query state see state, query
query tape see tape, query

Rabi, M. 36, 43, 44
Rabin, M. 264, 277
Rackoff, C. 87, 279, 284, 300
Ramachandran, A. 29, 231, 269
random bits see bits
random oracle see oracle, random
random restriction see restriction,

random
random self-reducibility see self

reducibility, random
random variable see variable, random
randomized algorithm see algorithm,

randomized
randomized moves see moves,

randomized, directed by coin tosses
randomness 67,109,110,186,299
range 32,34,35,37,38,282,284,286
Ranjan, D. 231,270,300
rank
- of a string 80, 114, 169, 181-185,

187,188,191,236,238
rankable set see set, rankable
ranking function see function, ranking
Rao, R. 28
R~(C), R~(C) 18, 19, 22, 27, 60, 64,

269,271,273,293,296,298,307,308
Reach 84-86
reachability 50, 51, 82, 84, 112, 129,

see protocol, for reachability
Reach Test 85,86

360 Index

recurrence relation see relation,
recurrence

recursion
- bounded depth of see bounded,

depth of recursion
recursive call see call, recursive
recursive function see function,

recursive
recursive set see set, recursive
reducibility closure see R~(C), R~(C)
reduction

:$~,of languages in SSFk 301
- 1-L 278

as a means for studying relative
hardness of sets 305
between functions 121

- coNP-many-one 241,306, 308, see
:$~np

- coNP-many-one, closure of coC=P
downward under see closure, of
coC=P downward under coNP-many
one reductions

- coNP-many-one, closure of coNP
downward under see closure, of
coNP downward under coNP -many
one reductions
constant-round truth-table, closure of
PP downward under see closure, of
PP under constant-round truth-table
reductions
Cook's 305,308

- logspace bounded-truth-table 265
- logspace many-one 306, see :${;.
- logspace-uniform ACk 308
- logspace-uniform NCk 308
- Net many-one 308

of error-probability in BPP
computation 73

- of numbers of solutions 108
- of numbers of witnesses 108
- of the cardinality of a set of vectors

88
- of the cardinality of acceptance types

108
- of the depth of a circuit 206
- of the number of accepting paths

94
- of the number of outputs 292
- of the number of solutions 65, 67
- one-way logspace 278
- P-uniform ACk 308
- P-uniform Net, closure of PL

downward under see closure, of

PL downward under P-uniform NC1

reductions
P-uniform NC 1 , closure of PP
downward under see closure, of
PP downward under P-uniform NC1

reductions
- P-uniform NCk 308

polynomial-time bounded-truth-table
2,9,18,26,96,245,306,see :$~tt

- polynomial-time conjunctive
truth-table 240,241,305, see :$~tt
polynomial-time conjunctive Turing
306, see:$~
polynomial-time conjunctive-truth
table 26

- polynomial-time constant-round
truth-table 240, 249-251, see :$~t(k]

- polynomial-time disjunctive truth
table 240, 305, see :$~tt

- polynomial-time disjunctive Turing
306, see :$~

- polynomial-time disjunctive-truth
table 26

- polynomial-time locally positive
Turing 306, see :$focpos

- polynomial-time many-one 3, 6, 8,
9, 61, 71,305, see :$~

- polynomial-time parity, closure of
PP downward under see closure, of
PP downward under polynomial-time
parity reductions

- polynomial-time positive Turing
306, see :$~08

- polynomial-time randomized see
~randomized

- polynomial-time truth-table
246-248,305, see :$ft

- polynomial-time Turing 18, 259,
305, see:$~

- polynomial-time two-round truth
table 250, 251, see :$~t(k]

- positive truth-table, closure of C=P
downward under see closure, of
C=P under positive truth-table
reductions

- randomized 67, 69, 70
- randomized, of NP-language to

USAT 70
- strong nondeterministic see :$Tn
- witness 93-95, 106, 108
refinement
- FP~P 64,89
- ppUP 293

- NPFewV 65
- NPkV 65
- NPSV 58, 59, 61, 63, 65, 292-294
- of a multivalued function 58, 64,

292,294
- of a set of intervals 12-17
- of a truth-table condition 14
Regan, K. viii, 87, 88, 106, 285
Reingold, N. 89, 260
Reinhardt, K. 89
Reischuk, R. 27
Reith, S. 277
rejecting computation path see path,

rejecting computation
rejection cardinality see cardinality,

rejection
relation
- polynomial-time 266, 287
- recurrence 4 7
- relativizable 213, 260
relativizable result see result,

relativizable
relativization 60, 73, 78, 231
- by sparse oracles 273
- RST see relativization, Ruzzo-

Simon-Tompa
- Ruzzo-Simon-Tompa 82, 254, 260,

268-270,279
relativizations, conflicting see results,

conflicting oracle
relativized world see world, relativized
replacement
- of provers with an oracle 134
- of the oracle 75
research
- esoteric vii
restriction 198-200, 202, 204, 206-212,

224, 225, 227, 228, see disjointness,
of restrictions, see distribution,
probability, of restrictions

- disjoint pair 200
- empty 200
-product 200,224
-random 202,204,224,225
- size of 200
result
- partial 100, 107
- relativizable 60, 72, 73, 75
results
- conflicting oracle 87, 197, 270
Rettinger, R. ix, 27
reversal

Index 361

- of the accepting and rejecting path
behavior 100

Rice's Theorem see Theorem, Rice's
Rice, H. 285
ring
- cyclic 193
- zero-divisor of see zero-divisor, of a

ring
Rivest, R. 36, 43, 266
RL 279
Roche, J. ix
Rochester ix
- University of viii
Rogers, H., Jr. 271
Rogers, J. 65,282,284
Rohatgi, P. 89, 231, 270
Rompel, J. 163
root
- of a polynomial 111-113, 150, 151,

207,208,211
- of a tree 5, 7, 92, 180
Rossmanith, P. 278
Rothe, J. ix, 28, 43, 44, 63, 272, 284,

285,287,297
round
- of the integer sampling algorithm

131
- parallel query 251
- query 249-252
- simulation 136, 137
Royer, J. 65,269,275,282-284
Rozenberg, G. ix
RP 28, 29, 72, 87, 268, 288-290, 296
- exponential-time analog of see

analog, exponential-time, of UP,
FewP, EBP, ZPP, RP, or BPP

RP operator see operator, RP
Rrtt(NP) 307
Rrtt(P-sel) 296, 298
R~tt(SPARSE) 307,308
R~tt(TALLY) 307,308
R~-T(NP) 269
R~-T(P-sel) 296
R~-T(Ef) 273
R~-tt(NP) 269
R~-tt(P-sel) 296
R~(logn)-T(NP) 271, 273

R~(logn)-T(E~) 271
R~(n)-T(P-sel) 64
~o.(NP) 307
RT(SPARSE) 22, 27
R~t(C=P) 260, 293
R~t(NP) 18, 19

362 Index

Rubinfeld, R. 163, 164, 284
Rubinstein, R. 43, 283-285
Rudich, S. 265, 286
Rumely, R. 277
runtime 19, 20, 24, 34, 76, 80, 123, 124,

138,183,186-188,214,236,256
Russell, A. 27, 164
Russo, D. 260
Ruzzo, VV. 82,254,260,265,279-281

s-honest function see function,
s-honest

Sabadini, N. 286
SAC, SACk 279-281, see class, circuit
- closure properties see closure, of

SACk ...
safe storage see storage, safe
Safra, S. 164-166
Saks, M. 260
Salomaa, A. ix
Samorodnitsky, A. ix, 166
sampling algorithm see algorithm,

sampling
Santha, M. 279
SAT 1, 3-9, 19-22,26, 57-61, 87, 89,

91,93,95,98,267-270,273,276,282,
284, 287, 289, 296, 305, see circuits,
for SAT, size of, see NP

satisfiable formula see formula,
satisfiable boolean

satisfying assignment see assignment,
satisfying, see assignments

Savage, J. 276
Savitch's Theorem see Theorem,

Savitch's
Savitch, VV. 89, 125, 163, 273
Saxe, J. 232
sc 279

ix, 272
272

Schaefer, M.
Schaefer, T.
Schear, M.
scheme

ix

- oracle construction 213, 215
- pruning 5
Scherer, B. vm
Schoning, U. ix, 27, 87, 269, 273, 276,

277,284,286,287,289,293,296,298,
299

Schulman, L. 194
Schwartz, J. 163,264
Schwentick, T. 88, 194
Scully, V. 263
search

- brute-force 53, 54
- exhaustive 264
search procedure see procedure,

polynomial-time search
second 37, 39, 42
secret
- of complexity theory vii
- real, of complexity theory vii
secret-key agreement see agreement,

secret-key
Seiferas, J. viii, ix, 275,279
selection
- random, of an oracle 218
- under uniform distribution 71,

80,81,116,118,131-133,146,154,
160-162, 187, see distribution,
uniform

selectivity 62, 64, see function, NPSV
selector, see function, P-selector,
see function, P-sel, see function,
selector, oblivious to the order of
its argument, see function, selector,
symmetric, see function, selector,
see NPSV-sel, see P-sel, see set,
semi-feasible-sel

- counting-class-based 64
- importance of 295
- nondeterministic and other analogs

of P-selectivity 64
selector function see function, selector
self-correction 164
self-reducibility 4, 5, 60, 119
- disjunctive see tree, disjunctive

self-reducibility
- disjunctive, of SAT 1
- downward 164
- many-one 194
-of SAT 2
- random 164
- tree see tree, self-reducibility
self-reducibility algorithm see

algorithm, self-reducibility
self-reducibility-based argument see

argument, self-reducibility-based
self-reducibility-based tree-pruning

approach see approach, self
reducibility-based true-pruning

self-testing 164
Selman, A. viii, ix, 43, 44, 63-65, 268,

273,276,282-284,294-297,308
semi-feasible set see set, semi-feasible
semi-membership algorithm see

algorithm, semi-membership

semi-recursive set see set, semi-
recursive

Sengupta, S. ix, 27, 164
separation
- by an oracle 231, 232, 259, 272, 273,

284,293, 297,298, see oracle
- downward 273
- probability one 284, 300
set
- 2-disjunctively self-reducible 60
- almost polynomial-time 296
- C=L-complete 278
- C=P-complete 293
- canonical complete for PL 278
- canonical complete for pPP 293
- cofinite 219
- complete for the ::;:ft-reducibility

closure of C=L 279
- complete, for levels of PH 272
- coNP-complete 2, 5
- context-free 279, 280
- 6~-complete 272
- dense 26, 265
- disjunctively self-reducible 60
- E-complete 275
- EXP-complete 274,275
- F-selective 59
- finite 68, 219
- FPtotal-selective 59
- hardness for classes see hardness,

of sets, classifying via reductions
- k-locally self-reducible 194
- minimum-weight 68, 69
- ModkP-complete 298
- NE-complete 275
- near-testable 296
- nearly near-testable 296
- NL-complete 82, 83, 89
- NL-complete, with respect to 1-L

reductions 278
- NP-bounded-truth-table-complete

see set, NP-complete
- NP-complete 1-3, 8, 9, 18-20, 22,

23,26,27,31,60,91,93,95,98,99,
266-269,282,286,287,305

- NP-complete ones that are non
isomorphic 284,285

- NP-complete, ones that are
P-isomorphic 282

- NP-complete, relativizably so 60
- NP-conjunctive-truth-table-complete

see set, NP-complete
- NP-hard 1, 3, 8, 9, 18, see NP-hard

Index 363

- NP-hard, sparse see NP-hard
- NP-many-one-complete see set,

NP-complete
- NP-printable 275
- NP-Thring-complete see set,

NP-complete
- NP n coNP-complete 269
- NPSV-selective 295-297
- of all prime numbers 131
- of primes 277
- P-capturable 6, 26
- P-close 296
- P-complete 265
- P-printable 28, 284, 285
- P-selective 47, 59, 64,294-297, see

P-sel
- paddable 269,282
- padded version of 251
- EBP-complete 298
- pC=P -complete 293
- PL-complete 278
- polynomial-time 264, see P
- possibility of NP having sparse

Turing-complete 27
- possibility of NP having sparse

Thring-hard 27
- potential existence of sparse, in

NP-P 23,275
- potential existence of tally, in NP-P

23,24,275
- potential lack of spare $~-hard, for

UP 284
- ModkP 298
- potential lack of sparse :::;:tt-hard, for

NP 9, 268
- potential lack of sparse ::;::tt-hard, for

p 265
- potential lack of sparse :::;~tt-hard, for

NP 268
- potential lack of sparse $~-complete,

for coNP 5
- potential lack of sparse $~-complete,

for NP 8
- potential lack of sparse $~-hard, for

coNP 5
- potential lack of sparse $~-complete,

for NP 1, 18, 19, 268
- potential lack of sparse $~-hard, for

NP 1, 20, 22, 60,268
- potential lack of tally $~-complete,

for NP 2
- potential lack of tally $~-hard, for

NP 2

364 Index

- PP-complete 293
- PSPACE-complete 87, 176, 194,

197,272,274
- rankable 265
- recursive 264
- self-reducible 60
- semi-feasible 45,47-49,51-54,57,

59, 63, 64, see selectivity
- semi-feasible, nondeterministic

analog of 57
- semi-recursive 295
- #L-complete 279
- #P-complete 115, 119, 286, 287
- 1:~-complete 272
- small advice 47
-sparse 1-29,269,276,277,307,308,

see relativization, by sparse oracles,
see SPARSE

- sparse, in NP 268, 274, 275
- sparse, in P 284, 285
- sparse, in PH 275
- supersparse 28
- tally 2, 3, 5, 6, 23, 24, 26,274, 287,

see TALLY
- e~-complete 272
- Turing self-reducible 296
- UL-complete 278
- UP-hard 283, 284
- US-complete 69
- weakly P-selective 63
- ZPP-hard 288
set-f 57-59,61,62,65,291,292,294,

295, 297, 306
sets
- disjoint 185, 246
- P-isomorphic seeP-isomorphism
- sparse, lowness of see lowness, of

sparse sets
Sewelson, V. 22, 24, 26-29, 106, 107,

274,275
SFk 176,177,181,183,185,194,300-

303, see computation, bottleneck, see
machine, bottleneck

- closure properties see closure, of
SFs ...

Shamir, A. 163, 164,270
Sharir, M. 264
Sherman, A. 36, 43, 44
Sheu, M. 232
Siefkes, D. 269
sign function see function, sign
Silvestri, R. 27, 269, 277, 285
Simon, I. 279, 293

Simon, J. 82,254,260,273,279,290,
293

simulation
- nondeterministic, of an oracle 76
- probabilistic, of an oracle 75
simulation round see round,

simulation
single-valuedness
- of FP 291
Sipser, M. 163,232,264,265,269,274,

285,286,288,300
Sivakumar, D. viii, 29, 88,265
Skyum, S. 302
small circuits see circuits, small
Smith, C. ix
Solovay, R. 231, 268-270,272,273
solution see reduction, of numbers

of solutions, see reduction, of the
number of solutions

- type see type, solution
- unique 67, 68
solvable monoid see monoid, solvable
sorcerer
- pointy-hatted vii
- pointy-headed vii
soundness
- of a protocol 110, 115, 116, 118, 123,

132-138,145,149,155,299
s~ 27,64,164,268
(S~)NP n coNP 64
space
- exponential 264
- logarithmic see C=L, see L, see NL,

see PL, see UL
- polynomial see PSPACE
space hierarchy theorem see theorem,

space hierarchy
SpanP 104,105,107,108,297,299
- closure properties see closure, of

SpanP ...
SPARSE 273, 276, 307, 308
sparse P superset see superset, sparse

p
sparse set see set, sparse
specification
- unique, of a polynomial 111
- unique, of a polynomial by coefficients

148
- unique, of a polynomial by points

157
Spielman, D. 89, 260
splitting
- of intervals 13

SPP 100-103, 105, 106, 284,287,
290-293, 298, see class, counting

- promise see promise, in the
definition of SPP

Srinivasan, A. 89
SSFk 185, 194, 300-302, see machine,

symmetric bottleneck
state
- query 110
- random starting 195
- unique accept 127
Stearns, R. 27, 264, 275
Stein, C. 266
Stephan, F. 285, 296
Stockmeyer, L. 29, 264, 270-274,279,

281,286,308
Stoness, S. ix
storage
- safe 302
- value of 302
straight-line program see program,

straight-line
strategy
- parameterized 136
stratified circuits see circuits,

stratified
Straubing, H. viii, 193, 194,281
string
- Kolmogorov-easy 265
- tally 5
strong exponential hierarchy see

hierarchy, strong exponential
strongness
- of length-based honesty 37
subcircuit 198,203-206, 208, 211-213,

217,223-225,227,228,230,see
circuit

subcircuits
- maximally disjoint 206
subgroup 174
- commutator 167,174,175
sublinear parallel access to NP see

access, sublinear-parallel, to NP
subroutine
- polynomial-time 264
- unit-cost 269
subtraction
- integer 38
-proper 91-96,98,99,104-107
succinct certificate see certificate,

succinct
Sudan, M. ix, 163-166, 267, 269
Sudborough, L. 280, 281

Index 365

Sundaram, R. 27,164
Sundell, S. ix
superpolynomial-size circuits see

circuits, superpolynomial-size
superset
-sparse P 26
supersparse set see set, supersparse
survey
- amusing, of the research leading to

IP=PSPACE 164
Swier, R. viii
switching
- quantifier 77
Switching Lemma see Lemma,

Switching
symmetric alternation see alternation,

symmetric, sees~
symmetric bottleneck machine see

machine, ... symmetric bottleneck ...
symmetric difference see difference,

symmetric
symmetric function see function,

symmetric
symmetric gate see gate, symmetric
system
- bounded-round multiprover interac

tive proof 164
- interactive proof 109-112, 114,

115,123,133, 164,274,299,300,see
completeness, of a protocol, see
interaction, see IP, see MIP, see pro
tocol, see prover, see replacement, of
provers with an oracle, see soundness,
of a protocol, see verifier

- multi-prover interactive proof see
MIP

- multiprover interactive proof 110,
111, 164, 299

- of elections developed in 1876 by
Lewis Carroll 272

- one-prover interactive proof 111,
299

- two-prover interactive proof 133,
135

- two-prover one-round interactive
proof 164

Szegedy, M. 164-166,269
Szelepcsenyi, R. 278
Szemeredi, E. 280

tableau method see method, tableau
TALLY 307,308
tally set see set, tally
tally string see string, tally

366 Index

Tamon, C. 27
Tan, S. 279
Tang, C. ix
tape
- input 250, 254, 255
-query 110,213,249-251,254-256
- work 250,254,255
- write-only 254
Tardos, G. 29, 64
Tarui, J. ix, 87-89, 297
task
- divided computation 185, 301
Technique
- Isolation 56, 64, 67-89, 108
- Nonsolvable Group 167-195
- One-Way Function 31-44
- Polynomial 235-261
- Polynomial Interpolation 109-166
- Random Restriction 197-233
- Self-Reducibility 1-29
- Tournament Divide and Conquer

45-65
- Witness Reduction 91-108
technique
- divide and conquer, in general 45,

169,170
- large gaps and brute force short

strings 56
- nonrelativizable proof 270
- organization by vii
- pruning 2
- relativizable proof 87, 197,259,270
testing
- multilinearity 164
- of a witness 40
textbook
- use of this book as viii
Thakur, M. ix, 285
Theorem
- Chebyshev's 163
- Chinese Remainder 120
- Cook's 58, 59, 64, 268
- Cook-Karp-Levin 64, see Theorem,

Cook's
- Cook-Levin 64, see Theorem,

Cook's
- Hartmanis-lmmerman-Sewelson

see Encoding, Hartmanis
lmmerman-Sewelson

- Karp-Lipton 20, 27, 60,64
- Mahaney's 2, 26

Ogihara-Watanabe 26
- PCP 165, 166

- Prime Number 131
- Rice's 285
- Savitch's 125, 163
- Toda's 68, 72, 78, 87, 88, 115, 194,

259
theorem
- space hierarchy 22, 27
- time hierarchy 22, 27,264
theorems via algorithms under hy

potheses approach see approach,
theorems via algorithms under
hypotheses

theory
- circuit 88, see circuits, see class,

circuit
- complexity 1-308, see secret
- recursive function 271, 295
- tournament 45, 50, 51, see tourna-

ment
Therien, D.
Thierauf, T.

289,297
threshold

193,194,260,289
ix,27,64, 108,277,279,

- acceptance 50
- rejection 50
threshold circuits see approximation,

of threshold circuits by parity
circuits, see circuits, threshold

threshold gate see gate, threshold
time 138,251
- deterministic double-exponential 53
- deterministic exponential 2, 23, see

EXP, see E
- deterministic polynomial 49,264,

see P
- double exponential nondeterministic

264
- nondeterministic exponential 2, 23,

133, see NEXP, see NE
- nondeterministic polynomial 49, see

NP
- parity exponential 28
- probabilistic polynomial 49, see PP
- triple-exponential 32
- unambiguous polynomial 283,284,

see UP
time hierarchy theorem see theorem,

time hierarchy
Toda's Theorem see Theorem, Toda's
Toda, S. ix, 64, 68, 78, 87-89, 108, 115,

194,259,279,284,286,293,296-298
Tomer, J. ix
Tompa, M. 82, 254, 260, 279, 280

tongue
-seared
top gate
Toran, J.

297-299

vii
see gate, top
ix,29,88,106,284,289,293,

Torenvliet, L. ix, 63, 287, 295, 296
total degree see degree, total, of a

polynomial
total function see function, ... total. ..
tournament 45-47,50-52,57,62,see

graph, tournament
- defeat in 45-50, 62
- round-robin 45
tournament graph see tournament
tournament theory see theory,

tournament
translation
- downward, of equality 23, 25,28
- upward 23, 28,29
- via padding 307
traversal
- in-order 178, 180
tree
-bushy 8, 56

computation, of a deterministic
polynomial-space Thring machine
112

- computation, of a nondeterministic
Thring machine 92,278,281

- disjunctive self-reducibility 5, 7
- expanding of a 6
- full binary 169, 177
- full quaternary 177
- pruning see procedure, self-

reducibility-based tree-pruning, see
procedure, tree-pruning

- root of see root, of a tree
- self-reducibility 5-7
tree-pruning algorithm see algorithm,

tree-pruning
tree-pruning approach see approach,

self-reducibility-based true-pruning
Trevisan, L. ix, 166
triple-exponential time see time,

triple-exponential
True 2-7,14,21,178-180
truth-table 10, 14, see ~ft, see

condition, truth-table
Thring self-reducible set see set,

Thring self-reducible
Thring, A. 264
two-sided error see error, two-sided
type

Index 367

- acceptance 108, see reduction, of
the cardinality of acceptance types

- finite-cardinality acceptance 108
- solution 65

Ukkonen, E. 26
UL 67, 68, 82-87, 89, 278, see set,

UL-complete
UL/poly 68, 82-84, 278
Ulfberg, S. 232
Ullman, J. 264,266
Umans, C. ix, 272
unambiguous function see function,

unambiguous
unambiguous nondeterminism see

UL, see UP
unambiguous NP machine see

machine, unambiguous NP
unbounded fan-in circuits see circuits,

unbounded fan-in
uniform distribution see distribution,

uniform
uniformity 281
- logspace 281
- NC1 281
- p 281
- UE• 281
union
- closure of ModkP under see closure,

of ModkP under union
- closure of NP under see closure, of

NP under union
- closure of P under see closure, of P

under union
- closure of PP under see closure, of

PP under union
- disjoint 96, 185, 245
unique accepting configuration see

configuration, unique accepting
universal machine see machine,

universal
University of Rochester see Rochester,

University of
UP 28, 33-36, 43, 44, 63, 67, 87,

94-102,105-107,263,268,281-285,
287,291-293,296,298,see machine,
categorical, see set, potential lack
of spare ~~-hard, for UP, see set,
UP-hard

- closure properties see closure, of
UP ...

- exponential-time analog of see
analog, exponential-time, of UP,
FewP, ffiP, ZPP, RP, or BPP

368 Index

- gap analog of 100
- promise see promise, in the

definition of UP
upward translation see translation,

upward
US 69, 71, 281, 283-285, 293, see set,

US-complete

Valiant, L. 88, 279, 282, 283, 286, 287,
302

value
-census 20,49
- maximum 104
van der Waerden, B. 163
van Erode Boas, P. ix, 296
van Melkebeek, D. ix, 27, 29, 265
Vandermonde matrix see matrix,

Vandermonde
variable
- random 135,203
variance 135, 137, 203
Vazirani, U. 87-89, 194
Vazirani, V. 87, 89
vector
- nonzero 88
vectors see reduction, of the

cardinality of a set of vectors
Venkateswaran, H. 88,280
Vereshchagin, N. 231,269,283,285,

288
verification
- deterministic, of mathematical

statements 109
- mechanical, of mathematical

statements 267
- of a certificate 109
- of accepting computation of a

PSPACE machine 125
- of an arithmetic expression
- of computation of a verifier
- of mathematical statements
- of permanent 112
- of primality 131, 142
- of reachability 129
- of satisfiability 112

138
165
109

- via interactive proof systems 109
- with O(logn) random bits 166
- with polylogarithmic random bits

165
verifier 109, 110, 115, 123, 132-135,

163, 165, 299, 300, see system,
interactive proof

- polynomial-time 110

- power of 109
Vinay, V. 88,279
Vishkin, U. 279, 281, 308
Vollmer, H. ix, 107, 194,260, 277
Voltaire, FranC<ois Marie Arouet 268
von Braunmiihl, B. 27
von Neumann, J. 264

Waerden, B. van der see van der
Waerden, B.

Wagner, K. ix, 26, 27, 106, 107, 194,
260,271,272,274,275,290

wands
- of combinatorics vii
Wang, J. 64, 297
Watanabe, 0. ix, 26-29, 43, 63, 64, 89,

108,276,277,297,308
weak assignments see assignments,

weak
weak equality see equality, weak
weakly P-selective set see set, weakly

P-selective
Wechsung, G. ix, 26, 27, 64, 65,

106-108,260,274,275,293,303
weight
-minimum 68
WeightSum 84-86
West, D. 64
Whitman, W. 274
width
- ofPBP 167
Wigderson, A. 28, 87, 89, 164, 166,

269,289,300
Wilson, C. 28, 308
winner
- in an election system 272
- of a match 45
wisdom
- conventional vii
witness see reduction, of numbers of

witnesses
- accepting computation viewed as

94
- length of 39, 41
- membership 9, 10, 39-41
-unique 282
witness reduction see reduction,

witness
witness testing see testing, of a

witness
Wossner, H. ix
word problem see problem, word
work tape see tape, work
world

- relativized 19, 27-29,65, 107, 108,
228,231,232,268-270,282,283,285,
288, see oracle

worst-case cryptography see cryptog-
raphy, worst-case

Wrathall, C. 271, 272
Wright, E. 163
write-only tape see tape, write-only

Yao, A. 88, 232
Yap, C. ix, 26
Yesha, Y. 26, 28, 272, 274, 275, 285
Young, P. 27, 269, 277, 282, 283, 296,

297

Zachos, S. ix, 87, 269, 271, 289, 290,
297,298,308

Zaki, M. 297
Zank6, V. 163
zero-divisor
- of a ring 112

Index 369

zero-knowledge protocol see protocol,
one-round perfect-zero-knowledge

zero-polynomial 152
Zhong, J. ix
Zhou, S. 89
Zimand, M. ix, 29, 43,231,269,297
Zippel, R. 163
ZPP 22, 27, 28, 58, 61, 64, 268, 276,

277, 288-290, 294, see set, ZPP-hard
- exponential-time analog of see

analog, exponential-time, of UP,
FewP, EaP, ZPP, RP, or BPP

Zuckerman, D. 289

	Preface
	Contents
	1. The Self-Reducibility Technique
	1.1 GEM There Are No Sparse NP-Complete Sets Unless P=NP
	1.2 The 'I'uring Case
	1.3 The Case of Merely Putting Sparse Sets in NP - P The Hartmanis-lmmerman-Sewelson Encoding
	1.4 OPEN ISSUE Does the Disjunctive Case Hold
	1.5 Bibliographic Notes

	2. The One-Way Function Technique
	2.1 GEM Characterizing the Existence of One-Way Functions
	2.2 Unambiguous One-Way Functions Exist If and Only If Bounded-Ambiguity One-Way Functions Exist
	2.3 Strong, Total, Commutative, Associative One-Way Functions Exist If and Only If One-Way Functions Exist
	2.4 OPEN ISSUE Low-Ambiguity, Commutative, Associative One-Way Functions
	2.5 Bibliographic Notes

	3. The Tournament Divide and Conquer Technique
	3.1 GEM The Semi-feasible Sets Have Small Circuits
	3.2 Optimal Advice for the Semi-feasible Sets
	3.3 Unique Solutions Collapse the Polynomial Hierarchy
	3.4 OPEN ISSUE Are the Semi-feasible Sets in P linear
	3.5 Bibliographic Notes

	4. The Isolation Technique
	4.1 GEM Isolating a Unique Solution
	4.2 Toda's Theorem PH ~ pPP
	4.3 NLpoly = ULpoly
	4.4 OPEN ISSUE: Do Ambiguous and Unambiguous Nondeterminism Coincide
	4.5 Bibliographic Notes

	5. The Witness Reduction Technique
	5.1 Framing the Question: Is #P Closed Under Proper Subtraction
	5.2 GEM: A Complexity Theory for Feasible Closure Properties of #P
	5.3 Intermediate Potential Closure Properties
	5.4 A Complexity Theory for Feasible Closure Properties of OptP
	5.5 OPEN ISSUE: Characterizing Closure Under Proper Decrement
	5.6 Bibliographic Notes

	6. The Polynomial Interpolation Technique
	6.1 GEM: Interactive Protocols for the Permanent
	6.2 Enumerators for the Permanent
	6.3 IP = PSPACE
	6.4 MIP = NEXP
	6.5 OPEN ISSUE: The Power of the Provers
	6.6 Bibliographic Notes

	7. The Nonsolvable Group Technique
	7.1 GEM: Width-5 Branching Programs Capture Nonuniform-NC1
	7.2 Width-5 Bottleneck Machines Capture PSPACE
	7.3 Width-2 Bottleneck Computation
	7.4 OPEN ISSUE: How Complex Is Majority-Based Probabilistic Symmetric Bottleneck Computation
	7.5 Bibliographic Notes

	8. The Random Restriction Technique
	8.1 GEM: The Random Restriction Technique and a Polynomial-Size Lower Bound for Parity
	8.2 An Exponential-Size Lower Bound for Parity
	8.3 PH and PSPACE Differ with Probability One
	8.4 Oracles That Make the Polynomial Hierarchy Infinite
	8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite with Probability One
	8.6 Bibliographic Notes

	9. The Polynomial Technique
	9.1 GEM: The Polynomial Technique
	9.2 Closure Properties of PP
	9.3 The Probabilistic Logspace Hierarchy Collapses
	9.4 OPEN ISSUE: Is PP Closed Under Polynomial-Time Turing Reductions
	9.5 Bibliographic Notes

	A. A Rogues' Gallery of Complexity Classes
	A.1 P: Determinism
	A.2 NP: Nondeterminism
	A.3 Oracles and Relativized Worlds
	A.4 The Polynomial Hierarchy and Polynomial Space: The Power of Quantifiers
	A.5 E, NE, EXP, and NEXP 27
	A.6 P /Poly: Small Circuits
	A.7 L, NL, etc.: Logspace Classes
	A.8 NC, AC, LOGCFL: Circuit Classes
	A.9 UP, FewP, and US: Ambiguity-Bounded Computation and Unique Computation
	A.10 #P: Counting Solutions
	A.ll ZPP, RP, coRP, and BPP: Error-Bounded Probabilism
	A.12 PP, C=P, and SPP: Counting Classes
	A.13 FP, NPSV, and NPMV: Deterministic and Nondeterministic Functions
	A.14 P-Sel: Semi-feasible Computation
	A.15 E9P, ModkP: Modulo-Based Computation
	A.16 SpanP, OptP: Output-Cardinality and Optimization Function Classes
	A.17 IP and MIP: Interactive Proof Classes
	A.18 PBP, SF, SSF: Branching Programs and Bottleneck Computation

	B. A Rogues' Gallery of Reductions
	B.1 Reduction Definitions: :::;~, :::;~
	B.2 Shorthands: R and E
	B.3 Facts about Reductions
	B.4 Circuit-Based Reductions: NCk and ACk
	B.5 Bibliographic Notes

	References
	Index

